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1. Kernel based methods

Let
{(xi, f̂i)}Ni=1

with xi ∈ Rd, fi ∈ R.

Aim: Find a “good” function f such that

f(xi) = f̂i i = 1, . . . , N

To compute an f , we can make of a discrete representation of f in some basis, i.e.

f(x) =
N∑
j=1

cjbj(x).

For interpolation, one can solve this via

BC = F̂ ,

where Bkj = bj(xk), j, k = 1, . . . , N , C = (c1, . . . , cN )T , and F̂ = (f̂1, . . . , f̂N )T . If B is a
nonsingular matrix we have a solution. It turns out that so-called kernel functions that
are centered at the locations xi are a good choice:

bj(x) = k(xj , x),

which gives

f(x) =
N∑
j=1

cjk(xj , x).

We will also consider approximation instead of interpolation f(xi) ≈ f̂i. This is in
particular relevant in machine learning, where one usually assumes, and actually has,
noise and measurement errors in the given data.
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1. Kernel based methods

1.1. Kernels

The Gaussian kernel is the prime example of a kernel:

k(x, y) := exp
(
−α‖x− y‖22

)
for all x, y ∈ Rd, where α is a scaling parameter.

Figure 1.1.: Gaussian kernel for various α values

Definition 1.1. Let Ω be an arbitrary nonempty set. A function k : Ω× Ω→ R is
called a kernel on Ω. We call k a symmetric kernel if

k(x, y) = k(y, x)

for all x, y ∈ Ω.

The Gaussian kernel can be written as

k(x, y) = exp(−α ‖x− y‖22︸ ︷︷ ︸
r:=‖x−y‖2

)

= exp(−αr2)
= φ(r)
= φ(‖x− y‖2)
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1. Kernel based methods

Figure 1.2.: Inverse multiquadratics for various β values

Radial basis functions

Definition 1.2. A function Φ : Rd → R is said to be radial if there exists a function
φ : [0,∞]→ R such that

Φ(x) = Φ(‖x‖2)

for all x ∈ Rd. Such a function is traditionally called radial basis function (RBF).

Other common RBFs are

• inverse multiquadratics φ(r) = (1 + αr2)β, β < 0

• multiquadratics, φ(r) = (1 + αr2)β, β > 0

• powers: φ(r) = rβ, β /∈ 2Z.

These belong to the

• polyharmonic family of kernels:

φ(r) = rβ log(|r|), β ∈ 2Z.

Special case:
φ(r) = r2 log(|r|).

This is the so-called thin-plate spline. It relates to the partial differential equation
that describes the bending of thin plates.
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1. Kernel based methods

Figure 1.3.: Multiquadratics for various β values

Figure 1.4.: Polyharmonic kernel for various β values

4



1. Kernel based methods

• In contrast to the other kernels that live over R, Wendland’s kernel is a compactly
supported kernel:

φa,1(r) = (1− r)(a+1)
+ (1 + (a+ 1)r)

with the cut-off function

(x)+ :=
{
x, x ≥ 0
0, x < 0

Figure 1.5.: Wendland’s C2-kernel for various a

Remark. Kernels can always be restricted to subsets without losing essential properties.
This easily allows kernels on embedded manifolds, e.g. the sphere.

Remark. We will see that a kernel k on Ω defines a function k(x, ·) for all fixed x ∈ Ω.
The space

K0 := span {k(x, ·) | x ∈ Ω}

can be used as a so-called trial space in meshless methods for solving PDEs.

Kernels in Machine Learning

In machine learning the data x ∈ Ω can be quite diverse and without (much) structure
on first glace. For example consider images, text documents, customers, graphs, ...

Here, one views the kernel as a similarity measure, i.e.

k : Ω× Ω→ R

returns a number k(x, y) describing the similarity of two patterns x and y.
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1. Kernel based methods

If in Rd, we can work with the standard scalar product

〈x, y〉 =
d∑
i=1

xi · yi,

where x and y are very dissimilar if they are orthogonal and x and y are very similar
if they point in the same direction. As a reminder, if normalized the scalar product
computes the cosine of the angle between x and y.

To work with general data, we first need to represent it in a Hilbert space F , the so
called feature space. One considers the (application dependent) feature map

Φ : Ω→ F .

The map Φ describes each x ∈ Ω by a collection of features which are characteristic for a
x and capture the essentials of elements of Ω. Since we are now in a Hilbert space we
can work with linear techniques in F . In particular we can use the scalar product in F
of two elements of Ω represented by their features:

〈Φ(x),Φ(y)〉F =: k(x, y) for all x, y ∈ Ω

and define a kernel k that way.

Note that given a kernel, neither the feature map nor the feature space are unique. Let

Ω := R, k(x, y) := x · y for all x, y ∈ R.

First, a feature map is the identity map on R, with the feature space F = R.

But, the map Φ : Ω→ R2 defined by

Φ(x) := (x/
√

2, x/
√

2) for all x ∈ Ω

is also a feature map given the same k since

〈Φ(x),Φ(y)〉R2 = x√
2
y√
2

+ x√
2
y√
2

= x · y = k(x, y) for all x, y ∈ Ω.

Such a construction can be made for any arbitrary kernel, therefore every kernel has
many different feature spaces.

As a simple example for a "different" kind of kernel, we consider a collection of documents.
We represent each document as a bag of words and describe a bag as a vector in a space in
which each dimension is associated with a term from the set of words, i.e. the dictionary.
The feature map is

Φ(t) := (wf(w1, t),wf(w2, t), . . . ,wf(wd, t)) ∈ Rd

6



1. Kernel based methods

where wf(wi, t) is the frequency of the word wi in the document t. A simple kernel is the
vector space kernel

K(t1, t2) := 〈Φ(t1),Φ(t2)〉 =
d∑
j=1

wf(wj , t1) · wf(wj , t2).

Natural extensions to this kernel take e.g. word order, relevance or semantics into account,
which can be achieved by using matrices in the scalar product:

K(t1, t2) := 〈SΦ(t1), SΦ(t2)〉
= ΦT (t1)STSΦ(t2).

Another non-Euclidean data object are graphs, where the class of random walk kernels
can be defined [Vis+10]. These are based on the idea that given a pair of graphs, one
performs random walks on both and counts the number of matching walks. With Ã× the
adjacency matrix of the direct product graph of the two involved graphs, one defines:

k(G,H) :=
NG∑
j=1

NH∑
k=1

∞∑
k=0

λk
[
Ãk×

]
j,k
.

More generally, one can define a random walk graph kernel k as

k(G,H) :=
∞∑
k=0

λkq
T
×W

k
×p×,

where W× is the weight matrix of the direct product graph, qT× is the stopping probability
on the direct product graph, and p× is the initial probability distribution on the direct
product graph. For a current survery of graph kernels see [KJM20].

An example application for graph kernels are organic molecules, which can be represented
as graphs and where one aims to predict electronic ground-state properties [Fab+17].

Mercer kernels

More generally, one can consider kernels of the Hilbert-Schmidt or Mercer form

k(x, y) =
∑
i∈I

λiϕi(x)ϕi(y) for all x, y ∈ Ω,

with certain functions ϕ : Ω→ R, i ∈ I, certain positive weights λi, i ∈ I, and an index
set I such that the summability condition

k(x, x) =
∑
i∈I

λiϕi(x)2 <∞ (1)

holds for all x ∈ Ω.

7



1. Kernel based methods

Remark. Such kernels arise in machine learning if the functions ϕi each describe a feature
of x and the feature space is the weighted `2-space:

`2,I,λ :=
{
{ξi}i∈I :

∑
i∈I

λiξ
2 <∞

}

of sequences with indices in I.

These expansion also occurs when kernels generating positive integral operators are
expanded into eigenfunctions on Ω. Such kernels can be viewed as arising from generalized
convolutions.

Generally, kernels have there major application fields: convolutions, trial spaces, and
covariances. We are mainly concerned with the last two.

1.1.1. Properties of Kernels

We consider an arbitrary set X = {x1, . . . , xN} of N distinct elements of Ω. We can from
linear combinations

f(x) =
N∑
j=1

ajk(xj , x), x ∈ Ω

of translates of the kernel.

This is a very convenient technique to generate functions on an otherwise unstructured
set Ω. Note that the coefficients might not be unique, we do not assume that the k(xj , x)
are linearly independent.

For X we construct the symmetric N ×N kernel matrix

K := KX,X := (k(xj , xk))1≤j,k≤N

and obtain the interpolation problem

f̂k = f(xk) =
N∑
j=1

ajk(xj , xk).

In matrix form:
KX,Xα = F̂ .

In general it is difficult to determine if such a linear equation system can be solved, but
for kernels we can see it via positive semi-definiteness.

8



1. Kernel based methods

Definition 1.3. A kernel on Ω × Ω is symmetric and positive semidefinite, if all
kernel matrices for all finite point sets of distinct elements of Ω are symmetric and
positive semidefinite.

Theorem 1.4.

1. Kernels arising from feature maps, i.e.

k(x, y) = 〈Φ(x),Φ(y)〉F

are positive semidefinite.

2. Hilbert-Schmidt or Mercer kernels

k(x, y) =
∑
i∈I

λiϕi(x)ϕi(y) for all x, y ∈ Ω

are positive semidefinite.

Proof. The first statement is obvious since such kernels result in kernel matrices that are
Gramian matrices, and these are always positive semi-definite. For the second statement
we consider the quadratic form corresponding to the kernel matrix and we write for all
a ∈ RN :

aTKa =
N∑

j,k=1
ajakk(xj , xk)

=
N∑

j,k=1
ajak

∑
i∈I

λiϕi(xj)ϕi(xk)

=
∑
i∈I

λi

N∑
j=1

ajϕi(xj)
N∑
j=1

akϕi(xk)

=
∑
i∈I

λi

 N∑
j=1

ajϕi(xj)

2

≥ 0

9



1. Kernel based methods

Theorem 1.5. Let K be a symmetric positive semi-definite kernel on Ω. Then

1. k(x, x) ≥ 0 for all x ∈ Ω.

2. k(x, y)2 ≤ k(x, x) · k(y, y) for all x, y ∈ Ω.

3. 2k(x, y)2 ≤ k(x, x)2 + k(y, y)2 for all x, y ∈ Ω.

4. Any finite linear combination of positive semidefinite kernels with nonnegative
coefficients gives a positive semidefinite kernel. If one of these kernels is positive
definite, and its coefficient is positive, then the combination of kernels is positive
definite.

5. The product of two positive semidefinite kernels is positive semidefinite.

6. The product of two positive definite kernels is positive definite.

Proof. 1. This follows with the point set {x} ⊂ Ω in Definition 1.3.

2. Consider the kernel matrix for the set {x, y}. The determinant of such a positive
semi-definite symmetric matrix is non-negative, therefore k(x, x)·k(y, y)−k(x, y)2 ≥
0.

3. With the inequality
2ab ≤ a2 + b2 for a, b ∈ R+

0

this follows from Item 2.

4. This property is easy to see, just expand the sum xTKx.

5. The property follows from Lemma 1.6.

6. The property follows from the proof of Lemma 1.6. One can repeat the same proof
with strict inequalities and some more linear algebra.

Lemma 1.6 (Schur Product Lemma). For two matrices A, B the matrix C with
elements

Cij = AijBij

is called Schur product or Hadamard product. The Schur product of two positive
semidefinite matrices is positive semidefinite.

Proof. We can decompose a positive semidefinite matrix into
A = STDS

10



1. Kernel based methods

with S an orthogonal matrix and D = diag(λ1, . . . , λN ) a diagonal matrix with λi ≥ 0
the eigenvalues of A. For all q ∈ RN , we look at

qTCq =
N∑

j,k=1
qjqk

cjk︷ ︸︸ ︷
ajkbjk =

N∑
j,k=1

qjqkbjk

N∑
m=1

λmsjmskm

=
N∑
m=1

λm

N∑
j,k=1

qjsjm︸ ︷︷ ︸
pjm

qkskm︸ ︷︷ ︸
pkm

bjk

=
N∑
m=1

λm

N∑
j,k=1

pjmpkmbjk︸ ︷︷ ︸
≥0, since B is positive semidefinite

≥ 0.

This however is exactly what we had to prove.

Note that we consider only positive definiteness for symmetric matrices. The above also
holds if one of the matrices is not symmetric, but positive definite.

Our overall aim is to go from kernels to a reproducing kernel Hilbert space (RKHS).
Therefore we will define “candidate” spaces and a bilinear form in the way we would
expect them.

As before, let K be a symmetric positive semidefinite kernel on Ω. We define the linear
space

H := span {k(x, ·) | x ∈ Ω}

of all finite linear combinations of translates of the kernel.

In the same way, we define the linear space

L := span {δx | x ∈ Ω, δx : H → R}

of all finite linear combinations of point evaluation functionals acting on functions in
H,

δx : H → R, f 7→ f(x).

In particular, we explicitly restrict the action to functions in H. We can write all elements
from L and H as

λa,X :=
N∑
j=1

ajδxj

fa,X(x) := λya,Xk(x, y) =
N∑
j=1

ajk(x, xj)

11



1. Kernel based methods

with some a ∈ RN , X = {x1, . . . , xN} ⊂ Ω, where X is any arbitrary finite subset of Ω.
Unfortunately, from fa,X(·) = 0 on λa,X(·) = 0 it does not follow that a = 0, we need to
observe that, but it will pose no problem.

We now define a bilinear form on L:

〈λa,X , λb,Y 〉L :=
M∑
j=1

N∑
k=1

ajbkk(xj , yk)

= λxa,Xλ
y
b,Y k(x, y)

= λa,X (fb,Y ) .

(2)

This is well-defined, since it is independent of the specific representation, i.e. a, b, due to
the functionals and their actions in the second line. We observe that the bilinear form is
positive semi-definite since the kernel matrix has this property. Further, we have

|λa,X (fb,Y )| =
∣∣〈λa,X , λb,Y 〉L∣∣

≤ ‖λa,X‖L ‖λa,Y ‖L
(3)

where it may be just a seminorm, not a norm.

Somewhat surprisingly, the bilinear form is actually positive definite, even for K positive
semidefinite.

Theorem 1.7. If k is a symmetric positive semidefinite kernel on Ω, then the bilinear
form 〈·, ·〉L from Eq. (2) is positive definite on the space L of functionals defined on
function on Ω. Thus L is a pre-Hilbert space of functions on Ω.

Proof. Assume that

0 = 〈λa,X , λa,X〉L =
N∑

j,k=1
ajakk(xj , xk) = λa,Xλa,Xk(x, y) = λa,X (fa,X)

for a ∈ RN , and X ⊂ Ω Then by the equality Eq. (3) we have λa,X = 0 as a functional
on H. Here we use that the functionals in L are restricted to functions in H. Note that
we do not get a = 0, neither do we need that.

Theorem 1.8. The mapping R : λa,X 7→ fa,X := λa,X (k(·, y)) is linear and bijective
from L onto H. Thus

〈fa,X , fb,Y 〉H := 〈λa,X , λb,Y 〉L
= 〈R (λa,X) , R (λb,Y )〉H

is an inner product on H. R acts as the Riesz map.

12



1. Kernel based methods

Proof. Linearity is obvious. If a fb,Y = R(λb,Y ) ∈ H vanishes, the definition of 〈·, ·〉L
implies that λb,Y is orthogonal to all of L.. Due to Theorem 1.7 it is zero. Thus we have
bijectivity. The Riesz property is present in the definition of 〈·, ·〉L, since

λa,X(fb,Y ) = 〈λa,X , λb,Y 〉L
= 〈fa,X , fb,Y 〉H
= 〈R(λa,X), fb,Y 〉H

When we specialize the bilinear form 〈·, ·〉L to λ1,x, i.e. one point x ∈ Ω, with a = 1, we
observe:

fb,Y (x) = δx(fb,Y ) = λ1,x(fb,Y )
= 〈λ1,x, λb,Y 〉L
= 〈R(λ1,x), R(λb,Y )〉H
= 〈R(λ1,x), fb,Y 〉H
= 〈k(x, ·), fb,Y 〉H .

In other words, for all f ∈ H,x ∈ Ω we have

f(x) = δx(f) = 〈f,R(λ1,x)〉H = 〈f, k(x, ·)〉H , (4)

which is the very useful so-called reproduction equation to obtain for values of functions
from the inner product. Furthermore, for f = λ1,y = λb,Y it follows

k(x, y) = 〈k(x, ·), k(y, ·)〉H .

We can now observe for all f ∈ H,x ∈ Ω:

|δx(f)| = |f(x)| = |〈f, k(x, ·)〉H | ≤ ‖f‖H‖k(x, ·)‖H = ‖f‖H
√
k(x, x),

and
k(x, y) = 〈k(x, ·), k(y, ·)〉H = 〈δx, δy〉L for all x, y ∈ Ω.

Furthermore, we have the identity

‖δx − δy‖2L = ‖δx‖2L − 2〈δx, δy〉L + ‖δy‖2L
= k(x, x)− 2k(x, y) + k(y, y) for all x, y ∈ Ω.

With that, we can derive a notion of distance on Ω via

dk(x, y) := dist(x, y) := ‖δx − δy‖2L =
√
k(x, x)− 2k(x, y) + k(y, y) for x, y ∈ Ω. (5)

13



1. Kernel based methods

We see now

|f(x)− f(y)| ≤ ‖f‖H‖δx − δy‖L = ‖f‖H dist(x, y) for all x, y ∈ Ω, f ∈ H,

so all functions in H are continuous in this special distance.

Let us remember what we do know for H, it is an inner product space of functions
on Ω with the inner product 〈·, ·〉H , as long as k is a symmetric positive semi-definite
kernel on Ω. We now can use classical Hilbert space arguments and go to the closure
H of H under 〈·, ·〉H . This is similar to the transition from rational numbers to real
numbers. The closure H is, at first, an abstract space defined by equivalence classes of
Cauchy sequences in H, but it is complete space and therefore we have a Hilbert space.
Furthermore, each continuous map from H to a Banach space Y extends uniquely to the
closure.

Theorem 1.9. Each symmetric positive definite kernel k on a set Ω is the reproducing
kernel of a Hilbert space called the native space H = Nk of the kernel. This Hilbert
space is unique and it is a space of functions on Ω. The kernel k is a reproducing
kernel of Nk fulfilling

〈f, k(x, ·)〉H = f(x) for all x ∈ Ω, f ∈ NK . (6)

Proof. The existence of the native space follows from standard Hilbert space arguments,
see e.g. chapter 11 from the lecture notes of Schaback [Sch11].

In the reproduction equation (4)

f(x) = 〈f, k(x, ·)〉H ,

both sides continuously depend on f ∈ H. Therefore the equation carries over to the
closure, i.e. the native space, which proves the reproduction formula (6) in the theorem.
The equation explains how an abstract element f of the native space can be interpreted
as a function, namely the left hand side 〈f, k(x, ·)〉H defines the right hand side f(x).

If k is a reproducing kernel in a possibly different Hilbert space T with an analogous
reproduction equation, we observe

〈k(x, ·), k(y, ·)〉H = k(x, y) = 〈k(x, ·), k(y, ·)〉T .

This shows that the inner products of T and Nk coincide on H. Since T is a Hilbert space,
it must contain the closure NK of H as a closed subspace. If T were to be larger than
Nk, there must be a non-zero element f ∈ T that is orthogonal to Nk and in particular
orthogonal to H. We observe

f(x) = 〈f, k(x, ·)〉T = 0 for all x ∈ Ω,

which is a contradiction to f 6= 0.

14



1. Kernel based methods

Note that usually the Hilbert space closure of an inner product space is much "larger"
than the pre-Hilbert space.

Let us look again at the point evaluation functionals

δx : Nk → R, f 7→ f(x) for all f ∈ Nk, x ∈ Ω.

The dual space N ∗k of the native space Nk is again a Hilbert space, which is isometrically
isomorphic to Nk via the Riesz map

R : N ∗k → Nk
λ(f) = 〈f,R(λ)〉Nk for all f ∈ Nk, λ ∈ N ∗k

〈λ, µ〉Nk = 〈R(λ), R(µ)〉Nk for all λ, µ ∈ N ∗k .

The reproduction equation tells us that

δx(f) = 〈f, k(x, ·)〉Nk for all f ∈ Nk, x ∈ Ω (7)

and we directly observe that k(x, ·) is the Riesz representer R(δx) of δx in Nk, which
gives

〈δx, δy〉N ∗
k

= 〈R(δx), R(δy)〉Nk = 〈k(x, ·), k(y, ·)〉Nk = k(x, y) for all x, y ∈ Ω.

So what we observed for the pre-Hilbert space H holds for the native Hilbert space as
well.

Same goes for
‖δx(f)‖N ∗

k
= ‖k(x, ·)‖Nk =

√
k(x, x) for all x ∈ Ω

and we have the extended reproduction property

λ(f) = 〈f, λxk(x, ·)〉Nk for all f ∈ Nk, λ ∈ N ∗k ,

so that λxk(x, ·) is the Riesz representer of λ.

1.1.2. Reproducing Kernel Hilbert Space

Definition 1.10 (Reproducing Kernel Hilbert Space). A Hilbert space H of
functions on a set Ω with inner product 〈·, ·〉Nk is called a reproducing kernel Hilbert
space (RKHS), if there is a kernel function

k : Ω→ R

with
k(x, ·) ∈ H

for all x ∈ Ω and the reproduction property

f(x) = 〈f, k(x, ·)〉H for all x ∈ Ω, f ∈ H. (8)
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This directly implies

k(y, x) = 〈k(y, ·), k(x, ·)〉H = 〈k(x, ·), k(x, ·)〉H = k(x, y) for all x, y ∈ Ω.

This alone gives us positive semi-definiteness. To see that, take anyX = {x1, . . . , xN} ⊂ Ω
and a ∈ RN :

N∑
j,k=1

ajakk(xj , xk) =
N∑

j,k=1
ajak〈k(xj , ·), k(xk, ·)〉H

=
〈

N∑
j=1

ajk(xj , ·),
N∑
k=1

akk(xk, ·)
〉
H

=

∥∥∥∥∥∥
N∑
j=1

ajk(xj , ·)

∥∥∥∥∥∥
2

H

≥ 0

Now we aim for theorem 9 in the other direction.

Theorem 1.11. Each Hilbert space H of real valued functions on some set Ω with
continuous point evaluation functionals

δx : H → R, f 7→ f(x) for all f ∈ H, x ∈ Ω.

is a reproducing kernel Hilbert space (RKHS) with a positive definite kernel k :
Ω× Ω→ R. The kernel is uniquely defined by providing the Riesz representer of the
point evaluation functionals as in Eq. (7).

Proof. Under the given hypothesis, there must be a Riesz representer of δx. By the
definition of the Riesz map it takes the form k(x, ·) ∈ H satisfying the reproduction
equation. In other words, any such Hilbert space has a symmetric positive semi-definite
reproducing kernel. The final statement follows from Theorem 1.9, because both the
native space and H are Hilbert spaces that contain all k(x, ·).

Now to collect some properties
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Theorem 1.12. If a Hilbert (sub-)space of functions on Ω has a finite orthonormal
basis (ONB) v1, . . . , vN the reproducing kernel is

kN (x, ·) =
N∑
j=1

vj(x)vj(·) for all x ∈ Ω.

In case of a subspace we have

N∑
j=1
|vj(x)|2 = kN (x, x) ≤ k(x, x) for all x ∈ Ω.

Proof. The kernel, no matter what it is, must have a representation in the orthonormal
basis as

kN (x, ·) =
N∑
j=1
〈kN (x, ·), vj〉Hvj(·)

Eq. (8)=
N∑
j=1

vj(x)vj(·).

For the subspace consider

kN (x, x) = 〈kN (x, ·), kN (x, ·)〉H
= 〈kN (x, ·), k(x, ·)〉H.

With Cauchy-Schwarz we get then

kN (x, x) ≤
√
kN (x, x)

√
k(x, x) for all x ∈ Ω.

Note that for increasing N the functions vN must get small. Which is a bit surprising,
since their normalization in the ONB is independent of N . But consider the case where
the Hilbert space norm includes derivatives, which has an effect on the normalization,
namely that basis functions with sharp spikes tend to be small in the function values.

This observation gives a hint that not all ONB would give an RKHS. Clearly, those where
the expansion in H does only converge in the Hilbert space norm but not pointwise would
not have continuous point evaluation functionals.

1.1.3. Mercer kernels

But, we saw the kernels of Mercer form

k(x, y) =
∑
i∈I

λiϕi(x)ϕi(y) for all x, y ∈ Ω, (9)
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with the summability condition Eq. (1)

k(x, x) =
∑
i∈I

λiϕi(x)2 <∞. (10)

Then we can observe in the expansion

|f(x)| =
∣∣∣∣∣∑
i∈I
〈f, ϕi〉Hϕi(x)

∣∣∣∣∣
≤
∑
i∈I
|〈f, ϕi〉H||ϕi(x)|

=
∑
i∈I

|〈f, ϕi〉H|√
λi

|ϕi(x)|
√
λi

≤

√√√√∑
i∈I

〈f, ϕi〉2H
λi

√∑
i∈I

ϕ2
i (x)λi.

We have boundedness of the point evaluation in the subspace

Hλ :=
{
f ∈ H

∣∣∣∣∣‖f‖2λ :=
∑
i∈I

〈f, ϕi〉2H
λi

<∞
}
.

This space has a norm that arises from the inner product

〈f, g〉λ :=
∑
i∈I

〈f, ϕi〉H〈g, ϕi〉H
λi

for all f, g ∈ Hλ.

We now define the Mercer kernel according to Eq. (9) and check if all fx := k(x, ·) are in
Hλ. We observe for the expansion coefficients

〈fx, ϕi〉H = λiϕi(x)

and get fx ∈ Hλ due to the summability condition∑
i∈I

〈fx, ϕi〉2H
λi

=
∑
i∈I

λiϕi(x)2 <∞.

Further, each f ∈ Hλ satisfies the reproduction equation

〈f, k(xi, ·)〉λ =
∑
i∈I

〈f, ϕi〉H〈k(x, ·), ϕi〉H
λi

=
∑
i∈I

〈f, ϕi〉Hλiϕi
λi

= f(λ)

for all x ∈ Ω. The Mercer kernel is therefore reproducing in spHλ.

This proves
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Theorem 1.13. If a Hilbert space of functions on Ω has a countable orthonormal
basis {ϕi}i∈I , each summability property of the form Eq. (10) leads to a reproducing
Mercer kernel Eq. (9) for a suitable subspace of functions with continuous point
evaluation.

We add without proof that spaces such as Hλ are always complete because they are
isometrically isomorphic to some Hilbert space of weighted sequences, see e.g. chapter 11
from the lecture notes of Schaback [Sch11].

Corollary 1.14. The spaces Hλ defined above are the native spaces for the corre-
sponding Mercer kernels.

Example. Consider trigonometric polynomials, i.e. the orthonormal functions
1√
2
, cos(nx), sin(nx), n ∈ N

and the inner product
〈f, h〉H = 1

π

∫ π

−π
f(t)g(t)dt

giving the space of 2π-periodic square integrable functions.

We write I := (0, 0 ∪ (N, 0) ∪ (0,N)) and

φi(x) =


1√
2 i = (0, 0)

cos(nx) i = (n, 0), n ≥ 1
sin(nx) i = (0, n), n ≥ 1

.

Since all functions are uniformly bounded, the summability condition does hold when
the weights are summable. Fixing some m ≥ 1 we define

λi(x) =
{

1 i = (0, 0)
n−2m otherwise

and get the Mercer kernel:

k2m(x, y) := 1√
2

+
∞∑
n=1

n−2m(cos(nx) cos(ny) + sin(nx) sin(ny))

= 1√
2

+
∞∑
n=1

n−2m cos(n(x− y)).

These are kernels for the Sobolev space of 2π-periodic functions.

As already mentioned, Mercer kernels arise from integral operators.
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Definition 1.15. Let k : Ω× Ω→ R be continuous, Ω be a compact domain, ν be a
Borel measure and Lν2(Ω) be the Hilbert space of square integrable functions on Ω.
We define the integral operator Tk : Lν2(Ω)→ Lν2(Ω) by

(Tkf) (·) =
∫

Ω
k(x, ·)f(x) dν

We call k the kernel of Tk.

Tk is often called a Hilbert-Schmidt-Integraloperator.

One knows from functional analysis, that for a Mercer kernel the corresponding Tk is a
self-adjoint, positive semidefinite, compact operator and the spectral theorem applies,
i.e. a complete orthonormal system of eigenfunctions of Tk exists for Lν2(Ω) and the
eigenvalues λi of Tk are nonnegative with λi → 0 for i → ∞. In other words, one can
show that

k(x, y) =
∞∑
i=1

λiφi(x)φi(y)

for positive semidefinite operators Tk.

Theorem 1.16 (Mercer’s theorem). Let Ω be a compact domain, ν a Borel mea-
sure on Ω, and k : Ω × Ω symmetric and continuous. The corresponding integral
operator Tk shall be positive semidefinite, i.e.∫

Ω×Ω
k(x, y)f(x)f(y) dν ≥ 0 for all f ∈ Lν2(Ω).

Let λi be the i-th eigenvalue of Tk and {φi}i≥1 the corresponding and normalized
eigenfunctions. It then holds

k(x, y) =
∞∑
i=1

λi · φi(x)φi(y) for all x, y ∈ Ω,

where the convergence is absolute (for each x, y ∈ Ω× Ω) and uniform (on Ω× Ω).

In particular the eigenvalues are absolutely summable.

Proof. A proof is given in [Hoc89] for Ω = [0, 1] and the Lebesgue measure, but the
proof is valid for this more general situation.

Remark. Continuity of the kernel is essential, otherwise e.g. k(x, x) could have any value
without relation to the eigenvalues.

We give here a simplified version of the Mercer’s theorem, which fits for the machine
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learning setting, where the proof is made without too much functional analysis.

Theorem 1.17. Let Ω ⊂ Rd be compact and k be a continuous and symmetric kernel.
Let the corresponding integral operator Tk be positive semidefinite:∫

Ω×Ω
k(x, y)f(x)f(y) dx dy ≥ 0 for all f ∈ L2(Ω).

Then we can expand k(x, y) in a uniformly convergent series (on Ω× Ω) in terms of
functions φj, satisfying 〈φi, φj〉 = δij, as

k(x, y) =
∞∑
i=1

φi(x)φi(y).

Furthermore, the series
∞∑
i=1
‖φi‖2L2

is convergent.

Proof. Assume there is a finite set {x1, . . . , xN} so that the corresponding kernel matrix
is not positive semidefinite. Let q be such that

N∑
i,j=1

qiqjk(xi, xj) = ε < 0.

Now let

fσ(x) =
d∑
i=1

qi
1

(2πσ) d2
exp

(
−‖x− xi‖

2

2σ

)
.

We have fσ ∈ L2, and additionally

lim
σ→0

∫
Ω×Ω

k(x, y)fσ(x)fσ(y) dx dy = ε.

But then for some σ > 0 the integral will be less than 0, which contradicts the positivity
of the integral operator Tk. Therefore, we have a Mercer kernel.

Now consider the native space Nk of k. For continuous k and Ω ⊂ Rd, one can show that
Nk is separable and in particular there exists a countable orthonormal basis of Nk called
φi, i = 1, . . .. The technical proof of the separability is being omitted here. Then we
have an expansion in the orthonormal basis for k(x, ·), namely

k(x, y) =
∞∑
i=1
〈k(x, ·), φi(·)〉φi(y)

=
∞∑
i=1

φi(x)φi(y)
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with the required properties. Finally, we observe

lim
n→∞

n∑
i=1
‖φi‖2L2 = lim

n→∞

n∑
i=1

∫
Ω
φi(x)φi(x) dx

= lim
n→∞

∫
Ω

n∑
i=1

φi(x)φi(x) dx

=
∫

Ω
lim
n→∞

n∑
i=1

φi(x)φi(x) dx <∞,

where we use the compactness of Ω.

Therefore, we can write

K(x, y) =
∞∑
i=1

φi(x)φi(y) = 〈Φ(x),Φ(y)〉`2 .

Or, any Hilbert space H with a countable orthonormal basis allows such a feature map
since it is isomorphic to `2.

1.2. Function Approximation

Kernels for subspaces

We aim to work with a finite number of trial functions k(x, ·) or data points {xi}∞i=1 and
represent functions in H by functions given as finite linear combinations.

Let us fix a non-empty subset X ⊆ Ω and look at the closed subspace of finite linear
combination

HX := span {k(x, ·) | x ∈ X} ⊆ H.

Generally, any close subspace H0 of H is a Hilbert space of functions on Ω with its own
reproducing kernel k0. With the projector Π0 : H → H0 we get

Theorem 1.18. Let H0 be a closed subspace of H with reproducing kernel k0 and let
Π0 : H → H0 be the projector onto H0. The subspace kernel is

k0(x, ·) = Π0(k(x, ·))

for all x ∈ Ω. The reproducing kernel for the orthogonal complement H⊥0 is k − k0.
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Proof. The identity on H can be decomposed into the orthogonal projections

I = Π0 + (I −Π0) = Π0 + Π⊥0 .

Thus:
f(x) = (Π0f)(x) +

(
Π⊥0 f

)
(x).

Inserting into Eq. (6) gives:

f(x) = 〈f,K(x, ·)〉H
= 〈Π0f + Π⊥0 f,Π0k(x, ·) + Π⊥0 k(x, ·)〉H
= 〈Π0f,Π0k(x, ·)〉H + 〈Π⊥0 f,Π⊥0 k(x, ·)〉H.

With f ∈ H0 or f ∈ H⊥0 both results follow.

Remark. Orthogonal space decompositions correspond to additive kernel decompositions
using the appropriate projectors.

Now back to the finite point set X.

Theorem 1.19. Let X ⊂ Ω be non-empty. For the closed subspace

HX := span {k(x, ·) | x ∈ X}

it holds that
H⊥X = {f | f ∈ H, f(X) = {0}} .

Proof. If f(X) = {0}, then f ∈ H⊥X by Eq. (6), and the converse holds analogously.

Now take the projector ΠX from H to HX and denote

fX := ΠX(f).

Standard results from Hilbert space theory give us
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Theorem 1.20. Each function f ∈ H has an orthogonal decomposition

f = fX + fX⊥

with fX ∈ HX and fX⊥ ∈ HX⊥. In particular, each f ∈ H has an interpolant
fX ∈ HX recovering the values of f on X. Additionally,

‖f − fX‖H = inf
g∈HX

‖f − g‖H (11)

and
‖fX‖H = inf

f(x)=g(x) ∀x∈X
g∈H

‖g‖H = inf
v∈H⊥X

‖f − v‖H (12)

due to the orthogonality of the decomposition.

The results Eq. (11) and Eq. (12) are two important optimality principles, which we
state again separately.

Corollary 1.21. The interpolant fX ∈ HX to a function f on X is at the same time
the best approximation to f from all functions in HX .

Corollary 1.22. The interpolant fX ∈ HX to a function f on X minimizes the norm
under all interpolants from the full space H.

With f∅ = 0, f⊥∅ = f , and H∅ = {0} and H⊥∅ = H for completeness, we easily see

Corollary 1.23. For all sets X ⊆ Y ⊆ Ω and all f ∈ H we have

‖fX‖H ≤ ‖fY ‖H ≤ ‖f‖H

and
‖f‖H ≥ ‖f − fX‖H ≥ ‖f − fY ‖H.

Power function

The power function will allow us the analyze errors and stability.

We consider now only f = k(x, ·) for a fixed x ∈ Ω.
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Definition 1.24. The function

PX(x) := ‖k(x, ·)− kX(x, ·)‖H x ∈ Ω

is called power function with respect to the set X and the kernel k.

A different definition goes with the error functional

εx,Xf 7→ f(x)− (ΠX(f))(x).

which is in H? and the power function is defined as

PX(x) := ‖εx,X‖H? for all x ∈ Ω.

Theorem 1.25. The two definitions for the power function are equivalent. Further-
more, the power function has the properties

1. PX(x) = 0 for all x ∈ X,

2. P0(x)2 = k(x, x) for all x ∈ Ω,

3. PΩ(x) = 0 for all x ∈ Ω,

4. 0 = PΩ ≤ PY (x) ≤ PX(x) ≤ P0(x) for all x ∈ Ω, X ⊆ Y ⊆ Ω,

5. PX(x) = infg∈HX ‖k(x, ·)− g‖H,

6. PX(x) = supf∈H,‖f‖H≤1
f(X)={0}

|f(x)| for all x ∈ Ω,

and finally the important error bound

|f(x)− fX(x)| =
∣∣∣f⊥X (x)

∣∣∣
≤ PX(x)

∥∥∥f⊥X∥∥∥H
= PX(x)‖f − fX‖H
≤ PX(x)‖f‖H

for all x ∈ Ω, f ∈ H.

Proof. Due to 〈εx,X , εx,X〉H∗ = 〈R(εx,X), R(εx,X)〉H we have to show that the Riesz
representer of δx ◦ΠX is k(x, ·)X . We see that it follows from the representer properties
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and various orthogonalities

〈f,R(δx ◦ΠX)〉H = δx ◦ΠX(f)
= fX(x)
= 〈fX , k(x, ·)〉H
= 〈fX , kX(x, ·) + kX⊥(x, ·)〉H
= 〈fX , kX(x, ·)〉H
= 〈f − fX⊥ , kX(x, ·)〉H
= 〈f, kX(x, ·)〉H.

The first five listed properties are easily derived from Definition 1.24 and the previous
results.

With the error representation

f(x)− fX(x) = fX⊥(x)
= 〈fX⊥ , k(x, ·)〉H
= 〈fX⊥ , k(x, ·)− kX(x, ·)〉H

the error bound follows.

For the sixth property, we see from the first inequality of the error bound that

PX(x) ≥ sup
‖fX⊥‖≤1

|fX⊥(x)|

and equality must hold for the representation of εx,X .

Remark. Consider the subspace

H?X := span {δx | x ∈ X}

of the dual space. Then the fifth property can be equivalently be given as

PX(x) = inf
λ∈H?X

‖δx − λ‖H? for all x ∈ Ω. (13)

It indicates how well the point evaluation functional δx can be approximated by arbitrary
linear combinations of the point evaluation functionals δx′ for points x′ ∈ X.

Interpolate on finite sets

We now restrict ourselves to finite sets X = {x1, . . . , xN} ⊆ Ω. For each f ∈ H we can
write

fX(·) =
N∑
j=1

αjk(xj , ·)
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with αj ∈ R.

We know that fX interpolates f on X, therefore we get a (non-unique in general) solution
α ∈ RN of the interpolation problem

N∑
j=1

ajk(xj , xk) = f̂k, 1 ≤ k ≤ N,

with fk = f(xk).

The coefficients αj might not be unique since we do not assume that the kernels k(xj , ·)
are linearly independent.

With f(x) = k(x, ·) we get that for every x ∈ Ω

k(x, xk) =
N∑
j=1

uj(x)k(xj , xk), 1 ≤ k ≤ N.

has a solution uj(x) as a function on Ω.

Additionally, it holds for all x, z ∈ Ω

kX(x, z) =
N∑
j=1

uj(x)k(xj , z), (14)

i.e. the interpolant of k(x, ·) on X.

In case of non-singularity of the kernel matrix we have

uj(xk) = δjk,

and we have a Lagrange basis.

Together
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Theorem 1.26. For every x ∈ Ω

k(x, xk) =
N∑
j=1

uj(x)k(xj , xk), 1 ≤ k ≤ N. (15)

has a solution uj(x) as a function on Ω.

It holds the generalization of the Lagrange formulation of interpolation

fX(x) =
N∑
j=1

uj(x)f(xj). (16)

This is also called quasi-interpolation.

Proof.

fX(·) =
N∑
k=1

αkk(xk, ·)

Eq. (14)=
N∑
k=1

αk

N∑
j=1

uj(·)k(xj , xk)

=
N∑
j=1

uj(·)
N∑
k=1

αkk(xi, xk)

=
N∑
j=1

uj(·)f(xj).

This proves what was to be shown.

Back to f = k(x, ·) for a fixed x ∈ Ω we get with Eq. (14) the following.

Theorem 1.27. The power function has the explicit representation

P 2
X(x) = k(x, x)− 2

N∑
j=1

uj(x)k(x, xj) +
N∑
j=1

N∑
k=1

uj(x)uk(x)k(xj , xk)

= k(x, x)− kX(x, ·)(x)
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Proof.

P 2
X(x) = 〈k(x, ·)− k(x, ·)X , k(x, ·)− k(x, ·)X〉H

Eq. (14)= k(x, x)− 2〈k(x, ·),
∑
j=1

uj(x)k(xj , ·)〉H +
N∑
j=1

N∑
k=1

uj(x)uk(x)k(xj , xk)

= k(x, x)− 2
N∑
j=1

uj(x)k(x, xj) +
N∑
j=1

N∑
k=1

uj(x)uk(x)k(xj , xk)

Now as we can use Eq. (15)

k(x, xk) =
N∑
j=1

uj(x)k(xj , xk)

in the third term, it cancels out once with the second term. Using Eq. (14) once more
we identify the remaining terms with

k(x, x)− kX(x, ·)(x).

Best linear estimation

Now come to a third optimality property. We will see in what kind of sense it is the best
linear predictor/estimator.

As just seen

fX(x) =
N∑
j=1

uj(x)f(xj)

is the interpolant on the set X.

Now let us consider completely arbitrary estimation formulas

(x, f) 7→
N∑
j=1

vj(x)f(xj)

with no assumption on vj(x). These representations are linear in f . For fixed x we get
the error functional

f 7→ f(x)−
N∑
j=1

vj(x)f(xj) =

δx − N∑
j=1

vj(x)δxj

 (f).

29



1. Kernel based methods

We want to have the estimation to be optimal over all f ∈ H, therefore we chose the
vj(x) to minimize

VX,v(x) :=

∥∥∥∥∥∥δx −
N∑
j=1

vj(x)δxj

∥∥∥∥∥∥
H?
.

By the equivalent formulation of the error function Eq. (13), as remarked after ??, we
know the solution, namely the functions uj and the optimal error in the worst case sense
is described by the power function.

Theorem 1.28. In the above worse case sense, kernel based interpolation yields the
best linear predictor of unknown function values f(x) from known functions values
f(xj) at points xj, 1 ≤ j ≤ N .

This is in particular relevant when the kernel comes from a covariance, i.e.

k(s, t) := Cov(Xs, Xt),

where for every t ∈ Ω we have a random variable Xt with finite second moments.
Therefore, two data inputs from Ω are very similar if they are closely correlated, if they
have very similar features, or the feature map kernel k(x, y) = 〈Φ(x),Φ(y)〉 has large
positive value.

Now consider random variables Xt with mean zero and bounded variance. In this case
the numerical estimation technique we introduced so far is called (simple) Kriging and
V 2
X,v can be seen to be the variance of the prediction error.

We define the error of the general linear predictor at x by

εx,X,v := Xx −
N∑
j=1

vj(x)Xxj .

and we aim to minimize the variance of the prediction error. It has zero mean and the
variance is

E
(
ε2x,X,v

)
= Cov(Xx, Xx)− 2

N∑
j=1

vj(x) Cov(Xx, Xxj )

+
N∑
j=1

N∑
k=1

vj(x)vk(x) Cov(Xxj , Xxk)

Because
Cov(X,X) = k(x, x)

and
k(x, y) = 〈δx, δy〉H
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this yields:
E
(
ε2x,X,v

)
= V 2

X,v.

(Simple) Kriging is the best linear unbiased estimator under suitable assumptions.

Power function and stability

A kind of uncertainty principle holds:

It is impossible to make the power function and the condition of the kernel matrix small
at the same time.

We express now the power function via the kernel matrix to analyse this effect. Besides
the set X = {x1, . . . , xN} we now take another point x0 := x and we set u0(·) := −1. We
define

A = k(xi, xk)0≤i,j≤N

and
u := (u0(x), u1(x), . . . , uN (x))T .

Now look at the quadratic form (and remember k(x0, x0) := k(x, x)):

uTAu =
N∑
j=0

N∑
k=0

uj(x)uk(x)k(xj , xk)

= k(x, x)− 2
N∑
j=1

uj(x)k(x, xj) +
N∑
j=1

N∑
k=1

uj(x)uk(x)k(xj , xk)

Theorem 1.27= P 2
X(x).

A is symmetric and positive semidefinite, therefore has N+1 nonnegative real eigenvalues
λ0 ≥ λ1 ≥ . . . ≥ λN ≥ 0 and we obtain

P 2
X(x) ≥ λN

1 +
N∑
j=1

uj(x)2

 ≥ λN ,
where we can use

λN‖u‖22 ≤ uTAu ≤ λ0‖u‖22.
We eliminate the special role of the point x and obtain the following:

Theorem 1.29. The kernel matrix for N points x1, . . . , xN forming a set X has a
smallest eigenvalue λ bounded from above by

λ ≤ min
1≤j≤N

PX\{xj}(xj).
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1. Kernel based methods

This gives us information about the condition of the kernel matrix. In situations where
the power function is still small after one point is left out, the kernel matrix must be
ill-conditioned.

Consider from Theorem 1.25:

|f(x)− fX(x)| ≤ PX(x)‖f‖H,

which splits the error into two independent factors for f and X. Both depend on k, one
measures by the norm of f the smoothness of the function and the other measures the
quality of the point set. The optimality property of the power function is

PX(x) = inf
λ∈H?X

‖δx − λ‖H? for all x ∈ Ω

and it allows upper bounds of the above error.

We want to bound the data dependent part, where we know f − fX is zero on X.

Assume for now, that any directional derivative of both f and fX is bounded by some
constant C. Then we can write

|f(x)− fX(x)| ≤ |f(xj)− fX(xj)|+ 2C‖x− xj‖2

if the line connecting x and xj ∈ X is in Ω and if we integrate the directional derivatives
along the line. Using the following definition this observation results in a first simple
bound.

Definition 1.30. The fill distance of a set of points X ⊆ Ω for a bounded domain Ω
is defined to be

hX,Ω = sup
x∈Ω

min
1≤j≤N

‖x− xj‖2.

In words this definition can be interpreted as

• any point x ∈ Ω has a point xj ∈ X not farther away then hX,Ω,

• hX,Ω denotes the radius of the largest ball that is completely in Ω and does not
contain a data location,

• hX,Ω describes the size of the largest data-free hole Ω.

If Ω is convex, we get the simple error bound

‖f − fX‖∞,Ω ≤ 2ChX,Ω
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where we still need to have control over C, e.g. in terms of a norm for f .

More generally, one can use bounds such as

‖f‖∞,Ω ≤ F (hX,Ω)|f |W + C‖f‖∞,X

with F (h)→ 0 for h→ 0 and f in some function space W with a semi-norm |f |W . This
is a form of a so-called sampling inequality.

When f and fX are in W we can write

‖f − fX‖∞,Ω ≤ F (hX,Ω)|f − fX |W + C ‖f − fX‖∞,X︸ ︷︷ ︸
=0 for interpolation

≤ F (hX,Ω)(|f |W + |fX |W)

|fX |W will depend on X and thus on hX,Ω, but usually one has a stability bound such
as

|fX |W ≤ C|f |W ,

with C independent of X, e.g. similar to Corollary 1.23. Then

‖f − fX‖∞,Ω ≤ (1 + C)F (hX,Ω)|f |W .

This works also for general function spaces, it is not restricted to our native Hilbert
spaces.

Other simple bounds can be obtained from Theorem 1.25, where we had

PX(x) = sup
f∈H,‖f‖H≤1
f(X)={0}

f(x).

If for two kernels k1, k2 with native spaces H1,H2, we have an inclusion

f ∈ H1, ‖f‖H1 ≤ 1 =⇒ f ∈ H2, ‖f‖H2 ≤ 1,

then
PX,k1(x) ≤ PX,k2(x) for all x ∈ Ω.

Roughly speaking, larger native spaces in the sense of unit ball inclusion lead to larger
power functions.

Other simple upper bound are based on the optimality properties. We essentially will be
using some coefficients u ∈ RN instead of the optimal u? from Theorems 1.26 and 1.27.
Therefore

P 2
X(x) ≤ k(x, x)− 2

N∑
j=1

uj(x)k(xj , x) +
N∑

j,k=1
uj(x)uk(x)k(xj , xk). (17)
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In the simplest case we use a nearest neighbor construction. Assume that for each x ∈ Ω
we pick a single xi(x) ∈ X and define:

uj(x) :=
{

1 j = i(x)
0 else

.

Then

P 2
X(x) ≤ k(x, x)− 2k(xi(x), x) + k(xi(x), xi(x))

= dk
(
x, xi(x)

)2

with the distance d(·, ·) defined as in Eq. (5)

dk : Ω× Ω→ [0,∞],
dk(x, y) :=

√
k(x, x) + k(y, y)− 2k(x, y).

Therefore, one should pick xi(x) ∈ X closest to x in that distance.

Theorem 1.31. If K is positive semidefinite, the power function on nonempty sets
X of interpolation points satisfies

PX(x) ≤ min
xj∈X

dk(x, xj)

with the distance defined in Eq. (5).

For this results the smoothness of K or the structure on Ω did not play a role.

If we are in Rd, we can use barycentric coordinates, i.e. x lies in a simplex with vertices
consisting of the d + 1 nearest xi. That way one can locally recover linear functions.
With some further properties of barycentric coordinates it holds for twice differentiable
functions f

PX(x) ≤ Cε(x)2,

where ε(x) is the diameter of the simplex.

In general we want some quantity E(x, h) that is small if x is surrounded by enough
well-placed points of X. The general idea is to provide local error bounds, which are
similar enough so that a similar global error bound follows from the local ones under
suitable assumptions.

Let us consider what we would need for a good bound on the power function. Assume
we can prove

PX(x) ≤ CE(x, h)
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for all data sets X with fill distance at most h. This implies

|f(x)−
N∑
j=1

u∗j (x)f(xj)| ≤ CE(x, h)‖f‖H, ∀f ∈ H, x ∈ Ω

for the Lagrange-type basis u∗j associated to the kernel k and data set X.

Now simplify Eq. (17) by introducing the error operator

Eyx(f(y)) := f(x)−
N∑
j=1

uj(x)f(xj)

to get

P 2
X(x) ≤ k(x, x)− 2

N∑
j=1

uj(x)k(xj , x) +
N∑

j,k=1
uj(x)uk(x)k(xj , xk) (18)

= k(x, x)−
N∑
j=1

uj(x)k(xj , x) +
N∑
j=1

uj(x)
(

N∑
k=1

uk(x)k(xj , xk)− k(xj , x)
)
(19)

= Ezxk(z, x)−
N∑
j=1

uj(x)Ezxk(z, xj) (20)

= EyxE
z
xk(z, x). (21)

One technique is to use a bound of the form

|Eyx(f(y))| := |f(x)−
N∑
j=1

uj(x)f(xj)| ≤ εx,k(h)‖Lf‖ (22)

with some linear differential operator L with values on some normed space. We then can
bound the power function by

P 2
X(x) ≤ |EyxEzxk(z, x)| (23)

≤ εx,k(h)‖LyEzxk(y, z)‖ (24)
≤ ε2x,k(h)‖Ly‖Lzk(y, z)‖‖ (25)

assuming the final expression makes sense.

Elementary univariate Case Consider a compact interval Ω = [a, b] and a finite subset
X = {x1, . . . , xN} ⊂ Ω. Fix x ∈ [a, b] and select a "local" subset

Xx := {xj ∈ X|j ∈ N(x) ⊂ {1, . . . , N}

of points of X that are "sufficiently many" and "well-placed".
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We fix k ∈ N and work locally with polynomials of order at most k. The simplest idea
would be to pick the k closest neighbors to x within X and to perform local Lagrange
interpolation by some polynomial pX of order at most k at these points. We can take
the error formula for interpolation in Newton form assigns

f(y)− px(y) = [y,Xx]f
∏

xj∈Xx
(y − xj) for all y ∈ [a, b]

where [y,Xx]f os tje divided difference on the points of Xx ∪ {y} applied to f . If we
assume f to be continuously k-times differentiable. we get the local error bound

|f(y)− px(y)| ≤
‖f (k)‖∞,[a,b]

k!
∏

xj∈Xx
|x− xj |.

This is of the form Eq. (22), if we use the fact that

1. the 1st NN to x is at distance of at most h

2. the 2nd NN to x is at distance of at most 3h

3. the 3rd NN to x is at distance of at most 5h

4. . . .

5. the k-th NN to x is distance of at most (2k − 1)h

and thus ∏
xj∈Xx

|x− xj | ≤ hk
(2k)!
2kk!

leading to
|Eyxf(y)| ≤ hk (2k)!

2k(k!)2 ‖f
(k)‖∞,[a,b]

Why do we look at polynomials ?

Consider the univariate case, with f ∈ Ck. At a point x0 ∈ R we have the Tayolor
polynomial

p(x) =
k−1∑
j=0

f (j)(x0)
j! (x− x0)j

and we have for |x− x0| ≤ h the local approximation error

|f(x)− p(x)| = |f
(k)(ζ)|
k! |x− x0|k ≤ Chk
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with ζ between x and x0. This local approximation roder is inherited by every approxi-
mation process that recovers polynomials at least locally.

Now we use a univariate kernel k that has k continuous and independent derivatives with
respect to both variables. Then we can use (25) to get

P 2
x (x) ≤

(
hk

(2k)!
2k(k!)2

)2
sup
a≤z≤b

sup
a≤y≤b

∣∣∣∣∣ ∂k∂zk ∂k

∂yk
k(z, y)

∣∣∣∣∣
which gives

Theorem 1.32. Assume a positive semi-definite kernel k on [a, b] × [a, b] that is
k-times continuously and independently differentiable with respect to both arguments.
Then, with the constant

Ck = (2k)!
2k(k!)2

√√√√ sup
a≤z≤b

sup
a≤y≤b

∂k

∂zk
∂k

∂yk
k(z, y)

for every point set X ⊂ [a, b] consisting of at least k points and with fill distance at
most h, the power function can be bounded as

PX(x) ≤ Ckhk for all x ∈ Ω.

As seen for one dimension based on Taylor, if we have local polynomials reproduction,
we can use polynomial approximation properties to get general approximation bounds.

Definition 1.33. A compact domain Ω ∈ Rd allows uniformly stable local polynomial
reproduction of order l ≥ 1, if there are positive constants h0, c1, and c2 such that
for all finite sets X = {x1, . . . , xN} ⊆ Ω with fill distance hX,Ω ≤ h0 there are scalars
u1(x), . . . , uN (x) such that

1. ∑N
j=1 uj(x)p(xj) = p(x) for all polynomials p ∈ Pd` , x ∈ Ω,

2. ∑N
j=1 |uj(x)| ≤ c1,

3. uj(x) = 0 if ‖x− xj‖2 > c2hX,Ω.

Observe Item 1 is the polynomial precision, Item 2 is needed to control the growth of the
error estimates, where the left hand side is known as the Lebesgue constant at x, and
Item 3 shows that the scheme is local.

We now aim for an error estimate in terms of the fill distance. For that we focus on
positive definite kernels from now on.
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1. Kernel based methods

It will be useful to view the power function as a function of the coefficients of fX . With
that in mind we can observe:

Theorem 1.34. Let Ω ⊆ Rd and let k : Ω×Ω→ R be a positive definite kernel on Rd.
Let X be a set of N distinct points on Ω and define the quadratic form Q : RN → R
for any x ∈ Ω (see also Theorem 1.27):

Q(u) := k(x, x)− 2
N∑
j=1

ujk(x, xj) +
N∑
i=1

N∑
j=1

uiujk(xi, xj).

The minimum of Q(u) is given for the vector u?(x) from Theorem 1.26:

Q(u?(x)) ≤ Q(u) for all u ∈ RN .

Proof. With b = [k(x1, ·), . . . , k(xN , ·)]T and Ai,j = k(xi, xj), i, j = 1, . . . , N we have

Q(u) = k(x, x)− 2bT (x)u+ uTAu.

The minimum of this quadratic form is the solution of the lnear equation system

Au = b(x),

which is fulfilled by u = u?(x).

For the following analysis we need the local existence of suitable coefficients vectors u
for local polynomial reconstruction, which do exists for domains fulfilling the following
condition.

Definition 1.35. A region Ω ⊆ Rd satisfies an interior cone condition if there exists
an angle Θ ∈

(
0, π2

)
and a radius r such that for every x ∈ Ω there exists a unit vector

ξ(x) such that the cone

C =
{
x+ λy

∣∣∣ y ∈ Rd, ‖y‖2 = 1, yT ξ(x) ≥ cos Θ, λ ∈ [0, r]
}

is contained in Ω.

Note that an Ω which satisfies this condition contains balls of a controllable radius, see
[Wen05].

Theorem 1.36. Assume Ω ∈ Rd is bounded and satisfies an interior cone condition
with agle Θ ∈

(
0, π2

)
and radius r. Fix the nonnegative integer `. Then Ω allows

uniformly stable local polynomial reproduction with positive constants h0, c1 and c2
depending only on l,Θ, r.
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Figure 1.6.: For the left domain the interior cone condition holds on the whole boundary,
for the right not in the point p, where the only possible interior cone is a
line.

Proof. See [Wen05].

We now will use multi-index notation and a multivariate Taylor expansion. For β =
(β1, . . . , βd)T ∈ N0

d we define the differential operator

Dβ = ∂|β|

(∂x1)β1 . . . (∂xd)βd
.

The notation Dβ
(2)k(x, ·) indicates that the operator is applied to k(x, ·) viewed as a

function of the second variable. The multivariate Taylor expansion of k(x, ·) centered at
x is

k(x, y) =
∑
|β|<2k

Dβ
(2)k(x, x)
β! (y − x)β +R(x, y)

with remainder

R(x, y) =
∑
|β|=2k

Dβ
(2)k(x, ξx,y)

β! (y − x)β,

where ξx,y lies on the line connecting x and y.

With that we can formulate an error estimate in terms of the fill distance.
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Theorem 1.37. Assume Ω ⊆ Rd is bounded, and satisfies an interior cone condition.
Suppose K ∈ C2k(Ω×Ω) is symmetric positive definite. Denote by fX the interpolant
to f ∈ Nk(Ω) on the set X. Then there exists positive constants h0 and C (independent
of x, f and K) such that

|f(x)− fX(x)| ≤ ChkX,Ω
√
Ck(x)‖f‖Nk(Ω)

provided that hX,Ω ≤ Ch0. Here

Ck(x) := max
|β|=2k

max
x,y∈Ω∩B(x,c2hX,Ω)

∣∣∣Dβ
(2)k(x, y)

∣∣∣ .
Proof. We know from Theorem 1.25

|f(x)− fX(x)| ≤ PX(x)‖f‖Nk(Ω).

We aim for a bound for the power function in terms of the fill distance

PX(x) ≤ ChkX,Ω
√
Ck(x).

So far we know
PX(x)2 = Q(u?(x))

and that Q(u) is minimized by u = u?(x), i.e. any other coefficient vector will result in an
upper bound using the Theorem 1.34. With ũ(x) from Theorem 1.36 we have polynomial
precision of degree ` ≥ 2k − 1. For the ũ(x) we see (hereafter abbreviating by writing ũ
for ũ(x))

PX(x)2 ≤ Q(ũ)

= k(x, x)− 2
N∑
j=1

ũjk(x, xj)− 2
N∑
i=1

N∑
j=1

ũiũjk(xi, xj)

where many ũj will be zero. We now apply the Taylor expansion centered at x to k(x, ·)
and centered at xi to k(xi, ·) and evaluate both at xj :

Q(ũ) = k(x, x)− 2
∑
j

ũj

 ∑
|β|<2k

Dβ
(2)k(x, x)
β! (xj − x)β +R(x, xj)


+
∑
i

∑
j

ũiũj

 ∑
|β|<2k

Dβ
(2)k(xi, xi)

β! (xj − xi)β +R(xi, xj)


With the notation ∑i and

∑
j we point out that we only sum over the indices where ũi

and ũj are respectively nonzero.
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Next we identify p(z) = (z − x)β so that p(x) = 0 unless β = 0. With the polynomial
precision property of ũ this simplifies Q(ũ) to

Q(ũ) = k(x, x)− 2k(x, x)− 2
∑
j

ũjR(x, xj)

+
∑
i

ũi
∑
|β|<2k

Dβ
(2)k(xi, xi)

β! (x− xi)β +
∑
i

∑
j

ũiũjR(xi, xj).

Now we apply Taylor again and observe that when evaluating at x

∑
|β|<2k

Dβ
(2)k(xi, xi)

β! (x− xi)β = k(xi, x)−R(xi, x).

Inserting this into the above gives

Q(ũ) = −k(x, x)−
∑
j

ũj

[
2R(x, xj)−

∑
i

ũiR(xi, xj)
]

+
∑
i

ũi (k(xi, x)−R(xi, x)) .

Using Taylor once more shows:

k(xi, x) = k(x, xi)

=
∑
|β|<2k

Dβ
(2)k(x, x)
β! (xi − x)β +R(x, xi).

Inserting this with observing∑
i

ũik(xi, x) = k(x, x) +
∑
i

ũiR(x, xi)

as above using the polynomial precision property:

Q(ũ) = −
∑
j

ũj

[
R(x, xj) +R(xj , x)−

∑
i

ũiR(xi, xj)
]
.

The polynomial reproduction Definition 1.33 gives ∑j |ũj | ≤ c1.

We know for ũj 6= 0 that ‖x − xj‖2 ≤ c2hX,Ω and also get ‖xi − xj‖2 ≤ 2c2hX,Ω if
ũi 6= 0, ũj 6= 0. Therefore all three remainder terms can be bounded by an expression
Ch2k

X,ΩCk(x), where the interior cone condition ensures that the ball remains inside.
Combining these and taking the square root gives the bound for the power function.

The theorem says, that interpolation with a C2s smooth kernel k has approximation
order s, if f is in the corresponding native space. For infinitely smooth positive definite
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kernels such as the Gaussian or the (generalized) inverse multiquadrics the approximation
order is arbitrarily high.

This is still a generic estimate, the factor Ck(x) depends on k, and for many kernel
functions it is possible to get additional powers of h out of Ck.

1.2.1. Generalized Interpolation

So far we dealt with point evaluation functionals, but we want to also consider more
general functionals. In particular

• derivation λ(f) = ∂f
∂xj

(z),

• integration λ(f) =
∫

Ω f(z) dz.

We consider a subset Λ ⊆ H? of the dual that generalizes the role of the point set X
and the associated point evaluation functionals δx. One can say that we now consider
interpolation using the data λ(f) for all λ ∈ Λ. The construction from functional analysis
that we have seen earlier carries over do this setting of closures of subsets in the dual
that are more specific than just point evaluation functionals.

The goal is to treat a Dirichlet boundary value problem

Lu = f in Ω ⊆ Rd

u = g on Γ = ∂Ω, (26)

where L is a linear differential operator.

Collocation is a general approach which treats the problem in a strong sense and discretizes
it by

Lu
(
xΩ
j

)
= f

(
xΩ
j

)
, xΩ

j ∈ Ω, 1 ≤ j ≤ NΩ

u
(
xΓ
j

)
= g

(
xΓ
j

)
, xΓ

j ∈ Γ, 1 ≤ j ≤ NΓ. (27)

with N = NΩ +NΓ.

The exact solution of Eq. (26) will surely satisfy Eq. (27), but there are many functions
which satisfy Eq. (27). We will consider a finite dimensional space U with at least N
dimensions. The question arises if Eq. (27) is solvable for u ∈ U .

Interpolation of general functionals λ1, . . . , λN by a span of functions u1, . . . , uN is
difficult without additional properties. In particular we need additional properties to get
a generalized kernel matrix which is nonsingular.
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We now proceed to study Hermite-interpolation, where also derivatives are used for
interpolation. Here, we assume to have data

{(xi, λif)} , xi ∈ Rd with Λ = {λ1, . . . , λN}

and a linearly independent set of continuous linear functionals. We aim for an inter-
polant

u(x) =
N∑
i=1

uiλ
(1)
i k(x, x), x ∈ Rd

that satisfies
λiu = λif i = 1, . . . , N.

Here λ(1) indicates that the functional acts on the first argument of K.

The resulting linear system has a matrix with entries

Aij = λ
(2)
i λ

(1)
j k(xj , xi), i, j = 1, . . . , N.

It can be shown that A is nonsingular for positive semi-definite kernels, but also for more
general conditionally positive semidefinite (cpsd) kernels, see [Wu92; Wen05].

Assume the λj are of the form
λj = δxj ◦D

α(j)

and α(j) 6= α(k) if xj = xk for k 6= j the λj are linearly independent on the native space
of a positive definite kernel, see [Wen05].

One advantage of Hermite interpolation is that less data locations are required for a
certain predictive accuracy. For example, if a data location corresponds to running an
expensive numerical simulation with a specific choice of d simulation parameters, and
the simulation procedure can deliver both, a function value and a derivative value, then
using the gradient data is far more efficient than generating further d function values.

Example. For illustration we now denote the center of the RBFs by ξj and the data
locations by xj , although these are the same locations.

Given are
{(xj , f(xj))}

p
j=1 and

{(
xj ,

∂f

∂x
(xj)

)}N
j=p+1

,

with x = (x, y) ∈ R2. Thus

λj =

δxj j = 1, . . . , p
δxj ◦

∂
∂x j = p+ 1, . . . , N.
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With k(xj , xk) = ϕ(‖xj − xk‖) we get,

u(x) =
N∑
j=1

ajλ
(1)
j k(·, x)

=
P∑
j=1

ajk(ξ
j
, x) +

N∑
j=P+1

aj
∂

∂ξ
k(ξ

j
, x)

=
P∑
j=1

ajk(xi, x)−
N∑

j=P+1
aj

∂

∂x
k(ξ

j
, x)

The system matrix after inserting u into λju = λjf is

A =
[
K Kξ

KX KXX

]

with

Kjk = k(ξ
k
, xj) = ϕ(‖ξ

k
− xj‖), j, k = 1, . . . , p

Kξ,jk = ∂ϕ

∂ξ
(‖ξ

k
− xj‖) = −∂ϕ

∂x
(‖ξ

k
− xj‖), j = 1, . . . , p, k = p+ 1, . . . , N

KX,jk = ∂ϕ

∂x
(‖ξ

k
− xj‖), j = p+ 1, . . . , N, k = 1, . . . , p

KXX,jk = −∂
2ϕ

∂2x
(‖ξ

k
− xj‖), j, k = p+ 1, . . . , N

Observe here, that the partial derivative of ϕ with respect to x will always contain a linear
factor in x. The sign for the derivative depends switches if we switch between ξ

j
and xj .

In case the ξj and xj are the same, we have that the entries of Kξ and KT
X correspond,

since the sign change due to the differentiation at the other position is cancelled by the
interchange of the roles of x and ξ. Therefore we later use L(1), L(2) when considering
differential operators.

In view of what we had earlier, instead of

k(x, y) = 〈δx, δy〉H? .

we have now in some way

k?(λ, µ) = 〈λ, µ〉H? for all λ, µ ∈ H?,

which gives
k(x, y) = k?(δx, δy),

i.e. for point evaluation as before.
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One can now redo most of what we did earlier using Ω = H? replacing points x and y by
functionals λ and µ while k? replaces k. Note, that this also allows us to work in Hilbert
spaces without continuous point evaluation where one uses weak methods, e.g. Sobolev
spaces.

Theorems 1.19 and 1.20 and Corollaries 1.21 to 1.23 again follow. We cannot use point
evaluation functionals to measure the error and instead use a functional µ ∈ H?

µ(f − fΛ) = (µ− µ ◦ΠΛ)f

so we get the generalized power function

PΛ(µ) = ‖µ− µ ◦ΠΛ‖H? for all µ ∈ H?,

and obtain Theorem 1.25 with the generalized power function.

Now we describe a kernel-based collocation method for the partial differential equation

Lu = f in Ω ⊆ Rd

u = g on Γ = ∂Ω

We use an expansion for u as

u(x) =
p∑
i=1

uik(xi, x) +
N∑

i=p+1
uiL

(1)(k(xi, x)) (28)

where p is the number of boundary points and N − p the number of interior points
denoted by I, accordingly. We now split the collocation set X in to a set of boundary
points B and the set I of interior points. Similar to the Hermite interpolation before we
get a block matrix

A =
(

K L(1)(K)
L(2)(K) L(2)L(1)(K)

)
, and Au =

(
g
f

)

with g being of size p and f of size N − p, accordingly, and

Kij = k(xi, xj) xi, xj ∈ B
L(1)(K)ij = L(1) (K (xi, x̃j)) xi ∈ B, x̃j ∈ I
L(2)(K)ij = L(2) (K (x̃i, xj)) x̃i ∈ I, xj ∈ B

L(2)L(1)(K)ij = L(2)
(
L(1) (K (x̃i, x̃j))

)
x̃i, x̃j ∈ I

The matrix is of the same type as the Hermite interpolation matrix and nonsingular if
the δxi , δxi ◦ L are linearly independent.

For this symmetric collocation method the approximation result carries over.
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Theorem 1.38. Let Ω ⊆ Rd be a polygonal and open domain. Furthermore, let L 6= 0
be a second order elliptic differential operator with coefficients in C2(k−2)

(
Ω̄
)
that

either vanishes on ∂Ω or has no zero there. Suppose that K ∈ C2k(Rd × Rd) is a
positive definite kernel. Assume further that

Lu = f in Ω ⊆ Rd

u = g on Γ = ∂Ω

has a unique solution u ∈ Nk(Ω) for given f ∈ C(Ω) and g ∈ C(∂Ω). Moreover, let û
be the approximation in the form Eq. (28). Then

‖u− û‖L∞(Ω) ≤ Ch
k−2
I,Ω ‖u‖Nk(Ω)

‖u− û‖L∞(∂Ω) ≤ Ch
k
B,Ω‖u‖Nk(Ω)

for small enough hI,Ω, hB,Ω.

Proof (Sketch). The result for the interior essentially uses the approximation The-
orem 1.37 for |Lu− Lû|, and uses that “LLK” is positive definite for positive definite
K.

Since ∂Ω does not satisfy an interior cone condition, we cannot use Theorem 1.37 directly
for the result on the boundary. As Ω was demanded to be polygonal, ∂Ω is locally a
hyperplane which can be mapped to Rd−1 where the image satisfies an interior cone
condition. Using further results connecting K and LLK, their native spaces, and their
power functions one can show the result for each surface, of which there are only finitely
many.

For full (somewhat messy) details, see [Wen05].

From the result, one should aim to have a finer discretization in the interior than on the
boundary by balancing hk−2

I,Ω ≈ hkB,Ω.

We need high regularity assumptions for the good approximation rates, but often u ∈
C2k(Ω) cannot be assumed and here finite element methods are the better approach. But
in particular in higher dimensions and with decent smoothness these meshless methods
have their potential.

In practice, a non symmetric collocation approach is more commonly used, called Kansa’s
method. That approach is simpler to implement since only one application of L is
needed. But it can be shown that this approach can fail, albeit only known for specifically
constructed situations.
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In short, we use

u(x) =
N∑
i=1

uik(xi, x)

and get

A =
(
K
LK

)
, Au =

(
g
f

)
with

Kij = k(xi, xj), xi ∈ B, xk ∈ X
(LK)ij = L(1)k(xi, xj), xi ∈ I, xk ∈ X

This gives again a N×N -matrix, but non-symmetric. Besides needing less derivatives and
therefore less smoothness, the non-symmetric approach can be easier applied to a partial
differential equation (PDE) with non-constant coefficients or nonlinear problems.

1.2.2. Conditionally Positive Semi-Definite Kernels

Definition 1.39. We call a set of points X = {x1, . . . , xN} ⊂ Rd m-unisolvent if the
only polynomial of total degree at most m interpolating zero data on X is the zero
polynomial.

Definition 1.40. A symmetric kernel K : Ω× Ω→ R is called conditionally positive
semidefinite of order m, if

N∑
i,j=1

aiajK(xi, xj) ≥ 0

for any (m− 1)-unisolvent set of points x1, . . . , xN ∈ Ω ⊆ Rd and ai ∈ RN satisfying
the moment conditions

N∑
i=1

aip(xi) = 0 (29)

for any polynomial p of total degree at most m− 1.

Conditionally positive definite of order m is defined accordingly.

Corollary 1.41. A kernel that is cpsd of order m is also cpsd of order ` ≥ m. In
particular, a positive semi-definite kernel is cpsd of any order.

Thus, usually one gives the minimal order for a function.
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Example. Multiquadratics in the form of

k(x, y) = Φ(‖x− y‖) = Φ(r) = (−1)dβe(1 + r2)β, 0 < β /∈ N

are cpsd of order m = dβe.

Thin-plate-splines of the form

Φ(r) = (−1)β+1r2β log r, β ∈ N

are cpsd of order m = β + 1. The classical thin-plate-spline with β = 1 is cpsd of order 2.

For radial functions K(x, y) = Φ(‖x− y‖) we can use simpler criteria, which are based
on monotone functions.

Definition 1.42. A function ϕ : [0,∞)→ R that is in C∞((0,∞)) and satisfies

(−1)`ϕ(`)(r) ≥ 0, r > 0, ` = 0, 1, 2, . . .

is called completely monotone on (0,∞).

If in addition ϕ ∈ C([0,∞)) it is called completely monotone on [0,∞)

Example. Examples of completely monotone functions are

• ϕ(r) = ε

• ϕ(r) = e−εr with ε ≥ 0. This is due to

(−1)`ϕ(`)(r) = ε`e−εr ≥ 0

Theorem 1.43. Let ϕ ∈ C([0,∞)) ∩ C∞((0,∞)). Then the kernel k(x, y) = Φ(‖x−
y‖) with Φ(r) = ϕ(r2) is cpsd of order m if and only if (−1)mϕ(m) is completely
monotone on (0,∞).

Proof. [Mic86; Wen05].

Sufficient is based on the observation that completely monotone functions are Laplace
transforms of non-negative and finite Borel measures, i.e.

φ(r) = Lν(r) =
∫ ∞

0
e−rtdν(t).

With Taylor on φε(r) = φ(r + ε) the result follows.
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Necessary is based on a result from Schoenberg that a function φ is completely monotone
on [0,∞) if and only in Φ(r) := φ(r2) is positive semi-definite, followed by a proof by
induction.

Example (revisited). 1. For the multiquadratics

ϕ(r) = (−1)dβe(1 + r)β, 0 < β /∈ N

it follows
ϕ(`)(r) = (−1)dβeβ(β − 1) · . . . · (β − `+ 1)(1 + r)β−`,

so that

(−1)dβeϕ(dβe)(r) = β(β − 1) · . . . · (β − dβe+ 1)(1 + r)β−dβe ≥ 0

and ϕ is therefore completely monotone and the corresponding kernel is cpsd of
order dβe.

2. The thin-plate-splines can also be seen to be completely monotone and therefore
cpsd of order β + 1.

One can show a stronger version of the theorem.

Corollary 1.44. Suppose that the function ϕ of Theorem 1.43 is not a polynomial
of degree at most m. Then ϕ(r2) is conditionally positive definite of order m.

Interpolation with cpsd kernels

We aim for

s(x) := SX,a,b(x) :=
N∑
i=1

aik(xi, x) +
M∑
m=1

bmpm(x) for all x ∈ Ω

with a ∈ RN , b ∈ RM with the moment condition Eq. (29) for a.

We use the space Pdm−1 of polynomials of total degree less or equal to m−1 in d variables
and polynomials p1, . . . , pM from a basis of size

M =
(
m− 1 + d
m− 1

)

for Pdm−1.
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We want to interpolate (xi, f(xi)) on an (m− 1)-unisolvent point set X. This results in
the (N +M)× (N +M) linear system

s(xk) =
N∑
i=1

aik(xi, xk) +
M∑
i=1

bmpm(xk) = fk 1 ≤ k ≤ N

N∑
c=1

aipm(xi) + 0 = 0 1 ≤ m ≤ N

In matrix form, this yields: [
K P
P T 0

] [
a
b

]
=
[
f
0

]

Theorem 1.45. If the set X is (m− 1)-unisolvent and K is conditionally positive
definite (not semidefinite) we can solve the system[

K P
P T 0

] [
a
b

]
=
[
f
0

]

uniquely.

Proof. We assume a, b is a solution of the homogeneous linear system, i.e. fk = 0,
1 ≤ k ≤ N and show that a = 0, b = 0 is the only possible solution. Multiply the first
line by aT :

aTKa+ aTPb = 0

We know from the bottom line P Ta = 0, therefore aTP = 0T . Thus, we conclude

aTKa = 0.

Since we have a conditionally positive definite K of order m, P Ta = 0 and we have a
(m− 1)-unisolvent set, this only holds for a = 0. The unisolvency of the X also gives the
linear independence of the columns of P and so it follows from

Pb = Ka+ Pb = 0

that b = 0.

Taking a linear algebra view, the kernel matrix of a cpsd kernel is positive semi-definite
on the space of vectors "orthogonal" to d-variate polynomials of degree at most m− 1.

Consider now cpsd of order one. Then k is cpsd on a subspace of dimension N − 1.
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Theorem 1.46 (Courant-Fisher). Let A be a real symmetric N ×N -matrix with
eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λN . Then

λk = max
dimV=k

min
x∈V,
‖x‖=1

xTAx

and
λk = min

dimV=N−k+1
max
x∈V,
‖x‖=1

xTAx.

We get from Theorem 1.46 that at least N − 1 eigenvalues of a kernel matrix for a
cpd-kernel are positive. With an additional assumption we even get:

Theorem 1.47. An N ×N kernel matrix K that is cpd of order 1 and has a non-
positive trace possesses one negative and N − 1 positive eigenvalues.

Proof. Let λ1 ≥ λ2 ≥ . . . ≥ λN denote the eigenvalues of K. From Theorem 1.46 we
get

λN−1 = max
dimV=N−1

min
x∈V,
‖x‖=1

xTKx ≥ min
c:
∑

ck=0,
‖c‖=1

cTKc ≥ 0,

so that K hast at least N − 1 positive eigenvalues. Since tr(K) = ∑N
k=1 λk ≤ 0, K also

must have one negative eigenvalue.

We now can use Theorem 1.47 to conclude that we can use RBF that are cpd order one
without appending the constant term to solve the interpolation problem.

Theorem 1.48. Suppose Φ is cpd of order one and that Φ(0) ≤ 0. Then for a set X
of distinct points, the matrix K with Kjk = Φ(‖xj − xk‖) has N − 1 positive and one
negative eigenvalue. Is it therefore non-singular.

Proof.
tr(K) = NΦ(0) ≤ 0

For the learning case we did relate kernels to scalar products in the the feature space.
Now we consider distance measures from norms in the feature space. We assume that
‖Φ(x)− Φ(y)‖2 is stemming from the positive (semi)definiteness of the kernel, i.e. with
the kernel

k(x, y) = 〈Φ(x),Φ(y)〉
we can write the norm as

‖Φ(x)− Φ(y)‖2 = k(x, x) + k(y, y)− 2k(x, y).
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Consider now translations of the data x 7→ x− t: ‖x− y‖2 is translation invariant, while
〈x, y〉 is not. After a short calculation, we observe the connection

〈(x− t), (y − t)〉 = 1
2
(
−‖x− y‖2 + ‖x− t‖2 + ‖t− y‖2

)
(30)

and ∑
i,j

aiaj〈(xi − t), (xj − t)〉 =
∥∥∥∥∥∑

i

ai(xi − t)
∥∥∥∥∥

2

≥ 0.

Therefore we still have a positive semidefinite kernel. In other words for any choice of t
we get a similarity measure Eq. (30) associated with the dissimilarity measure ‖x− y‖.

A natural extension is to consider other nonlinear dissimilarity measures.

Lemma 1.49. Let t ∈ Ω and k be a symmetric kernel on Ω× Ω. Then

k̃(x, y) := 1
2 (k(x, y)− k(x, t)− k(t, y) + k(t, t))

is positive semidefinite if and only if K is cpsd.

If k(t, t) ≤ 0 then
k̂(x, y) := 1

2 (k(x, y)− k(x, t)− k(t, y))

is positive semidefinite if and only if k is cpsd.

Proof. see exercise

This does generalize Eq. (30), i.e. the negative squared distance is cpsd. Here ∑N
i=1 ai = 0

implies

−
∑
i,j

aiaj‖xi − xj‖2 = −
∑
i

ai
∑
j

aj‖xj‖2︸ ︷︷ ︸
const

−
∑
j

aj
∑
i

ai‖xi‖2 + 2
∑
i,j

〈xi, xj〉

= 0 + 0 + 2
∥∥∥∥∥∑

i

aixi

∥∥∥∥∥
2

≥ 0

Sometimes a definition for negative kernels with a smaller or equal to zero in the quadratic
form, but again the condition ∑N

i=1 ai = 0 is used, e.g. this holds for the minus of cpsd
kernels of order one.

Actually all
k(x, y) = −‖x− y‖β, 0 < β < 2

are cpsd due to
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Proposition 1.50. If k : Ω×Ω→]−∞, 0] is cpsd, then so are −(−k)α with 0 < α < 1
and − log(1−K).

Proof. [BCR84]

Observe that sums of cpsd kernels are also cpsd and any constant b ∈ R is cpsd. So any
k + b for k cpsd is also cpsd.

Taking the feature space view once more, we can construct a Hilbert space representation
of a cpsd k from the corresponding positive semidefinite (psd) k̃. For k̃ we have a feature
map Φ : Ω→ F , i.e.

〈Φ(x),Φ(y)〉F = K̃(x, y).
Therefore

‖Φ(x)− Φ(y)‖2F = 〈Φ(x)− Φ(y),Φ(x)− Φ(y)〉
= k̃(x, x) + k̃(y, y)− 2k̃(x, y)

Inserting into the result from Lemma 1.49 gives for fixed t ∈ Ω:

‖Φ(x)− Φ(y)‖2 = −k(x, y) + 1
2 (k(x, x) + k(y, y)) .

We have just shown:

Theorem 1.51 (Hilbert space representation of a cpsd kernel). Let k be a cpsd
kernel on Ω. Then there exists a Hilbert space F and a mapping Φ : Ω→ F such that

k(x, y) = −‖Φ(x)− Φ(y)‖2 + 1
2 (k(x, x) + k(y, y)) .

If k(x, x) = 0 for all x ∈ Ω we have

k(x, y) = −‖Φ(x)− Φ(y)‖2

and
√
−k(x, y) is a semi-metric, and a metric if k(x, y) 6= 0 for x 6= y.

One sees that cpsd kernels are a natural choice in case a translation should not affect the
outcome of the kernel.

Remembering quasi-interpolation from Theorem 1.26, we would like to have something
similar for cpsd kernels. For that one needs in some sense to redo the construction of a
native space. To give an idea of the path let us look at the inner product. Like for the
psd case before we fix Ω, m, K and define the set

M :=
{

(a,X)
∣∣∣ X ⊆ Ω, (m− 1)-unisolvent, |X| = N, a ∈ RN , P T

Xa = 0
}
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of vector/set pairs that satisfy the moment condition

P T
Xa = 0, with P T

X = (Pj(xk)).

We assume that Ω has at least one (m− 1)-unisolvent set. We define as before

H :=
{
λya,XK(x, y)

∣∣∣ (a,X) ∈M
}

and the space of functionals

L :=
{
f 7→ λa,X(f) :=

N∑
i=1

ajf(xj)
∣∣∣∣∣ (a,X) ∈M,f ∈ H

}
.

L is a linear space, e.g. adding two functionals vanishing on Pdm−1 will result in a
functional vanishing on Pdm−1. This holds accordingly for H. We now define a bilinear
form on L as we did before Theorem 1.7, where the moment condition additionally holds.
Theorems 1.7 and 1.8 carry over. We cannot use functionals δx = λ1,x for providing point
evaluation, since they are not necessarily in L. Nonetheless, we do have the Riesz map:

R : L→ H,

R(λa,X)(y) = λya,Xk(y, x) =: fa,X(y)

and the identities
〈λa,X , λb,Y 〉L = 〈fb,Y , fa,X〉H = λa,X(fb,Y )

for all (a,X), (b, Y ) ∈M .

Theorem 1.52. The sum of the spaces Pdm−1 +H is a direct sum if the kernel k is
cpsd of order m.

Proof. Consider p ∈ Pdm−1, and a functional λb,Y ∈ L with p(x) = λyb,Y k(x, y) for all
x ∈ Ω. Then λa,X(p) = 0 = 〈λa,X , λb,Y 〉L for all λa,X ∈ L, in particular for λb,Y . Thus
λb,Y = 0 as a functional on H, but b = 0 holds only in the case of definiteness. With
the linearity of the Riesz map, one can conclude that fb,Y is zero in the general case and
therefore also p.

This space Pdm−1 + H can be used as a pre-native space for a cpsd kernel k. One can
follow a similar path to completion like for psd kernels, where the right understanding of
the addition of P +H in that process makes the derivation more involved. For details
see [Wen05].

As a last observation, there is a way to transition from a cpsd kernel of order m to a psd
kernel.

54



1. Kernel based methods

Fix a (m − 1)-unisolvent set Z of size NZ . Every p ∈ Pdm−1 can be reproduced by a
Lagrange basis p1, . . . , pNZ with

pj(zk) = δjk, 1 ≤ j, k ≤ NZ , i.e.

p(x) =
NZ∑
k=1

p(zk)pk(x) =: (Πz(p))(x) for all x ∈ Ω, p ∈ Pdm−1

after changing to the Lagrange basis. This defines a linear projector Πz onto Pdm−1 that
extends to general functions f on Ω as

(Πz(f)))(x) =
NZ∑
k=1

f(zk)pk(x) for all x ∈ Ω, f : Ω→ R.

This implies that the functionals

µx = δx −
NZ∑
k=1

pk(x)δzk

satisfy the moment conditions. We now define the reduced kernel

k̃(x, y) := 〈µx, µy〉
= µ(1)

y µ(2)
x k(·, ·)

= k(x, y)−
NZ∑
k=1

pk(x)k(zk, y)

−
NZ∑
k=1

pk(y)k(x, zk) +
NZ∑
j,k=1

pj(x)pk(y)k(zj , zk)

for all x, y ∈ Ω.

Theorem 1.53. The reduced kernel is symmetric and psd on Ω. It vanishes, if one
of the arguments is in Z. If k is cpsd of order m, then k̃ is psd on Ω \ Z. Quadratic
forms with moment conditions will be the same for k and k̃.

The native space of a cpsd kernel of order m coincides as a space of functions with
H̃ := Pdm−1 + H̃, where H̃ is the native space for the reduced kernel k̃.

1.3. Kernel methods for prediction

We will now stray away from pure interpolation. So far we assumed data in the form of
f(x) = y, but with data stemming from measurements, we will have errors of the form
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f(x) = y + ε. If our interpolation matrix was ill-conditioned, this would pose a problem.
Due to this, we want to allow some margin of error. Or we might consider a classification
problem, where the labels are ±1, or {0, 1}, but we still want to compute a continuous
function suitable for prediction of the class label, which for example gives the probability
of belonging to a class. There interpolation does not work.

So, one might want to value errors differently than just using the plain L2-error. Therefore,
we define

Definition 1.54. Let (Ω,Σ) be a measurable space and Y ⊂ R be a closed subset.
Denote by (x, y, f(x)) ∈ Ω×Y ×R the triplet consisting of a pattern x, an observation
y, and a prediction f(x). A function ` : Ω× Y × R→ [0,∞) is called a loss function
if it is measurable and `(x, y, y) = 0 holds for all x ∈ Ω, y ∈ Y .

We consider at first real values y and we want y − f(x) to be small. The most popular
choice for a loss function is the squared loss:

`2(x, y, f(x)) = (f(x)− y)2 = ˜̀(f(x)− y︸ ︷︷ ︸
ζ

).

-2 -1 0 1 2
0

1

2

3

4

Figure 1.7.: Squared loss l2

Furthermore, one can use the `1-loss:

˜̀(ζ) = |ζ|.
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Figure 1.8.: `1-loss

While the squared loss `2 relates to the mean, the `1-loss relates to the median of values
y.

For robust estimation the so called Huber’s loss can also be useful, it penalizes larger
errors only linear and is more robust to outliers.

˜̀
H(ζ) =

{1
2(ζ)2 if |ζ| ≤ σ
σ|ζ| − 1

2σ
2 otherwise

.
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Figure 1.9.: Huber’s loss `H for σ = 1.

Another possibility is to use the ε-sensitive loss. Here one tolerates errors inside the
interval [ζ − ε, ζ − ε]. Formally:

˜̀
ε(ζ) = max (|ζ| − ε, 0) =: |ζ|ε.

Let us now consider Y = {−1, 1} or Y = {0, 1}, i.e. the classification case.

The simplest loss is the misclassification error:

`(x, y, f(x)) =
{

0 if y = f(x)
1 otherwise
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Figure 1.10.: ε-sensitive loss `ε for ε = 1.

or for Y = {−1, 1} we might only care about the sign of the function for prediction

`(x, y, f(x)) =
{

0 if y = sgn f(x)
1 otherwise

.

-4 -3 -2 -1 0 1 2 3 4
0
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2

Figure 1.11.: Binary loss over y · f(x).

A plausible choice would be the weighted misclassification loss, in case the different
classes have different importance, e.g. in health applications the difference between false
positive and false negative predictions,

`(x, y, f(x)) =
{

0 if y = sgn f(x)
˜̀(y) otherwise

.

There’s also the soft margin loss:

`(x, y, f(x)) = max(1− yf(x), 0) =
{

0 if yf(x) ≥ 1
1− yf(x) otherwise

.

This loss is used for support vector machines, which is one of the most common classifi-
cation procedure.

Finally, the logistic loss is often used, it “assigns” a probabilistic meaning to f(x):

`(x, y, f(x)) = `1 (1 + exp (−yf(x))) .
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Figure 1.12.: soft margin loss plotted for an x-axis of yf(x)
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Figure 1.13.: logistic loss
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Definition 1.55. Let ` be a loss function and P be a probability measure on Ω× Y .
Then, for a measurable function f : Ω→ R, the expected `-risk is defined by

R`,P(f) :=
∫

Ω×Y
`(x, y, f(x)) dP(x, y)

=
∫

Ω

∫
Y
`(x, y, f(x)) dP (y | x) dPx(x).

Of course, we do not know P(x, y), otherwise we could determine all we need from it, we
only have (training) data.

For given D := {(xi, yi)}Ni=1, xi ∈ Ω, yi ∈ Y , we can define the empirical measure

Pemp(x, y) = 1
N

N∑
i=1

δxi,yi

by using the Dirac measure.

Definition 1.56. The empirical `-risk of a function f : Ω→ R is defined as

R`,emp(f) =
∫

Ω×Y
` (x, y, f(x)) dPemp(x, y)

= 1
N

N∑
i=1

` (xi, yi, f(xi)) .

This quantity we can compute for given data, and therefore minimize it. Furthermore,
recalling the law of large numbers, if the data is independent, identically distributed
(i.i.d.) sampled from P the risk R`,emp will be close to R`,P with high probability.

But just minimizing the empirical risk can lead to numerical instabilities and lead to
bad generalization performace, i.e. predictions on unseen data, which are not useful.
For inverse problems one uses Tikhonov-regularization to restrict the class of admissible
functions, this approach will be used here as well. In particular, we will use function
space regularization, where one penalizes with a suitable function norm. A relevant
alternative is to penalize on the coefficients α if given f as

f =
N∑
i=1

αjK(xj , ·).

For example to obtain sparsity one can use ‖α‖1, for such a sparsity approach there is a
wide reach of literature available. Note for example, that in the “pure” support vector
machines setting, one will expect that only a “small” number of the coefficients α are
nonzero.
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In the following, we will assume that R`,emp(f) is continuous in f . The regularization
can be seen as restricting the class of possible minimizers to some compact set H. For
a continuous function on a compact set H, we can apply the operator inversion lemma
to get that the inverse map from the minimum of R`,emp : H → R to its minimizer f̂ is
continuous and the optimization problem is well-posed.

Directly minimizing R`,emp in H is typically a difficult constrained optimization problem.
Instead we add a regularization term to the empirical loss:

R`,reg(f) := R`,emp(f) + λs̃(f).

Here, the λ is the regularization parameter, which balances the empirical error and the
smoothness or simplicity enforced by the regularization term s̃(f).

Theorem 1.57 (Representer Theorem). Let s : [0,∞) → R be a strictly mono-
tone increasing function, λ > 0, Ω be a set, H a RKHS over Ω, and let ` : Ω×Y ×R be
a loss function. Then, for the data D := {(xi, yi)}Ni=1, xi ∈ Ω, yi ∈ Y , each minimizer
f ∈ H of the regularized empirical risk

R`,reg(f) = 1
N

N∑
i=1

`(xi, yi, f(xi)) + λs (‖f‖H) (31)

admits a representation

f(x) =
N∑
i=1

αiK(xi, x),

or f ∈ HX , X = {x1, . . . , xN}.

In other words, although we are solving a minimization problem in an infinite dimensional
space H for a finite number of samples, the solution lies in the span of the N kernel
functions. For separable classification problems, many of the coefficients αi are even
zero.

Proof. Without loss of generality, we assume

s (‖f‖H) = s̄
(
‖f‖2H

)
.

We decompose any f ∈ H into fX ∈ HX and fX⊥ ∈ H⊥X after Theorem 1.20. Then,

f =
N∑
i=1

αiK(xi, ·) + fX⊥ , αi ∈ R.

We know
〈fX⊥ ,K(xi, ·)〉H = 0 for all i = 1, . . . , N

61



1. Kernel based methods

with Eq. (4) this yields:

f(xj) = 〈f(·),K(xj , ·)〉 =
N∑
i=1

αiK(xi, xj) + 〈fX⊥ ,K(xj , ·)〉H

=
N∑
i=1

αiK(xi, xj).

Furthermore, for all fX⊥ ,

s(‖f‖H) = s̄
(
‖fX‖2H + ‖fX⊥‖2H

)
≥ s̄

(
‖fX‖2H

)
Therefore, Eq. (31) is for any fixed α ∈ RN minimal if fX⊥ = 0. This also has to hold
for minimizing f .

Remark. If both the loss function and the regularization s are convex, one has a unique
minimum.

Remark. One can build knowledge into this setup by considering

f̄ = f + h, f ∈ H, h ∈ span{ψp}

where ψp can be specific functions having interpretability. Then one obtains a semipara-
metric representation

f̄(x) =
N∑
i=1

αiK(x, xi) +
M∑
p=1

βpψp(x).

We have for cpsd kernels used the concept of unisolvency of orderm in view of polynomials,
this can be futher generalized beyond polynomials for any finite-dimensional space of
functions and an unisolvency in view of this function space.

One numerical approach to be derived from this is regularized least squares regression,
also known as ridge regression. We consider

R`2,reg(f) = 1
N

N∑
i=1

(f(xi)− yi)2 + λ

2 ‖f‖
2
H, (32)

where

f(x) =
N∑
j=1

αjk(xj , ·).
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Inserting gives

1
N

N∑
j=1

(
N∑
k=1

αjk(xk, xj)− yj
)2

+ λ

2

N∑
j,k=1

αjαkk(xj , xk).

Derivation with respect to αk results in

2
N

N∑
j=1

(
N∑
k=1

αjk(xk, xj)− yj
)
k(xk, xj) + λ

2

N∑
j=1

αjk(xj , xk).

Altogether for all αk
2
N
K(Kα− Y ) + λ

2Kα = 0
⇒ K(K + λNId)α = KY

⇒ (K + λNId)α = Y

Remark. We see how we numerically regularize the kernel matrix by the addition of the
scaled identity, which improves of the condition of the kernel matrix. The stronger the
condition “improves”, the “worse” the results on the given data.

Remark. We will see that in a stochastic view, while modelling

y = f(x) + ε,

with ε i.i.d. samples of Gaussian noise with variance σ2, one gets to

(K + σ2Id)α = Y,

with K from a covariance function k. In other words, the regularization parameter can
be connected to the noise level of the data.

There are several numerical approaches to solve (K + λNId)α = Y . We consider not too
many data points, so that K can be stored in memory. One can now do an eigenvalue
decomposition (EVD) or a Cholesky-decomposition of K, with a bit of care in view of
its condition, or of K + λNId for any λ and use the decomposition to solve the linear
equation system.

For example use the eigenvalue decomposition

K = V ΓV T ,

with an orthonormal matrix V and Γ = diag(xi)Ni=1, where xi are the eigenvalues of K.
Then:

G := (λI +K)−1 = (λI + V ΓV T )−1

= V (λI + Γ)−1 V T .
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Having once performed the costly eigenvalue decomposition, we can solve for several λ’s
using this equation:

αλ = V (λI + Γ)−1 V Ty.

or the Cholesky-decomposition
LLT = λId +K,

with L a lower triangular matrix, and compute

Lz = y

followed by
LTα = z.

Remark. For larger datasets there are approximations needed, e.g. a pivoted Cholesky-
decomposition that stops early, a hierarchical matrix decomposition, in particular in
lower dimension, or other decomposition also exploiting parallelism.

Another approach is to represent the function on a subset of data, often called inducing
points, but still minimize on all.

With all these approximations, iterative solver such as (conjugate or stochastic) gradient
are often used.

Another view comes by looking at the regularization differently, which will give us also an
observation on what the scalar product 〈·, ·〉H does. As a reminder, on L2(Ω) we have

〈f, g〉L2(Ω) =
∫

Ω
fg dx.

We are aiming for
〈f, g〉H = 〈Sf, Sg〉L2 =

∫
Ω
Sf(x)Sg(x) dx.

The transformation S picks those parts of f that should be regularized. Now think of S
as extracting derivations and we see that it is S for smoothness.

Definition 1.58. A regularization operator S is defined as a linear map from the
space of functions {f | f : Ω → R} into a space D equipped with a scalar product.
The regularization term s(f) takes the form

s(f) := 〈Sf, Sf〉D

or sometimes
s(f) := 1

2〈Sf, Sf〉D.
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Remark. Since we can always define S̃ := (S?S) 1
2 and

〈f, S?Sf〉L = 〈Sf, Sf〉D,

we can assume S is a positive semidefinite regularization operator.

To better understand the relation between regularization and kernels, we need to get
back to Mercer’s theorem in the general form of Theorem 1.16.

We go over to weighted inner products with a positive weight function σ:

〈f, g〉 =
∫

Ω
f(x)g(x)σ(x) dx.

The eigenvalue problem of the integral operator TK is∫
Ω
k(x, z)φ(x)σ(x) dx = 〈k(x, z), φ(x)〉 = λφ(z).

The represents a homogeneous Fredholm integral equation of the 2nd kind, which is not
obvious to solve for λ, φ. An idea is now to go from a “difficult” integral equation to an
“easier” differential equation which should be easier to solve. Here we use, that Green’s
function play a central role in the analytic solution view of differential equations.

Definition 1.59 (Green’s Kernel). Given a linear (ordinary of partial) differential
operator L on Ω ⊂ Rd, the Greens kernel g of L is defined as the solution of

Lg(x, z) = δ(x− z), z ∈ Ω fixed.

The Green’s kernel is not uniquely defined this way, one needs to add linear homogeneous
boundary conditions or decay conditions, e.g.

g(x, z)|x∈∂Ω = 0

or
lim
‖x‖→inf

= 0.

Solutions to
(Lu)(x) = f(x) on Ω ⊂ Rd

with a linear and elliptic operator L and some appropriate conditions can be written
with Green’s kernel g

u(x) =
∫

Ω
f(z)g(x, z) dz,
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where for g it holds
(Lg)(x, z) = δ(x− z).

We can regard the integral operator

Gf(x) =
∫

Ω
g(x, z)f(z)dz

as the inverse of the differential operator L, i.e.

Lu = f ⇔ u = Gf

Example (Brownian bridge kernel). Let Ω = [0, 1] and

g(x, z) = min(x, z)− xz

=
{
x(1− z) x ≤ z
z(1− x) x ≥ z

.

This kernel may be obtained by observing properties of the Green’s function for

− d2

dx2 g(x, z) = δ(x− z)

with boundary conditions
g(0, z) = g(1, z) = 0.

Remark. Whenever L is a self-adjoint differential operator, the corresponding Green’s
kernel g is symmetric and the integral operator G is self-adjoint.

Theorem 1.60. For every RKHS H with reproducing kernel K, there exists a corre-
sponding regularization operator S : H → D, such that for all f ∈ H,

f(x) = 〈Sk(x, ·), Sf(·)〉D (33)

and in particular
〈Sk(x, ·), Sk(z, ·)〉D = k(x, z).

Likewise, for every regularization operator S : F → D, where F is some function
space equipped with a scalar product and with a corresponding Green’s function for
S?S, there exists a corresponding RKHS H, with reproducing kernel k, such that both
equations are satisfied.
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Proof. For the first direction, we consider S = Id and D = H. This construction fulfills
all wanted properties.

Now we start with a function Gx which fulfills

f(x) = 〈S?SGx, f〉L for all f ∈ S?SF .

From functional analysis one knows that such a function exists as the Green’s function
for the operator S?S and natural conditions.

f(x) = 〈S?S︸︷︷︸
L

Gx, f〉F

= 〈LGx, f〉
= 〈f, δ(z − x)〉
= f(x).

We have the reproduction property Eq. (33) on the set S?SF using the properties of the
adjoint:

〈S?SGx, f〉F = 〈SGx, Sf〉D.
With f = Gz it follows

Gz(x) = 〈SGx, SGz〉D
= 〈SGz, SGx〉D
= Gx(z),

i.e. G is symmetric in this sense and we write

k(x, z) = Gz(x),

with

g(x, z) = 〈SGx, SGz〉D

we notice that x 7→ SGx is actually a feature map. Since kernels arising from feature maps
result in kernel matrix that are Gram matrices, we get the K is positive semi-definite. It
can be seen that the corresponding RKHS is the closure of{

f ∈ S?SF
∣∣∣ ‖Sf‖2D ≤ ∞} .

D is a RKHS with inner product 〈S·, S·〉D = 〈·, ·〉H.

Fixing the regularization operator thereby determines the set of functions one can
use for solving the regularized empirical risk problem, neglecting the null space of the
regularization operator, if it exists.

We now want to connect
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• integral operator eigenvalue problem for Mercer series representation of a positive
semidefinite kernel

• related eigenvalue problem for a differential operator

To simplify the situation, we consider the free-space/fullspace Green’s function without
boundary conditions. We use g as a kernel k, i.e. (Lk)(x, z) = δ(x− z). Now applying L
to the integral equation gives

L
∫

Ω
k(x, z)φ(x)σ(x) dx︸ ︷︷ ︸∫

Ω Lk(x,z)φ(x)σ(x) dx

= Lγφ(z)

⇐⇒
∫

Ω
δ(x− z)φ(x) dx︸ ︷︷ ︸

φ(z)σ(z)

= γLφ(z)

=⇒ Lφ(z) = 1
γ
φ(z)σ(z)

where for simplicity we assume that L has no eigenvalue 0. This shows that L has
eigenvalues which are the reciprocals of the eigenvalues of TK , while the corresponding
eigenfunctions are the same, taking the weight function into account.

Example (revisited). We have∫
Ω
k(x, z)φ(x)σ(x) dx = γφ(z)

with σ ≡ 1, k(x, z) = min(x, z)− xz on Ω = [0, 1]. This gives for the integral eigenvalue
problem ∫ z

0
xφ(x) dx+

∫ 1

z
zφ(x) dx−

∫ 1

0
xzφ(x) dx = γφ(z).

Now apply L = − d2

dz2 to this and using elementary differentiation steps to obtain

d
dz

{
zφ(z)−

∫ z

1
φ(x) dx− zφ(x)−

∫ 1

0
xφ(x) dx

}
= γφ′′(z)

⇐⇒ −1
γ
φ(z) = φ′′(z)

Remark. From functional analysis one can derive, that for a Green’s kernel that is
positive semidefinite, Mercer’s theorem applies, namely we obtain a representation by
the eigenvalues and eigenfunctions. One example would be Sturm-Liouville differential
operators.

Note that not for all differential operators L a Green’s kernel will exist, e.g. if L has a
nontrivial null space of functions which also satisfy the boundary conditions.
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Theorem 1.61. Given a regularization operator S with an expansion of S?S into a
discrete normalized eigendecomposition with γi, φi, i = 1, . . . and a kernel with

k(x, z) :=
∑
i,γi 6=0

di
γi
φi(x)φi(z),

where di ∈ {0, 1} for all i, and ∑∞i=1
di
γi

is convergent, then K satisfies from Theo-
rem 1.60

〈Sk(x, ·), Sk(z, ·)〉D = k(x, z) = 〈k(x, ·), k(z, ·)〉H.

Moreover, the corresponding RKHS is given by

span{φi | di = 1, i ∈ N}.

Proof. We use f = k(z, ·) in Theorem 1.60.

〈k(x, ·), S?Sk(z, ·)〉 =
〈∑

i

di
γi
φi(x)φi(·), S?S

(∑
i

di
γi
φi(z)φi(·)

)〉

=
∑
i,j

di
γi

dj
γj
φi(x)φj(z)〈φi(·), S?Sφj(·)︸ ︷︷ ︸

γjφj

〉

orthonormal φi=
∑
i

di
γ2
i

γi · φi(x)φi(z)

= k(x, z)

From the construction of the k follows the statement about the span.

Remark. This shows that from a regularization operator several kernels can be obtained,
since the di can be chosen and one restricts thereby for a subspace of the eigenfunction
decomposition. The difference is in the null space of the corresponding TK .

So a 1-1 correspondence between kernels and regularization operators is only on the
image of the integral operator Tk acting on H.

As we have seen, translation invariant kernels are an important class of kernels, kx(z) =
k(x, z) = k(x−z). For show kernels one can more easily find corresponding regularization
operators using Fourier transforms, and vice versa.

We consider the Fourier transform of f over Rd

F [f ](ω) := (2π)−
d
2

∫
Rd
f(x) exp(−i〈x, ω〉)dx.

The inverse Fourier transform is given by

F−1[f ](ω) := (2π)−
d
2

∫
Rd
F [f ](ω) exp(i〈x, ω〉)dω
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We now specifically consider regularization operators S, where S?S is diagonalizable in
the Fourier basis, i.e. the operator can be written as multiplication in Fourier space.

Denote by ν(ω) a non-negative, symmetric function on Rd, i.e. ν(ω) = ν(−ω) ≥ 0 with
ν(ω)→ 0 for ‖ω‖ → ∞. Denote by Ω its support.

We define a regularization operator by

〈Sf, Sg〉 := (2π)
d
2

∫
Ω

F [f ](ω)F [g](ω)
ν(ω) dω.

In view of R`,reg this is kept reasonably small. Small values of ν(ω) correspond to a
strong dumping of the corresponding frequencies. This is desirable for large ω, i.e. high
frequency components that correspond to rapid changes in f .

Consider
g(x, z) = (2π)−

d
2

∫
Rd

exp(i〈x− z, ω〉)ν(ω)dx.

Let f have the support of its Fourier transform contained in Ω. We see

〈Sg(x, ·), Sf〉 = (2π)
d
2

∫
Ω

F [g(x, ·)](ω)F [f ](ω)
ν(ω) dω

= (2π)−
d
2

∫
Ω

ν(ω) exp(i〈x, ω〉F [f ](ω)
ν(ω) dω

= (2π)−
d
2

∫
Ω

exp(i〈x, ω〉F [f ](ω)dω.

We thereby have the formula from Theorem 1.60.

This is a special case of Bochner’s theorem, which states that the Fourier transform of a
non-negative Borel measure is positive semi-definite.

As an example consider the Gaussian kernel.

k(x, z) = exp
(
−‖x− z‖

2

2σ2

)
.

The Fourier transform is given by

F [k](ω) = ν(ω) = |σ| exp
(
−σ

2ω2

2

)
.

The wider k is in pattern space, the more peaked its Fourier transform becomes.
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Figure 1.14.: Gaussian kernel and its Fourier transform

The transform tells us that the contribution of high frequency components is relatively
small, since ν(ω) decays rapidly.

Now consider ‖Sf‖2. It can be given in terms of pseudo-differential operators. It can be
derived that for the Gaussian kernel it becomes

‖Sf‖2 =
∫
Rd

∑
j

σ2j

j!2j (Ojf(x))2dx,

where O2n = ∆n and O2n+1 = ∇∆n.

TODO: citation

Model Selection In order to evaluate the performance of a predictive model, in the
simplest setting, we split the available data D into training data DT and the validation
data DV . The empirical risk on DV is then used to measure the predictive performance
(or generalization) performance.

Otherwise, one usually uses k-fold cross-validation (CV). We split D into k disjoint

Figure: Idea of k-fold cross-validation
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subsets. One is used as DV , the other k − 1 as DT , solve and evaluate, repeat k times.
The average over the k empirical risks is the performance measure. By this procedure,
more data is used for training, and all cases appear as validation data. k is typically
between 3 and 10, while k = N is called leave-one-out cross-validation.

Definition 1.62. Let κ : {1, . . . , N} 7→ {1, . . . , k} be an indexing function that
indicates the partition to which observation j is allocated by the randomization.
Denote by f−k(x) the function that is computed with the k-th part of the data
removed. Then the cross-validation estimate of the prediction error is

CV (f) = 1
N

N∑
j=1

l(xj , yj , f−κ(j)(xj)).

In case of hyperparameters, this is done for a set of values, and the model / hyperparameter
with the lowest empirical risk is selected. Often this is done by a grid search of the
parameters, or in an optimization procedure. For a fair performance statement, the
empirical risk on a third, before unseen data set, should be given.

For more on model selection see chapter 7 of [HTF09].

Gaussian Process Regression

Definition 1.63. A Gaussian process is a collection of random variables, any finite
number of which have a joint Gaussian distribution.

We have for a real process f(x) the mean m(x) as

m(x) = E[f(x)]

and the covariance k(x, z) as

k(x, z) = E[(f(x)−m(x))(f(z)−m(z))].

A Gaussian process is complexity specified by its mean function and its covariance
function:

f(x) ∼ GP (m(x), k(x, z))

Usually one takes the mean function to be zero for notational simplicity.

Our running example for the covariance is the squared exponential / Gaussian kernel

Cov(f(xp), f(xq)) = K(xp, xq) = exp
(
− 1

2w2 ‖xp − xq‖
2
)
.
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Figure 1.16.: Left: Three functions drawn at random from a GP prior. Right: Three
random functions from the posterior, i.e. the prior conditioned on the five
noise free observations. In both plots we see the plus and minus two times
standard deviation for each input. Image from [RW06]

Note that the covariance of the outputs is written as a function of the inputs. Further, w
is the length scale of the process.

The specification of the covariance function implies a distribution over functions, see
Fig. 1.16.

Now, we consider noisy data with additive i.i.d. Gaussian noise ε with variance σ2
N , i.e.

y = f(x) + ε.

The prior on the noisy observations becomes

Cov(yp, yq) = k(xp, xq) + σ2
N∂pq

or
Cov(Y ) = k(X,X) + σ2

NI,

where Y = [y1, . . . , yN ]T and X is a collection of xi.

The joint distribution of the observed target values y and the function values at the
evaluation points fe under the prior can be seen to be(

y
f?

)
∼ N

(
0,
(
K(X,X) + σ2

NI K(X,Xe)
K(Xe, X) K(Xe, Xe)

))

To get the posterior over functions, we need to restrict this joint distribution to contain
only those functions that ”agree“ with the observed data. In probabilistic terms, this
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conditioning the joint distribution on the observations and we get:

f?|X,Y,X? ∼ N (k(X?, X)[k(X,X)+σ2
NI]−1Y, k(X?, X?)−k(X?, X)[k(X,X)+σ2

NI]−1k(X,X?))

Going over to one evaluation xl we have

f(xl) = k(X,xl)T [k(X,X) + σ2
NI]−1y =

N∑
i=1

αik(xi, xl).

with
k(X,xl) = (k(x1, xl), . . . , k(xN , xe)).

And we have

Var(f) = k(xl, xl)− k(X,xl)T
[
k(X,X) + σ2

NI
]−1

k(X,xl).

The variance does not (explicitly) depend on the observed targets, but only on the inputs.
Since the estimated noise level and e.g. the shape parameters of k depend on the outputs,
the predicted variance depends on them at least implicitly.

Consider now the marginal likelihood, or evidence,

P(y | X) =
∫
P(y | f,X)P(f | X) df,

where marginal likelihood refers to the marginalization over the function values f .

Under the Gaussian process view the prior is Gaussian f | X ∼ N(0, k(X,X) + σ2
NI),

and one can obtain for the log marginal likelihood

logP(y | X) = −1
2Y

T
(
K(X,X) + σ2

nI
)−1

Y − 1
2 log

∣∣∣K(X,X) + σ2
nI
∣∣∣− n

2 log 2π.

In the Gaussian process context one can use Bayes model selection for the hyperparameters.
One, roughly speaking, looks at the probability of the data y, given the model and the
hyperparameters, expressed by the marginal likelihood:

P(y | X,Θ).

Rewriting:
logP(y | X,Θ) = −1

2y
TK−1

y y − 1
2 log |Ky| −

n

2 log 2π,

where Ky = K + σ2
nI and Θ are the parameters of the covariance function.

The first term
−1

2y
TK−1

y y
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Figure 1.17.: Three GPs with different length scales and noise levels on the same data.
Image from [RW06]

Figure 1.18.: Left: Decomposition of the log marginal likelihood. Right: log marginal
likelihood as a function of the lenght-scale for different sizes of the training
data. Image from [RW06]
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measures the data fit. On the other hand, the second term

−1
2 log |Ky|

is the complexity penalty depending on the covariance function. The last term,

−n2 log 2π

is a normalizing constant that can be ignored for optimization purposes. One observes
that, see Fig. 1.19,

• the model gets less complex with growing length scale, therefore the negative
complexity penalty increases.

• the data fit decreases with the length scale, since the model becomes less and less
flexible.

• with more data, the log marginal likelihood gets typically more peaked.

In order to set the hyperparameters one maximizes the log likelihood. The derivative of
it can be seen to be

∂

∂Θj
logP(y | X,Θ) = 1

2y
TKy−1∂Ky

∂Θj
K−1
y y − 1

2 tr
(
K−1
y

∂Ky

∂Θj

)

= 1
2 tr

((
ααT −K−1

y

) ∂Ky

∂Θj

)

with α = K−1
y y.

For the Gaussian kernel/squared exponential kernel one has two hyperparameters, the
noise level σ and the length scale w. Although one sometimes writes the kernel as

σ2
f exp

(
− 1

2w2 ‖xq − xq‖
2
)

+ σ2
Nδpq,

where one calls

• σ2
f the signal variance

• σ2
N the noise variance

it is from the optimization view two hyperparameters.

See [RW06] for more on Gaussian process regression.
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Figure 1.19.: Marginal likelihood as a function of length scale and noise level, and the
two local optima, where the global optimum has low noise and a short
length-scale. Image from [RW06]
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Support Vector Machine

We now consider classification, i.e. y ∈ {−1, 1}. We already saw use the hinge loss
`n(y, f(x)) = max{0, 1 − yf(x)}, which coupled with regularization gives the support
vector machine. This learning algorithm has a geometric interpretation, which we will
now study.

As before, let D = {(xi, yi)}i=1,...,N with xi ∈ Rd. For a so called maximal margin
approach one assumes that w ∈ Rd with ‖w‖2 = 1 and b ∈ R exist such that

〈w, xi〉+ b > 0 for all i with yi = 1
〈w, xi〉+ b < 0 for all i with yi = −1.

The hyperplane defined by (w, b) perfectly separates the training data D. Under all
separating hyperplanes for the data one looks for the one with a maximal margin, i.e.
maximal distance to the points in D, denoted by (wD, bD).

One then sets
fD(x) := sgn(〈wD, x〉+ bD).

as the classifier. Since the sign does not change, one can easily scale, i.e. (κwD, κbD),
κ > 0 gives the same sign. Therefore one can also look for w? ∈ Rd which observes a
lower bound on the margin and has minimal norm:

min
w∈Rd,b∈R

〈w,w〉

subject to yi(〈w, xi〉+ b) ≥ 1, i = 1, . . . , d
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1. Kernel based methods

One can easily see that

wD = w?

‖w?‖2
and bD = b?

‖w?‖2
.

Note that if we have two support vectors x1, x2 with

〈w?, x1〉+ b? = 1
〈w?, x2〉+ b? = −1,

i.e. points directly on the margin, this gives us〈
w?

‖w?‖2
, (x1 − x2)

〉
= 2
‖w?‖2

.

Consequentially, the maximal margin hyperplane is completely determined by those xi
which are on the margin. Such are called support vectors, hence the name support vector
machine for this construction.

There are two obvious shortcomings:

1. a linear separation may not be possible or suitable for the data set.

2. in the presence of noise, we may need to misclassify some training points to avoid
over-fitting.

In order to address the first issue, we map xi into a Hilbert space H by a feature map
Φ : X → H.1 One then aims for a linear separation in the feature space, i.e. consider
{(Φ(xi), yi)}i=1,...,N with the above procedure. This approach is often called the hard
margin support vector machine (SVM). It is possible to show that for kernels with certain
natural properties and data sets without contradictions, i.e. no (xi, yi), (xj , yj) with
xi = xj , yi 6= yj , a perfect separation in the feature space is possible, see e.g. [SC08,
Section 4.6] for details. We will later on see that we only require some support vectors
on the margin to represent a solution, at least in the separable situation.

The second problem was addressed by the (soft margin) SVM. The idea is to relax the
constraints

yi(〈w, xi〉+ b) ≥ 1− ζi
by adding slack variables ζi ≥ 0. If the slack variables would be too large, the constraints
would be easily fulfilled, so one penalizes on their sizes.

1We do not write H for the Hilbert space here as there is going to be a small difference between H and
H
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1. Kernel based methods

Together with the feature map, this gives the following optimization problem:

min 1
2〈w,w〉+ C

N∑
i=1

ζi, w ∈ H, b ∈ R, ζ ∈ RN

subject to yi(〈w,Φ(xi)〉+ b) ≥ 1− ζi, ζi ≥ 0, i = 1, . . . , N,

where C is a hyperparameter balancing the two terms. Observe that the objective is
convex, while the side constraints are linear. In a geometric sense, the slack parameters
ζi control how far a value may be “on the wrong side of the margin”.

Now we will connect this optimization problem to the regularized loss function formulation.
We observe for the constraint

ζi ≥ 1− yi(〈w,Φ(xi)〉+ b)

with ζi ≥ 0 this gives

ζi ≥ max {0, 1− yi(〈w,Φ(xi)〉+ b)}
= `h(yi, 〈w,Φ(xi)〉+ b).

The objective function is minimal in ζi when this inequality becomes an equality.

For (w, b) ∈ H × R consider

f(w,b) : X → R
f(w,b)(x) = 〈w,Φ(x)〉+ b

Multiplying the objective by 2λ = 1
NC gives

min
(w,b)

λ〈w,w〉+ 1
N

N∑
i=1

`h
(
yi, f(w,b)(xi)

)
.
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For suitable kernels we can write this in the RKHS setting

〈w,w〉 = ‖f‖H,

where
‖f‖H = inf{‖w‖H : w ∈ H with f = 〈w,Φ(x)〉}.

Modulo the offset term b the geometrically derived approach is equivalent to the RKHS
view, we have

inf
(f,b)∈H×R

λ‖f‖2H + 1
N

N∑
i=1

`h(yi, f(xi) + b).

The offset b makes a real difference, so in general the decision functions are different. For
the linear setting, i.e. the identity map Rd → Rd, the offset b has a clear advantage since
it treats translated data. For many feature maps, e.g. Gaussian kernel, the offset has
neither known theoretical nor empirical advantages. In the next part we do not consider
b.

From the representer Theorem 1.57, we have

fa(x) =
N∑
j=1

ajK(xj , x),

i.e. a representation with N kernel functions. But how can we solve the optimization
problem?

We see that

‖fa‖2H =
N∑
i=1

N∑
j=1

aiajK(xi, xj) = aTKa

and obtain

min
a∈RN

1
N

N∑
i=1

`h

(
yi,

N∑
j=1

ajK(xj , xi)︸ ︷︷ ︸
fa(x)

)
+ λaTKa.

As seen, this is a finite dimensional convex optimization problem. Since `h is nonnegative,
one can solve instead

min
a,ζ∈RN

1
N

N∑
i=1

ζi + λaTKa

subject to ζi ≥ `h(yi, fa(xi)), i = 1, . . . , N

By going back to C = 1
2Nλ we obtain the alternative formulation:

min
a,ζ∈RN

C
N∑
i=1

ζi + 1
2‖fa‖

2
H

subject to ζi ≥ 0, ζi ≥ 1− yifa(xi), i = 1, . . . , N
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Here we can now use results for convex optimization problems with constraints. After
some derivations one obtains

max
β

N∑
i=1

βi −
1
2

N∑
i=1

N∑
j=1

βiyiβjyjK(xi, xj) with β ∈ [0, C]N .

Therefore the problem with the hinge loss is a quadratic optimization problem with box
constraints, which is easier to solve than a convex problem with constraints.

See [SS02; SC08] for more on support vector machines.
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2. Dimensionality reduction

We consider unsupervised learning, where we have a set Y of data yi ∈ Rd, i = 1, . . . , N
without labels. We assume that there is a lower dimensional representation for each yi by
a xi ∈ Rp, p < d, which describes the data in a suitable fashion. We call d the extrinsic
dimension and p the intrinsic dimension.

Some example data

1. Handwritten Digits
A digit is represented by a k × k matrix of gray values (average color value of the
respective pixel in the grid), i.e. a vector in Rk·k, see Fig. 2.1a. A data set is a
matrix A in Rk·k×N , where the columns of A are a subspace of Rk·k. Now consider
only images of the digit 3, we aim for a basis

{
u

(3)
i

}p
i=1

of this subspace. Any new
image b of a digit gets represented in this basis and obtain the error

b−
p∑
i=1

xiu
(3)
i .

If this error is small, one would assume the digit is a 3, otherwise it isn’t.

2. Sensor Arrays
Sensor arrays are a set of identical sensors, e.g.

• sensor antennas in radio telescopes

• earth measurements in seismography or weather

• several electrodes measure time series for electrocardiography (ECG) or elec-
troencephalography (EEG)

• frequency measurements over time

The matrix is of size #sensors×#measurements.

3. Numerical Simulations
Numerical simulations are also a data source. In the research & development (R&D)-
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2. Dimensionality reduction

process, the engineer performs several simulations with different input parame-
ters [Boh+13; IG19]. The data is of size #size of the simulation×#simulations.

4. Single Cell Genomics
Measuring gene levels in single cells has become feasible in recent years [GKQ16].
For example, one is interested in the differentiation process of a stem cell to a
specific cell type. Two stem cells of the same type can differentiate into two different
cells, e.g. two different muscle cells.

Measurements are gene levels for several genes per cells, these are measured over
time. Linear and nonlinear dimensionality reduction methods can provide structure
in the data [WRY16]. In this application domain, one has to also take care of
(structurally) missing data.

For now assume we assume that the data is organised in a matrix.

There are several goals for dimensionality reduction.

• An analysis goal is the extraction of knowledge, e.g. by finding (sub)structures in
the data.

• Dimensionality reduction can be used to reduce computational complexity or to
compress data for storage reduction.

• For certain tasks, it might be enough to find “important” attributes, or attribute
interactions, also called feature engineering.
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2. Dimensionality reduction

Curse of Dimensionality When working in high dimensions, one has to consider the so
called curse of dimensionality which has several forms and aspects.

Consider a grid over [0, 1]d with spacing 1
10 , in 3 dimensions we have 103, or in 20 it

would give 1020 points. Therefore, if one wants to represent a function or optimize over
it, using a Cartesian grid, the computation effort scales exponentially in d, the number of
dimensions. One runs into the curse of dimensionality in the form of complexity. Note that
under certain assumptions, one can (drastically) reduce the complexity, e.g. sparse grids,
low rank tensor decompositions, compressed sensing, Quasi-Monte Carlo, and others.
Specifics will depend on the balancing approximation properties and computational
complexity.

Viewed the other way around, the amount of data is generally restricted, therefore
high-dimensional spaces described by data are inherently sparse. This is called the empty
space phenomenon, which is related to the concentration of measure effect. Therefore
it is very reasonable to assume e.g. lower intrinsic dimensionality, or other structure in
data.

Some oddities that can be observed in high dimensions are for example:

• diagonals in hypercubes are “orthogonal” to any axis

• the ratio between the volume of a sphere and the volume of an enclosing hypercube
strays to zero for d→∞,

see e.g. [LV07] for more on this.

Properties What properties are relevant for a method analyzing high dimensional data
by dimensionality reduction?

1. One wants to estimate the intrinsic dimensionality. This can be the number of
latent variables or the degrees of freedom.

2. One wants to embed the data to reduce the dimensionality. An embedding allows a
compact representation and makes further processing easier. One typically assumes
that the data lies on a p-dimensional manifold and aims for an embedding in a
space with dimensionality close to p. It is necessary to characterize and measure
the structure of the manifold. Properties could be curvature, connectivity or local
relationships. Furthermore, an embedding establishes a bijective mapping between
the yi ∈ Rd and their counterparts xi ∈ Rp. The mapping might allow an out-of-
sample extension, i.e. find for new y ∈ Rd an x ∈ Rp, or vice versa. The way from
x to y is also called generative.
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2. Dimensionality reduction

3. One wants to embed for latent variable separation. Here, additional constraints
are imposed on the desired low dimensional representation. A typical assumption
is that the latent variables are (statistically) independent from each other. Most
methods for latent variable separation need another method for dimensionality
reduction or some preprocessing. Often such additional constraints impose rather
simple models.

Missing Image

2.1. Linear Dimensionality Reduction

2.1.1. Principal Components Analysis

The principal component analysis (PCA) method is one of the oldest, well known, and
likely best data analysis methods for dimensionality reduction. It was developed (or
discovered) several times, mainly to mention are:

• Pearson (1901) in biological applications, further extended by Hotelling (1933) in
psychometrics

• In the framework of stochastic processes, it was discovered independently in 1946
by Karhunen, and was later generalized by Loève in 1948, and is known as the
Karhunen-Loève transform in this field

It is also known under several other names

• proper orthogonal decomposition (POD) in engineering

• empirical orthogonal functions (EOF) in meteorology

• etc.

From the underlying linear algebra we will see that it is closely related to the singular
value decomposition and the Schmidt-Eckart-Young-theorem.

We now assume to have a data set {yi}Ni=1 which are samples of a random variable Y ∈ Rd.
We assume Y stems from p unknown latent variables X ∈ Rp by a linear transformation
W , i.e. Y = WX . Moreover, we assume that Y is mean-centered, i.e. E(Y) = 0. This is
no real restriction since otherwise we just subtract the mean from Y. For W we assume
it is an axis change, i.e. the columns wi ∈W are orthogonal to each other and have unit
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2. Dimensionality reduction

norm, i.e. W TW = Ip. We organize the data in a matrix Y = [y1, . . . , yN ]. Using the
pseudo-inverse of W we have

W † = (W TW )−1W T = W T .

We can write xi = W †yi. The reconstruction error becomes

E
(
‖Y −W (W TY)‖22

)
,

where W TW = Ip per assumption, but WW T 6= Id in general.

E
(
‖Y −WW TY‖2

)
= E

(
YTY − 2YTWW TY + YTW W TW︸ ︷︷ ︸

Ip

W TY
)

= E (YTY − YTWW TY)

We approximate the W -dependent part using the samples and compute the empirical
mean

E (YTWW TY) ≈ 1
N

N∑
i=1

yTi WW Tyi

= 1
N

tr (Y TWW TY )
trace is cyclic= 1

N
tr (W TY Y TW ) .

Adding the constraint W TW = Ip we get the Lagrangian

L = tr(W TY Y TW ) + tr((Ip −W TW )Λ),

where Λ = ΛT ∈ Rp×p. The condition for an extrema is

Y Y TW = WΛ =⇒ Λ = W TY Y TW (34)

and the objective function reduces to tr(Λ).

We can rotate W and have the same reconstruction error, e.g. we use W ′ = WR giving
Λ′ = RΛRT . Λ = ΛT is diagonalizable with orthogonal matrices, so we can choose R such
that Λ′ is a diagonal matrix. Without loss of generality, Λ is diagonal. From Eq. (34) it
follows that the columns of W must be p eigenvectors of Y Y T with the corresponding
eigenvalues as the diagonal of Λ. Since we maximize tr(Λ) we get the p largest eigenvalues
of Y Y T and the corresponding eigenvectors.

One can connect the eigenvectors of Y Y T with the top left singular vectors U of the
singular value decomposition (SVD) (Definition A.1) of Y , where the eigenvalues are the
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squared singular values of Y . So we take the first p columns of U for W , i.e. W = UId×p.
Furthermore, as U is orthonormal

X = W TY = W TUΣV T = Ip×dΣV T .

Using Λ = W TUΣ2UW = Σ2 we obtain for the optimal least squares error

tr
(
Σ2
)
− tr

(
Ip×dΣ2

)
=

d∑
i=p+1

σ2
i .

We have shown

Theorem 2.1. Let Y = [y1, . . . , yN ] ∈ Rd×N be a matrix of zero mean data points.
Denote the SVD of Y by UΣV T . Then for given p < d the minimizer W for the
reconstruction problem

min
W

N∑
i=1
‖yi −WW Tyi‖22, such thatW TW = Ip (35)

is given by W = [u1, . . . , up]. The lower dimensional embedding is given by

X = Ip×dΣV T = Ip×dU
TY.

For the reconstruction error one obtains
d∑

i=p+1
σ2.

A slightly different, but not really different, view on this by a projection, i.e. we aim for

y =
p∑
i=1

xiwi, with y, wi ∈ Rd, wT
i wj = δij ,

which is a projection into the linear space of dimension p spanned by the wi. The xi are
determined by

xi = 〈y, wi〉

y =
p∑
i=1
〈y, wi〉wi

Projection is here looking for the best linear fit with the smallest L2-error, this results in
the same problem as before.

Another view is with approximation with rank constraints, i.e. we look for

min
A
‖Y −A‖2F , such that rankA = p.
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(a) Original image and 4 images obtained by random displacement and rotation.

(b) Shown is the mean for digit 3 along with first four PCA components with their eigenvalue.
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(c) Plot of eigenvalue spectrum.
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(d) Sum of the discarded eigenvalues.

(e) Original image and its reconstruction using different number of PCA components.

Figure 2.1.: PCA applied on images of the digit 3. The synthetic data set is obtained by
taking one image of a 3 (size 28× 28) and generating more images by using
random displacement and rotation. Images taken from [Bis06].
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This is the Schmidt-Eckart-Young Theorem A.2 for the SVD, i.e.

A = UpΣpV
T
p ,

where the matrices consist of the top p singular vectors/values of Y . In other words, the
truncated SVD is the best rank-p approximation of Y under the Frobenius norm.

From the statistical perspective another derivation is common. Let us first define the
principal components.

Definition 2.2. Given a zero mean multivariate random variable Y ∈ Rd. The p
principal components of Y are defined as the p uncorrelated linear components of y:

xi = wT
i y ∈ R, wi ∈ Rd, i = 1, . . . , p

such that the variance of xi is maximized subject to wT
i wi = 1 and Var(x1) ≥

Var(x2) ≥ . . . ≥ Var(xp) ≥ 0.

Theorem 2.3. Assume that the rank of the covariance matrix E(Y Y T ) is larger than
p. Then the first p principal components of a zero-mean multivariate random variable
Y , denoted by xi, i = 1, . . . , p are given by

xi = wT
i y,

where {wi}pi=1 are the p orthonormal eigenvectors of the covariance matrix E(Y Y T )
associated with its p largest eigenvalues {λi}pi=1. Moreover, λi = Var(xi).

Proof. see exercises

In the proof of Theorem 2.1 we have already seen that the columns of W are the
top p eigenvectors of Y Y T , so both generate the same result. Fig. 2.2 gives us two
representations of Y , where we have

Y =
p∑
i=1

σi uiv
T
i︸ ︷︷ ︸

outer product

.
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Yd

N

= Ud

p

Σp

p

V Tp

N

or

Yd

N

= σ1 u1

v1

+ σ2 u2

v2

+ . . .+ σp up

vp

Figure 2.2.: Two representations of Y
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In the view of the three properties of dimensionality reduction approaches we have:

1. Ideally we have rank(Y Y T ) = p, but in practice we have noise. Use the eigenvalue/
singular value decay for the selection of p. One might for example attempt to
capture, say, 95% of the variance by∑p

i=1 λi∑d
i=1 λi

≥ 0.95

or one uses the threshold on the λi, e.g.

λi ≤ 0.01σ2
y = 0.01

d∑
i=1

λi.

2. The embedding is just X = Ip×dU
TY .

3. For the latent variables, we do have W is orthonormal, i.e. a rotation and assume a
Gaussian distribution over the latent variables.

Note that if x is a Gaussian random variable, the eigenvectors of the empirical estimate
of

E(Y Y T ) = 1
N
Y Y T

are asymptotically consistent unbiased estimates for the corresponding eigenvectors of
E(Y Y T ). See [Jol02] for details. Furthermore, [LV07] discusses this topic.

2.1.2. Multidimensional Scaling

We now consider another criteria for dimensionality reduction, we aim for embeddings
which approximately preserve distances:

dd(y1, y2) ≈ dp(x1, x2).

To describe and analyze this approach, we first need some definitions.

Definition 2.4. An N ×N symmetric matrix D is called Euclidean distance matrix
(EDM) if there exists an integer d > 0 and a vector set Y = {yi}Ni=1, yi ∈ Rd, such
that

Dij = d2
E(yi, yj), i, j = 1, . . . N,

where dE is the Euclidean distance. The vector set Y is called a configuration of D.
We write D ∈ EDM.

Later we will use the following generalization of an EDM.
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Definition 2.5. An N×N symmetric matrix D with nonnegative entries dij is called
distance matrix if dii = 0 for all 1 ≤ i ≤ N and√

dij ≤
√
dik +

√
dkj for 1 ≤ i, j ≤ N.

We write D ∈ DM.

Obviously, EDM ⊆ DM.

Note the following relation between the Euclidean distance and the scalar product, see
also Eq. (5),

d2
E(yi, yj) = 〈yi, yi〉︸ ︷︷ ︸

Gii

−2 〈yi, yj〉︸ ︷︷ ︸
Gij

+ 〈yj , yj〉︸ ︷︷ ︸
Gjj

.

The other matrix we look at is the Gram matrix G, where

Gij = (Y TY )ij = 〈yi, yj〉.

Like in PCA we aim for centered data, which we can achieve with the centering matrix

H = I − 1
N
1N ,

where 1N = 1N1TN is the matrix of all ones. With

Y c = Y −
( 1
N
Y 1N

)
1TN = Y H,

we get the centered data Y c since we subtract the mean. For the corresponding centered
Gram matrix Gc we get

Gc = (Y c)TY c = HTY TY H = HGH.

Theorem 2.6. For the Euclidean distance matrix D and the centered Gram matrix
Gc of a data set Y it holds

Gc = −1
2HDH

Proof. straightforward calculation

Lemma 2.7. Assume that the matrix D =
[
d2
ij

]N
i,j=1

∈ EDM and let Gc = −1
2HDH.

If the rank of Gc is r, then there is a r-dimensional centered configuration Y =
{y1, . . . , yN} ∈ Rr such that dE(yi, yj) = dij.
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Proof. Since D ∈ EDM there exists z = {z1, . . . , zN} ⊂ Rd such that d2
ij = d2

E(zi, zj).
Gc is the centered Gram matrix of that data set and therefore positive semidefinite. The
rank is r, therefore we have Gc = Y TY with a centered r × N data matrix Y . The
centered data satisfies d2

ij = d2
E(yi, yj).

We call r the intrinsic configuration dimension and the centered configuration Y is the
exact configuration of D.

classical multidimensional scaling (CMDS) Instead of the exact configuration we now
look for lower dimensional data sets X ⊂ Rp, p� r, which approximately preserve the
distance. Formally,

X = arg min
X∈Rp×N

N∑
i=1

∣∣∣d2
ij − d2

E(xi, xj)
∣∣∣ , (36)

such that X = T (Y ), with T an orthogonal projection from Rr to a p-dimensional
subspace Sp ⊂ Rr, and Y is an exact configuration.

Lemma 2.8. Let Z ⊂ Rr be a given data set with DZ =
[
d2
E(zi, zj)

]N
i,j=1 and let

GcZ = −1
2HDZH. Then

tr(GcZ) = 1
2N

N∑
i,j=1

d2
E(zi, zj).

Proof. Straightforward calculation, i.e. write out GcZ = −1
2HDZH and look at the

diagonal.

Lemma 2.9. Let DZ = [dE(zi, zj)]Ni,j=1, ZH =: Ẑ = [ẑ1, . . . , ẑN ]. Then

‖Ẑ‖F = 1√
2N
‖DZ‖F .

Proof. With ‖DZ‖2F = ∑N
i,j=1 d

2
ij and

‖Ẑ‖2F = tr
(
ẐT Ẑ

)
= tr(GcZ),

the result follows with Lemma 2.8.
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Theorem 2.10. Let Y ⊂ Rr be the exact configuration of D ∈ EDM. The SVD of Y
is given by Y = UΣV T , Σ = diag(σ1, . . . , σr). For a given p ≤ r let Up = [u1, . . . , up].
Then

X = UT
p Y

is a solution of the CMDS minimization problem Eq. (36) with an error of

2N ·
r∑

i=p+1
σ2
i .

Proof. Let Sp be a p-dimensional subspace of Rr and B an r × p orthogonal matrix,
whose columns form an orthonormal basis of Sp. We have T (y) = BBTy for y ∈ Rr. We
observe using BTB = I (i.e. ‖Bx‖ = ‖x‖) that

dE(Tyi, T yj) = ‖T (yi − yj)‖ = ‖BT (yi − yj)‖ = dE(BTyi, B
Tyj).

With ‖yi − yj‖ ≥ ‖T (yi − yj)‖ we get for the objective function

N∑
i,j=1

d2
E(yi, yj)− d2

E(BTyi, B
Tyj) =

N∑
i,j=1
〈yi − yj , yi − yj〉

+ 〈BT (yi − yj), BT (yi − yj)〉
− 2〈BBT (yi − yj), yi − yj〉.

For this transformation we used 〈BTy,BTy〉 = 〈BBTy, y〉 and performed a zero addition.

=
N∑

i,j=1
‖(I −BBT )(yi − yj)‖2

= ‖DZ‖2F

with Z = (I −BBT )Y .

Now, Lemma 2.9 gives

‖DZ‖2F = 2N‖ZH‖2F

Since Y is centered, therefore Z is too, and we get
= 2N‖Z‖2F .

Therefore we have to solve

arg min
B∈Rr×p with BTB=Id

‖Y −BBTY ‖F
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2. Dimensionality reduction

We have to find a matrix of rank r which minimizes this expression, we can use the
Schmidt-Eckart-Young Theorem A.2 for the SVD. The best one is UpΣpV

T
p so setting

B = Up gives
UpU

T
p UpΣpV

T
p = UpΣpV

T
p

and X = UT
p Y . The error estimate follows from the truncated SVD error estimate and

Lemma 2.9.

Note that CMDS and PCA give for centered data the same result. Observe, that we
aimed to use distances, but have Y in the theorem, i.e. in case we only know the distances
we cannot proceed. But we can use the Gram matrix instead. We take Y TY and observe
with the PCA ansatz Y = WX:

Gc = Y TY = (WX)TWX = XTW TWX = XTX.

Take the eigenvalue decomposition of

Gc = V ΛV T = (V Λ
1
2 )(Λ

1
2V T ) = (Λ

1
2V T )T (Λ

1
2V T ).

Taking the top eigenvalues gives

XCMDS = Ip×NΛ
1
2V T .

For centered data Y we use Y = UΣV T and get for the PCA

XPCA = Ip×dU
TY

= Ip×dU
TUΣV T = Ip×dΣV T

= Ip×N (ΣTΣ)
1
2V T

= Ip×NΛ
1
2V T = XCMDS .

Here, we used that the right singular vectors of Y are the eigenvectors of Y TY with √σi
the corresponding eigenvalues.

Therefore, one has the options of

SVD of Y (d×N) (reconstruct Y )
EVD of Y Y T (d× d) (maximal variance)
EVD of Y TY (N ×N) (preserving similarity)

Depending on d and N one should choose the computationally cheapest option. SVD
is the more robust algorithm, but the eigenvalue decomposition is often cheaper to
compute.
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2. Dimensionality reduction

CMDS Algorithm
Given: Euclidean distance matrix D, embedding dimension p
Output: embedding X in p dimensions

G = −1
2HDH

[Vp,Λp] = EVD(G, p)
return Λ

1
2
p V T

Generalizations of CMDS consist in

• using weights in ∑N
i,j=1wij(dij − dE(xi, xj))2. One way is to use wij = 1

dij
, which

gives Sammon’s nonlinear mapping.

• So far we considered metric multidimensional scaling (MDS). In non-metric MDS
ordinal information or proximity measures are used instead of dij .

See [BG05] for more on metric and non-metric MDS.

2.2. Nonlinear dimensionality reduction

The main idea of nonlinear dimensionality reduction is to consider manifolds instead of
just linear subspaces. In particular Riemannian manifolds (M, g) and the corresponding
inner product on TpM , see Appendix B for the underlying basic differential geometry.
We are in particular interested in the geodesic distance, the length of the shortest curve
on M connecting two points x, y ∈M , which we denote by dM (x, y). We aim to preserve
geodesic distances, but we do know neither M nor dM . To approximate the geodesic
distance given a data set Y ⊂M we arrange the data using an undirected neighbourhood
graph [Y,E] obtained in a suitable way, see Appendix C. Using [Y,E] we compute the
graph distance as an approximation of dM .
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2. Dimensionality reduction

Definition 2.11. Given a graph [Y,E] for a data set Y ⊂ Rd, such that (yi, yj) ∈ E
if and only if yi and yj are “adjacent”. We define the graph distance dG between two
points yi, yj ∈ Y by

1. If (yi, yj) ∈ E then
dG(yi, yj) = dE(yi, yj)

.

2. If (yi, yj) /∈ E let

Γ := {γ | γ = (γ0, . . . , γs+1), γi ∈ Y, γ0 = yi, γs+1 = yj} .

Then
dG(yi, yj) := min

γ∈Γ

∑
γi∈γ,γi 6=γs+1

dE(γi, γi+1).

x y

Figure 2.3.: The distance functions dE shown in green and dG shown in red between two
points x and y. The dashed line symbolizes the geodesic distance dM .

2.2.1. Isomap

With that, we can formulate the Isomap approach introduced by [TSL00].

We assume Y ⊂ M ⊆ Rd and an isometric mapping f : M → Rp exists, f(y) = x for
y ∈M ,

dE(f(yi), f(yj)) = dM (yi, yj) yi, yj ∈M.

Assuming Y is sampled densely enough from M we expect that

dG(yi, yj) ≈ dM (yi, yj),
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2. Dimensionality reduction

i.e. the graph distance matrix DG =
[
d2
G(yi, yj)

]N
i,j=1 is a good approximation to the

geodesic distance matrix DM . So we aim for a D ∈ EDM with a configuration X ⊂ Rp
such that

DG ≈ D =
[
d2
E(xi, xj)

]N
i,j=1

.

Following the CMDS approach, we double center DG, obtain Gc = −1
2HDGH and

compute the EVD of Gc.

Isomap Algorithm
Given: data set Y
Output: data set embedding X in p dimensions

Build a neighbourhood graph [Y,E] using k-Nearest Neighbour (k-NN),
ε-neighbourhood or other suitable procedures giving undirected graphs.
Dij = d2

G(yi, yj), i, j = 1, . . . , N using Dijkstra’s algorithm.
G = −1

2HDH
[Vp,Λp] = EVD(G, p)
return Λ

1
2
p V T

p

Assuming DG ∈ EDM we can invoke Theorem 2.10. We get

N∑
i,j=1

∣∣∣d2
G(yi, yj)− d2

E(xi, xj)
∣∣∣ ≤ 2N

N∑
`=p+1

λ`.

Remark. When the data Y is not sampled densely enough from M , DG might not be a
good approximation of DM . In particular DG might not be an EDM and G might not
be positive semidefinite. Computationally one could apply a constant shift technique to
make it positive semidefinite, but in a certain sense, this is done implicitly, as we will see
later.

We will now analyse the approximation property of the graph distance in regard to the
the intrinsic geodesic distance. For the analysis we will use r-ball graphs, i.e.

(yi, yj) ∈ E if and only if dE(yi, yj) ≤ r.

Further, we use the Hausdorff-distance between Y and M :

ε = H(M |Y ) := sup
y∈M

min
yi∈Y

dE(y − yi).
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2. Dimensionality reduction

Theorem 2.12. Consider M ⊂ Rd compact and a sample Y = y1, . . . , yN ⊂M and
let ε = H(M |Y ). For r > 0 form the corresponding r-ball graph. When ε ≤ r/4, we
have for any x, z ∈ Y

dg(x, y) ≤
(

1 + 4ε
r

)
dM (x, z).

Proof. For dE(x, z) ≤ r we have (x, z) ∈ E and so

dG(x, z) = dE(x, z) ≤ dM (x, z).

Now, dE(x, z) > r. Let a = dM (x, z) and let γ : [0, a] → M be a a parameterized by
arc length such that γ(0) = x and γ(a) = z. Let ŷj = γ(ja/s) for j = 0, . . . , s, where
s := 2a/r ≥ 2, where ŷ0 = x and ŷs = z. Let yij = arg miny∈Y dE(y, ŷj) be the closest
point to ŷj among the sampled data Y . Clearly yi0 = x, yis = z and maxj dE(yij , ŷj) ≤ ε.
For any j ∈ {0, . . . , s− 1}

dE(yij , yij+1) ≤ dE(yij , ŷj) + dE(ŷj , ŷj+1) + dE(ŷj+1, yij+1)
≤ ε+ dM (ŷj , ŷj+1) + ε

= a/s+ 2ε ≤ r/2 + 2ε ≤ r

Therefore, (yi0 , . . . , yij ) forms a path in the r-ball graph. With that, and using ŷ0 =
yi0 = x, ŷs = yis = z,

dG(x, z) ≤
s−1∑
j=0

dE(yij , yij+1)

≤ dM (ŷ0, ŷ1) + ε+
s−2∑
j=1

(dM (ŷj , ŷj+1) + 2ε) + dM (ŷs−1, ŷs) + ε

= dM (x, z) + 2(s− 1)ε

≤
(

1 + 4ε
r

)
dM (x, z),

where we use that s− 1 ≤ 2a/r with a = dM (x, z).

Remark. It is possible to tighten the bound in the special case where M is convex. In
that case, a refinement of the arguments above leads to an error term of

(
ε
r

)2 [AJP18].

To show a result in the other direction, we need a general concept of curvature. Assuming
a curve γ is twice differentiable at t, its curvature at t is defined as

curv(γ, t) := ‖γ̇(t)‖ ∧ ‖γ̈(t)‖
‖γ̇(t)‖ .

Now, γ has a curvature bounded by κ if and only if supt curv(γ, t) ≤ κ.
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2. Dimensionality reduction

Lemma 2.13. Let γ : [0, a]→ Rd be a unit-speed curve with curvature bounded by κ.
Then

dE(γ(s), γ(t)) ≥ 2
κ

sin
(
κ
|t− s|

2

)
for all s, t ∈ [0, a] such that |t− s| ≤ π/κ.

Proof. The full, somewhat technical, proof is in [Ber+00]. Following [AL19], we show
a slightly weaker bound. For that, let c denote a unit-speed parametrization of a circle
of radius 1/κ. From the classical work of [Dub57], we obtain for |s− a| ≤ π/κ

〈γ̇(s), γ̇(u)〉 ≥ 〈ċ(s), ċ(u)〉.

This leads to, using ‖γ̇(s)‖ = 1 in the first line,

‖γ(t) = γ(s)‖ ≥ 〈γ̇(s), γ(t)− γ(s)

=
∫ t

s
〈γ̇(s), γ̇(u)〉du

≥
∫ t

s
〈ċ(s), ċ(u)〉du

= 〈ċ(s), c(t)− c(s)〉

= 1
κ

sin(κ(t− s))

when 0 ≤ t− s ≤ π/κ.

Properties of M We now assume

1. M ⊂ Rd is a compact and connected C2-manifold

2. M ⊂ Rd has empty or C2-boundary

In particular, shortest paths on M have curvature bounded by some κ, see [AL19] for
generalized properties.
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2. Dimensionality reduction

Lemma 2.14. SupposeM ⊂ Rd has the above two properties. Then, for any x, z ∈M
such that dM (x, z) ≤ π/κ

dM (x, z) max
(

2
π
, 1− κ2

24dM (x, z)2
)
≤ dE(x, z) ≤ dM (x, z) (37)

Moreover, there is τ > 0 depending on M , such that for all x, z ∈M with dE(x, z) ≤ τ
it holds

dE(x, z) ≤ dM (x, z) ≤ dE(x, z) min
(
π

2 , 1 + c0κ
2dE(x, z)2

)
, (38)

where c0 is a constant that can be taken to be c0 = π2/50.

Remark. τ can be specified in terms of the so-called reach of M . The reach of a subset
A in some Euclidean space is the supremum over t ≥ 0 such that for any point x at
distance at most t from A, there is a unique point among those belonging to A that is
closest to x, i.e., it is a unique nearest point property. When A is a C2-manifold, its
reach is known to be bound by its radius of curvature from below [Fed59].

Theorem 2.15. Suppose M ⊂ Rd has the above two properties. Consider a sample
Y = {y1, . . . , yN} ⊂M . For r > 0, form the corresponding r-ball graph. Let c0 and τ
be defined per Lemma 2.14. When r ≤ τ and κr ≤ 1/3 we have

dM (x, z) ≤ (1 + c0κ
2r2)dG(z, z) ∀x, z ∈ Y.

Proof. Fix x, z ∈ Y . Let x = yi0 , yi1 , . . . , yis = z define a shortest path in the graph
joining x and z, so that

dM (x, z) =
s−1∑
j=0

∆j , where ∆j = dE(yij , yij+1).

Define a = dM (x, z) and aj = dM (yij , yij+1) for j = 0, . . . , s− 1. Since ∆j ≤ r ≤ τ , by
Lemma 2.14 we get

∆j min
(
π

2 , 1 + c0κ
2∆2

j

)
≥ aj .

By assumption, κr ≤ 1/3, and this can be seen to imply 1 + c0κ
2r2 ≤ π/2, which then

implies that aj ≤ ∆j + c0κ
2∆3

j .
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2. Dimensionality reduction

We thus have

a ≤
s−1∑
j=0

aj ≤
s−1∑
j=0

(
∆j + c0κ

2∆3
j

)

≤
s−1∑
j=0

∆j

(
1 + c0κ

2r2
)

= (1 + c0κ
2r2)dG(x, z).

Remark. Therefore we have bounded dM and dG in both directions. We can achieve for
some ξ < 1:

1− ξ ≤ dg(yi, yj)
dM (yi, yj)

≤ 1 + ξ. (39)

Remark. One can show that with high probability the conditions are fulfilled if there is
a sufficiently high density of points. This holds for both r-ball graphs and k-NN graph
constructions [Ber+00].

In practice though, shortcuts can be a problem. Consider a noisy Swiss roll, which is
only sparely sampled: In this situation k-NN and r-ball graphs can connect to the next
layer and thus the approximation could take a shortcut between the layers of the spiral,
whereas the geodesic distance would have to traverse the spiral yielding a much longer
path.

2.2.2. Perturbation Analysis

Theorem 2.16. Consider two tall matrices X and Y in RN×d, with X having full
rank. Set ε2 = ‖Y Y > −XX>‖p. If ‖X‡‖ε ≤ 1√

2 , then

min
Q∈O
‖Y −XQ‖p ≤ (1 +

√
2)‖X‡‖ε2. (40)

Proof. See [AJP20].

Corollary 2.17. Let D, D̃ ∈ RN×N denote two Euclidean distance matrices, with D
corresponding to a centered, exact configuration Y ∈ RN×d. Set ε2 = 1

2‖H(D̃−D)H‖p.
If it holds that ‖Y ‡‖ε ≤ 1√

2 , then MDS with input distance matrix D̃ and dimension d
returns a centered configuration Z ∈ Rm×d satisfying

min
Q∈O
‖Z − Y Q‖p ≤

(
1 +
√

2
)
‖Y ‡‖ε2. (41)
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(a) data points and r-ball graph (b) exact embedding

(c) Returned locations by Isomap

Figure 2.4.: Schematic representation of exact locations yi ∈ Rd, data points xi ∈ M ,
returned locations by Isomap zi ∈ Rd. Note that gij = ‖yi − yj‖ is the
geodesic distance between xi and xj because {yi}ni=1 is an exact isometric
embedding of data points {xi}ni=1. Also the distances γij are computed as
shortest path distances between xi and xj on the r-ball neighborhood graph.

Proof. We have
‖D̃c −Dc = 1

2‖H(Dc −Dc)H‖p = ε2.

Due to the connection to the Gram matrix we know that D̃c and Dc are are positive
semi-definite and of rank at most d. Since Y is of rank d, we have rank d for Dc. Observe
Dc = Y · Y T and D̃c = Z · ZT , the results follows from Theorem 2.16.

Note that ε2 ≤ 1
2d

2/p‖D̃ −D‖p, after using that ‖H‖p = (d− 1)1/p since H has one zero
eigenvalue and d− 1 eigenvalues equal to one.

For a centered point set y1, . . . , yN ∈ Rd, stored in the matrix Y = [y1 · · · yN ]> ∈ RN×d,
we define its radius as the largest standard deviation along any direction in space (therefore
corresponding to the square root of the top eigenvalue of the covariance matrix). We
denote this by ρ(Y ) and note that

ρ(Y ) = σ1(Y )/
√
N. (42)
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We define its half-width as the smallest standard deviation along any direction in space
(therefore corresponding to the square root of the bottom eigenvalue of the covariance
matrix). We denote this by ω(Y ) and note that it is strictly positive if and only if the
point set spans the whole space, in which case

ω(Y ) = σd(Y )/
√
N. (43)

Note that we know that the half-width quantifies the best affine approximation to the
point set:

ω(Y )2 = min
L

1
N

∑
i∈[m]

‖yi − PLyi‖2, (44)

where the minimum is over all affine hyperplanes L, and for a subspace L, PL denotes
the orthogonal projection onto L.

Further, we call ρ(Y )/ω(Y ) = ‖Y ‖‖Y ‡‖ the aspect ratio of the point set.

Corollary 2.18. Consider a centered point set y1, . . . , yN ∈ Rd with radius ρ, and
with half-width ω, and with pairwise dissimilarities dij = ‖yi− yj‖2. Consider another
set of numbers {λij} and set η4 = 1

N2
∑
i,j(λij − dij)2. If η/ω ≤ 1√

2 , then MDS with
inputs {λij} and dimension d returns a point set z1 · · · zN ∈ Rd satisfying

min
Q∈O

( 1
N

N∑
i

‖zi −Qyi‖2
)1/2

≤
√
d(ρ/ω + 2)

ω
η2 ≤ 3

√
dρ η2

ω2 . (45)

Proof. See [AJP20].

Corollary 2.19. Let x1, . . . , xN ∈ Rd denote a possible (exact and centered) embed-
ding of the data points y1, . . . , yN ∈M , preserving the geodesic distance dM of the yi.
Assume for some ξ < 1:

1− ξ ≤ dg(yi, yj)
dM (yi, yj)

≤ 1 + ξ. (46)

Let ρ and ω denote the max-radius and half-width of the embedded points, respectively.
If ξ ≤ 1

24(ρ/ω)−2, then Isomap returns z1, . . . , zN ∈ Rd satisfying

min
Q∈O

( 1
n

∑
i∈[n]
‖zi −Qxi‖2

)1/2
≤ 36

√
dρ3

ω2 ξ. (47)
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Proof. Follows from Corollary 2.18 using Eq. (46) and

η2 ≤ max
j,k
|d2
g(yj , yk)− d2

M (yj , yk)|

≤ max
j,k

(2ξ + ξ2) d2
M (yj , yk)

≤ (2ξ + ξ2)(2ρ)2 ≤ 12ρ2ξ.

η fulfills the condition of Corollary 2.18, which we apply and simplify afterwards to obtain
the result.

2.2.3. Nonlinear PCA and Kernel MDS

With Isomap we have seen one generalization of CMDS, where we used a different distance
in the original space. Another generalization stems from a kernel view, i.e. a replacing
scalar products by so-called kernels. Here we follow the original derivation from [SSM98],
which is based on a normal PCA via a detour into higher dimensions using a nonlinear
function, i.e. a feature map.

We take the covariance view with its empirical estimate

C := 1
N
Y Y T = 1

N

N∑
i=1

yiy
T
i .

Using a feature map, p� d:

φ : Rd → Rp =: F ,
y 7→ φ(y)

we go into into the (higher dimensional) feature space F , which is a Hilbert space. Note
that one can also generalize to infinite dimensional Hilbert spaces.

For simplicity we assume to have centered data in the feature space, i.e.
N∑
i=1

φ(yi) = 0.

Now, we perform a PCA in F by using the empirical mean

Cφ := 1
N

N∑
i=1

φ(yi)φ(yi)T = 1
N
φ(Y )︸ ︷︷ ︸
=:Φ

φ(Y )T = 1
N

ΦΦT ,

and compute the eigenvectors ui ∈ Rp of the covariance matrix Cφ:

Cφui = λiui i = 1, 2, . . . , p
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and by Theorem 2.3 the nonlinear principal components are

xi = uTi Φ.

We call this nonlinear PCA.

Whereas one searches for the best linear subspace with PCA, nonlinear PCA (or feature
space PCA) transforms nonlinear data using a feature map φ and then searches for
the best linear subspace in the feature space F . Note that while the contour lines of
constant projections on the principal components are straight lines orthogonal to the
linear subspace, but the corresponding contour lines for the source data don’t have to be
straight lines.

Figure 2.5.: Classical linear PCA

In some practical situations, good candidates for φ can be found from the nature of the
problem. Generally φ is not known beforehand and difficult to obtain.

We now use the connection between PCA to MDS here, in particular if p is large. So, we
compute the EVD of ΦTΦ which has the same eigenvalues as ΦΦT . This implies that
the number of nonzero eigenvalues is min(p,N). Here, we observe that every eigenvector
u ∈ Rp of ΦΦT associated with a nonzero eigenvalue is in the span of Φ:

ΦΦTu = λu ⇔ u = Φ
(
λ−1ΦTu

)
∈ range(Φ), λ 6= 0.

Now, let v = λ−1ΦTu ∈ RN and let u be normalized, we have

‖v‖2 = λ−2uT ΦΦTu︸ ︷︷ ︸
λu

= λ−1 ‖u‖2︸ ︷︷ ︸
=1, since normalized

= λ−1
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Φ

Figure 2.6.: Non-linear PCA

and
ΦTΦv = λ−1ΦT ΦΦTu︸ ︷︷ ︸

λu

= ΦTu = λv.

v is an eigenvector of ΦTΦ with the same eigenvalue. Once we compute vi with an EVD
of ΦTΦ as V̂ ΛV̂ T , where the v̂i are normalized to 1, we have to normalize

vi = λ−
1
2 v̂i,

so that ‖vi‖2 = λ−1. We obtain ui in the feature space as

ui = Φvi = λ−
1
2 Φv̂i

and compute the nonlinear principal components, using the freshly derived relation
UT = V TΦT

X = V TΦTΦ = Λ−
1
2 V̂ TΦTΦ = Λ−

1
2 V̂ T V̂ ΛV̂ T = Λ

1
2 V̂ T .

As before, one can calculate xi by

xi = V TΦTφ(yi).

We now kernelize this, i.e. instead of the Gram matrix ΦTΦ we use the kernel matrix

Kij = 〈φ(yi), φ(yj)〉F =: K(yi, yj).

We now can start with a kernel to begin with.
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A projection of a point y with image φ(y) now goes accordingly.

x = V TΦTφ(y)

=
N∑
i=1

vi〈φ(yi), φ(y)〉F

=
N∑
i=1

viK(yi, y)

This kernelized form we call kernel MDS, usually kernel PCA is used in the literature.
Using kernels, the nonlinear PCA is performed only implicitly, i.e., φ is not used directly,
instead only the kernel is employed. But, for a given kernel there is unique feature map,
so kernelizing is loosing interpretation power in the sense of the feature space.

If we want to consider non-centered data we need to center it

φ̃(yi) := φ(yi)−
1
N

N∑
i=1

φ(yi)

and then do
K̃ij = 〈φ̃(yi), φ̃(yi)〉.

We can perform the centering as we did before Theorem 2.6:

Φ̃(Y ) = Φc(Y ) = Φ(Y )−
( 1
N

Φ(Y )1
)
1T = Φ(Y )H.

The action of H goes through the scalar product so

K̃ = Kc = HKH.

Remark. Considering cpsd kernels, see Appendix ??, we can connect this to distance
matrices

dCS = k(yi, yi)− 2k(yi, yj) + k(yj , yj)

or in matrix form
D = diag(K)1T − 2K + 1 diag(K)T .

2.2.4. Maximum variance unfolding

Kernel MDS using “just some” kernel is at first actually increasing the dimension. For
example the Gaussian kernel results in a matrix with full rank N as seen in Chapter 1. In
order to fully reconstruct the distance we need N − 1 eigenvalues of the centered kernel
matrix, but also the decay of the eigenvalues is in this form not that strong.
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Maximum variance unfolding (MVU) The idea behind maximum variance unfolding is
to learn a kernel matrix, which does have good and useful properties. What are these?

1. The matrix should be symmetric positive semidefinite, so that it is a matrix of
scalar products. Such matrices form a cone, so one has a convex domain to optimize
over. One aims for K ∈ EDM.

2. We want centered data, so we look for a centered matrix K = HKH.

3. We want to preserve distances. For maximum variance unfolding the motivation is
to enforce this only locally

dE(φ(yi), φ(yj)) = dE(yi, yj)
for yi, yj which are nearby, e.g. if (yi, yj) ∈ E in a k-NN or ε-neighbourhood graph
built using the Euclidean distance.

4. We maximize the variance in the feature space by maximizing the pairwise squared
distances for yi, yj ∈ Y with (yi, yj) /∈ E, i.e. data points further apart. From
Lemma 2.8 we know that

1
2N

N∑
i,j=1

d2
E(zi, zj) = tr (GcZ) .

So we maximize the trace of GcZ = K.

Definition 2.20. Given a data set Y and a neighbourhood graph [Y,E]. The solution
of

max
K∈symmetric positive semidefinite

tr(K) s.t.
N∑

i,j=1
Kij = 0

and if (yi, yj) ∈ E, we have

d2
E(yi, yj) = Kii − 2Kij +Kjj

is called the maximum variance unfolding (MVU) kernel matrix K.

Remark. One can formulate this problem as preserving the local geometry for each
point yi by dE(xj , xk) ≈ dE(yj , yk), where yj , yk are in the neighbourhood of yi, e.g.
(yi, yj) ∈ E, or (yi, yk) ∈ E.

As seen, we can write the MVU problem as

max
D∈EDM

N∑
i,j=1

Dij

s.t. Dij = d2
E(yi, yj) if (yi, yj) ∈ E
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This allows us to connect the MVU problem to distance matrix approximations.

Theorem 2.21. Let C ⊂ DM and [Y,E] be a weighted graph with weights dw. If the
graph is connected, the following constrained optimization problems are equivalent:

i)

max
D∈C

N∑
i,j=1

Dij

such that
Dij = d2

w(yi, yj) if (yi, yj) ∈ E

ii)

min
D∈C

9D −DG91 := min
D∈C

N∑
i,j=1

∣∣∣Dij −DG
ij

∣∣∣
such that

Dij = d2
w(yi, yj) if (yi, yj) ∈ E,

where DG
ij = d2

G(yi, yj) is the squared graph distance matrix for the edge weights
dw.

Proof. Let D ∈ C, then for all 1 ≤ i, j ≤ N and paths γ in [Y,E] connecting yi = γ0
and yj = γs+1 the triangle inequality implies√

Dij ≤
s∑

k=0

√
Dγkγk+1

=
s∑

k=0

√
d2
w(γk, γk+1)

= ‖γ‖ =: `.

In particular, this holds for the shortest path between yi and yj , i.e. Dij ≤ d2
G(yi, yj) for

all 1 ≤ i, j ≤ N . This gives
N∑

i,j=1
Dij −

N∑
i,j=1

DG
ij︸ ︷︷ ︸

=constant

=
N∑

i,j=1

(
Dij −DG

ij

)

= −
N∑

i,j=1

∣∣∣Dij −DG
ij

∣∣∣
= − 9D −DG 91 .

Adding a constant to the objective does not affect contour lines, so the result follows.
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Corollary 2.22. Let [Y,E] be a weighted graph with weights dw. If [Y,E] is connected,
then DG is the unique solution of

max
D∈DM

N∑
i,j=1

Dij

s.t. Dij = d2
w(yi, yj)

This shows, that the shortest path problem on a graph shows is equivalent to a (non-
Euclidean) variant of MVU.

Corollary 2.23. Let [Y,E] be a connected, weighted graph with weights dE(yi, yj).
Then

1. If DG ∈ EDM, then DG is the unique solution of the MVU problem from
Definition 2.20.

2. The problem from Definition 2.20 is equivalent to

min
D∈EDM

9D −DG91

s.t. Dij = d2
E(yi, yj) if (yi, yj) ∈ E

In general DG /∈ EDM, even if DM ∈ EDM for all data samples. If DG is arbitrarily
close to DM in the sense of ?? it still does no imply DG ∈ EDM. Since for the purpose of
MDS we want an EDM approximation, the employed EDM-constraint is useful. Thereby
we can consider MVU as a regularized shortest path problem.

Note that MVU was originally motivated by preserving local distances only, while
maximizing the variance in the feature space for non-locally connected data points. But
we see, that global distances in the form of graph distances as an approximation to
geodesic distances are used implicitly.

Remark. Note that one can also put Isomap in this framework, it is implicitly using the
best EDM to DG in the sense of

min
D∈EDM

‖H(D −DG)H‖F .

We now want to show an asymptotic result for MVU, for which first we need a technical
lemma and some notation.

We denote for a set S by RS the set of real-valued functions on S. The restriction of a
function f ∈ RS to a subset S̃ of S is denoted by f |S̃ .
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Lemma 2.24. Let S be a set, S̃ ⊂ S, C ⊂ RS̃, f ∈ RS and f̃ ∈ RS̃. Let ‖ · ‖ be a
norm on RS̃ and c, ε ≥ 0. If

‖f̃ − f |S̃‖ ≤ cε (48)

and
(1− ε)f |S̃ ∈ C (49)

then ∥∥∥f̂ − f |S̃∥∥∥ ≤ (2c+ ‖f |S̃‖
)
ε ∀f̂ ∈ arg min

f̄∈C
‖f̄ − f̃‖

Proof.

‖f̂ − f |S̃‖ ≤ ‖f̂ − f̃‖+ ‖f̃ − f |S̃‖
Eq. (49)
≤ ‖(1 + ε)f |S̃ − f̃‖+ ‖f̃ − f |S̃‖
≤ ε‖f |S̃‖+ 2‖f̃ − f |S̃‖

Eq. (48)
≤ (‖f |S̃‖+ 2c)ε

This proves what was to be shown.

Theorem 2.25. Let [Y,E] be a given connected graph, Y ⊂M where M is a convex
and compact manifold. For the graph distance matrix DG = [d2

G(yi, yj)]Ni,j=1 we assume
it holds for some ε > 0 that

(1− ε)d2
M (yi, yj) ≤ d2

G(yi, yj) ≤ (1 + ε)d2
M (yi, yj).

Then any solution D of the MVU problem from Definition 2.20 satisfies (with DM =
[d2
M (yi, yj)]Ni,j=1)

9D −DM91 ≤ 3 9DM91 ≤ 3(n diam(M))2ε,

where diam(M) = supx,y∈M dM (x, y).

Proof. We use Lemma 2.24 with

• S := M ×M , S̃ := Y × Y ,

• C :=
{
f̃ ∈ RS̃

∣∣∣∣ [f̃(yi, yj)
]N
i,j=1

∈ EDM
}
,

• f := d2
M (·, ·), f̃(yi, yj) = d2

G(yi, yj),

• ‖x‖ = 9[x(yi, yj)]Ni,j=191,
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• c := 9DM91.

For the condition Eq. (48) of Lemma 2.24:∥∥∥f̃ − f |S̃∥∥∥ = 9DG −DM91

=
N∑

i,j=1

∣∣∣d2
G(yi, yj)− d2

M (yi, yj)
∣∣∣

per assumption
≤

N∑
i,j=1

εd2
M (yi, yj)

= ε9DM91︸ ︷︷ ︸
c

For the condition Eq. (49) we observe DM ∈ EDM. Since EDM is a cone, it follows that
(1− ε)DM ∈ EDM so Eq. (49) holds. Lemma 2.24 then implies∥∥∥f̂ − f |S̃∥∥∥ ≤ (2c+

∥∥f |S̃∥∥) ε = 3 9DM 9 ε ∀f̂ ∈ arg min
f̄∈C

∥∥∥f̄ − f̃∥∥∥
Therefore

9D −DM91 ≤ 3 9DM 91 ε

Additionally, we observe

9DM91 =
N∑

i,j=1
d2
M (yi, yj)

≤ n2 max
1≤i,j≤N

d2
M (yi, yj)

≤ (n diam(M))2.

This proves the theorem.

In the context of the perturbation analysis, one can write this as

9|D −DM |91 ≤ 3ρ2N2ξ, (50)

with ξ small enough.

Corollary 2.26. In the same context as in Corollary 2.19, if instead

ξ ≤ (12
√

3)−1(ρ/ω)−2,

then Maximum Variance Unfolding returns z1, . . . , zN ∈ Rd satisfying

min
Q∈O

( 1
N

N∑
i=1
‖zi −Qyi‖2

)1/2
≤ 18

√
dρ3

ω2 ξ. (51)
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Proof. As in Corollary 2.19 we have

η2 ≤ max
j,k
|d2
g(yj , yk)− d2

M (yj , yk)| ≤ 12ρ2ξ.

Together with Eq. (50) and using Hölder’s inequality we get

‖D −DM‖2 ≤ 9|D −DM | 91/2
∞ 9|D −DM |91/2

1 ≤
√

12ρ
√
ξ
√

3ρN
√
ξ = 6Nρ2ξ.

The conditions of Corollary 2.18 are met under the assumed bound on ξ, from which the
results follows.

MVU Algorithm
Given: data set Y (can be modified to work with distance matrices)
Output: data set embedding in p dimensions

build a neighbourhood graph [Y,E]
use semidefinite programming to solve the MVU problem from Definition 2.20 to
obtain K

[Vp,Λp] = EVD(K, p)
return Λ 1

2V T
p

For P,Q ∈ RN×N symmetric, a semidefinite programming (SDP) problem would be

min
Q positive semidefinite matrix

〈P,Q〉 =
N∑

i,j=1
pijqij

s.t. 〈Ci, Q〉 = bi,

where Ci, 1 ≤ i ≤ N , beN symmetric matrices and b = [b1, . . . , bN ]T ∈ RN . Semidefinite
programming is concerned with solving such semidefinite problems, Appendix D. There
exist good solvers for these types of problems, if the problem size is not too large, i.e. in
our setup a couple of thousand data points.

In MVU we have

P = −I
Ci = Ck,j

bi = Dk,j ,

where the double index (k, j) is 1-1 mapped to the single index i, and the binary matrix
Ci has only non-vanishing entries at (k, k), (j, j), (k, j) and (j, k) if (yj , yk) ∈ E. Under
the MVU setting the SDP has a non-empty feasible set, i.e. has a solution, since the
centering Gram matrix is in the feasible set.
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2.2.5. Spectral Clustering

with W a weight matrix for the graph, i.e.
Wij = 0 if (yi, yj) /∈ E,
Wij ≥ 0 if (yi, yj) ∈ E,

Let us now have a close look at neighbourhood graphs in general. We consider [Y,E] as
an undirected graph, where (yi, yj) ∈ E if the two data points are “nearby”. The weights
we now organize in the weighted adjacency matrix:

W = [wjk]Nj,k=1,

where so far we used a distance measure, i.e. in Isomap, Kernel MDS or MVU. In the
following we focus on a similarity measure instead as edge weigths. One extreme choice
for the weight matrix is the adjacency matrix, i.e. entries 1 or 0. We will see that a
somewhat natural choice is the Gaussian kernel, which in this context is also often called
the heat kernel,

Wij =

exp
(−‖yi−yj‖22

t

)
for (yi, yj) ∈ E,

0 otherwise.

The degree of a vertex yj ∈ Y is

Djj =
N∑
k=1

Wjk,

and the degree matrix is D = diag(d1, dN ).

With that we define L := D − W the unnormalized graph Laplacian. Observe that
self-edges, e.g. diagonal elements of W , do not change L.

Theorem 2.27. The matrix L = D −W satisfies the following properties:

1. For any f ∈ RN it holds

fTLf = 1
2

N∑
i,j=1

wij(fi − fj)2

2. L is symmetric positive semi-definite

3. The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant
one vector 1

4. L has N non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λN
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Proof.
1) we have

fTLf = fTDf − fTWf =
N∑
i=1

f2
i di −

N∑
i,j=1

fifjwij

= 1
2

 N∑
i=1

f2
i di − 2

N∑
i,j=1

fifjwij +
N∑
j=1

f2
j dj


= 1

2

N∑
i,j=1

wij(fi − fj)2

2) D,W are symmetric, therefore L as well, positive semi-definite follows from 1) 3)
obvious from the definition of D via W 4) follows from 1) to 3)

Theorem 2.28. Let [Y,E] be an undirected graph with nonnegative weights. Then
the multiplicity k of the eigenvalue 0 of Lequals the number of connected components
A1, . . . , Ak in the graph. For L the eigenspace of eigenvalue 0 is spanned by the
indicator vectors 1A1 , . . . , 1Ak of these components.

Proof. See e.g. [Lux07].

Motivated by the theorem one can use graph Laplacians for clustering. Clustering aims
to segment data into subsets, the so called clusters. Data objects within each cluster
should be more closely related to one another than objects assigned to different clusters.
The basic and very frequently used clustering algorithm is k-means.

k-means algorithm
Given: data set Y , number of clusters k
Output: k clusters which segment the data

pick randomly k points as cluster centers
do

For each data point determine closest center and assign to it.
For each cluster determine new cluster center by the coordinate-wise average
of all data points assigned to a cluster.

while assignments do change

Spectral clustering is then an approach that uses k-means on the eigendecomposition.
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Spectral clustering algorithm
Given: L or Lrw, number of clusters k
Output: clusters A1, . . . , Ak of indices.

Compute the first k smallest eigenvectors u1, . . . , uk of L or Lrw
U = [u1, . . . , uk]
for i = 1, . . . , N do

yi = i-th row of U /* yi ∈ Rk */
end
Cluster the points {yi}i=1,...,N with the k-means algorithm.
return the result of the k-means algorithm

An explanation of spectral clustering is based on random walks on the similarity graph.
The transition probability pij of jumping in one step from the vertex yi to the vertex yj
is proportional to the (edge) weights wij and is given by

pij := wij
dii

.

The transition matrix P = [pij ]Ni,j=1 of the random walk is thus defined by

P = D−1W.

If the graph is connected and non-bipartite, the random walk always possesses a unique
stationary distribution π = [π1, . . . , πN ]T , where

πi = dii
Vol(Y ) ,

with Vol(Y ) = ∑
dii.

We introduce a normalized graph Laplacian called the called random walk graph Lapla-
cian:

Lrw = D−1L = I −D−1W = I − P

and observe that
Lrwu = λu⇐⇒ Pu = (1− λ)u.

and
Lrwu = λu⇐⇒ Lu = λDu

Theorem 2.28 also hold for Lrw in the same way.

One can express many properties of a graph [Y,E] with P , see e.g. [Lov93].
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Note that a different normalized graph Laplacian is the symmetric one

Lsym = D−1/2LD−1/2 = I −D−1/2WD−1/2.

One can easily see

Lrwu = λu⇐⇒ LsymD
− 1

2u = λD−
1
2u

It can be seen, see [Lux07] for reasoning and references, that the unnormalized graph
Laplacian can lead to “bad” behavior, e.g. no convergence or completely unreliable results.
Therefore one usually prefers the normalized graph Laplacian.

Clustering can be viewed as finding a graph partitioning such that the edges between
different groups have very low weights and edges within a group have large weights. Or
in probability, it is likely that the random walk stays inside a cluster, but unlikely that a
random walk moves between clusters.

There are different ways to measure the quality of a graph partitioning. We use the
so-called normalized cut

Ncut(A1, . . . , Ak) := 1
2

k∑
i=1

W (Ai, Āi)
Vol(Ai)

,

where
W (A,B) =

∑
i∈A
j∈B

Wij

and Ā is the complement of A.

Theorem 2.29. Let [Y,E] be a connected and non-bipartite graph. Assume that we
run the random walk (Xt)t∈N starting with X0 in the stationary distribution π. For
disjoint subsets A,B ⊂ Y we denote

P (B | A) := P (x1 ∈ B | x0 ∈ A) .

Then
Ncut(A, Ā) = 1

2
(
P (Ā | A) + P (A | Ā)

)
.
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Proof.

P (x0 ∈ A, x1 ∈ B) =
∑
i∈A
j∈B

P (x0 = i, x1 = j)

=
∑
i∈A
j∈B

πipij

=
∑
i∈A
j∈B

dii
Vol(Y )

Wij

dii

= 1
Vol(Y )

∑
i∈A
j∈B

Wij .

With this we obtain

P (x1 ∈ B | x0 ∈ A) = P (x0 ∈ A, x1 ∈ B)
P (x0 ∈ A)

=

 1
Vol(Y )

∑
i∈A
j∈B

Wij

(Vol(A)
Vol(Y )

)−1

=

∑
i∈A
j∈B

Wij

Vol(A)

With the definition of Ncut we see

Ncut(A, Ā) = 1
2

(
W (A, Ā)
Vol(A) + W (Ā, A)

Vol(Ā)

)

= 1
2
(
P (Ā | A) + P (A | Ā)

)
.

This was exactly the claim of the theorem.

This tells us, that when minimizing Ncut we look for a cut through the graph, such that
a random walk seldom transitions from A to Ā and vice versa. Spectral clustering can
be seen as an approximation to the graph partitioning problem, see e.g. [Lux07].

Now, one can rewrite the problem of minimizing Ncut as (here for k = 2)

min
A
fTLf subject to fi =


√

Vol(Ā)
Vol(A) if yi ∈ A√
Vol(A)
Vol(Ā) if yi ∈ Ā

.

Df ⊥ 1

fTDf = Vol(Y )
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This leads to a relaxed optimization problem with fi ∈ R:

min
f∈RN

fTLf subject to Df ⊥ 1, fTDf = Vol(Y ).

Substituting g := D1/2f gives

min
g∈RN

gTD−1/2LD−1/2g subject to g ⊥ D1/21, ‖g‖2 = Vol(Y ).

Noticing here Lsym and that D1/21 is the first eigenvalue of it, and Vol(Y ) is constant.
This is in the form of the Rayleigh-Ritz theorem for eigenvalues. Therefore g is given
by the second eigenvector of Lsym and with re-substituting f = D−1/2g we see that f is
the second eigenvector of Lrw or L. This can be generalized to k > 2 clusters using the
trace.

Laplacian Eigenmaps Now, consider a p-dim embedding X of Y , where the wjk are
the similarities for the data Y . Looking at Theorem 2.27 we aim to minimize

1
2

N∑
i,j=1

wij‖xi − xj‖2.

If yj , yk are nearby their similarity weight wjk is large, therefore ‖xj −xk‖ should be kept
small. For wjk small, i.e. yj , yk dissimilar, one does not care much about the distance of
the corresponding xj , xk.

Here a side constraint becomes XTDX = I and in the end one can see to solve for the
first p smallest eigenvalues

LX = DXΛ
ignoring the one with eigenvalue 0.

This gives the approach called Laplacian Eigenmaps [BN03] for

wjk =

exp (−‖yj−yk‖
2
2

4t ) if (yj , yk) ∈ E
0 otherwise

and solving (D −W )X = DXΛ.

This can be interpreted as
x = f(y),

with ‖∇f(y)‖ small, so that points near y will be mapped to points near f(y). Note that
a map that fulfils this one average can be found via

arg min
‖f‖L2(M)=1

∫
M
‖∇f(y)‖2 dy.
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Observing Stokes’ theorem ∫
M
〈X,∇f〉 = −

∫
M

div(X)f,

we obtain ∫
M
‖∇f(y)‖2 dy =

∫
M
L(f)f dy

with L(f) the Laplace-Beltrami operator,

L(f) = −div(grad(f)), f ∈ C2(M).

The connection between L and L can be further analysed [BN08].

2.2.6. Diffusion Maps

We now consider the underlying Markov chain with transition matrix P and look at
different times t. Then the probability of going from yi to yj in t (time) steps is given
by the t-th power P t of P . Looking at P t at different steps will reveal structure of Y at
different scales, as can be seen in Fig. 2.7. The weights specify the local geometry of the
data and capture some geometric feature of interest. The Markov chain defines fast and
slow directions of propagation, based on the weights. As one runs the walk forward, the
local geometry information is propagated and accumulated.

With this view, so-called diffusion difference were defined by [Laf04; CL06]. This metric
measures the similarity of two points as the probability of connecting paths between
them. (

d2
D,t(yi, yj) =

)
D2
t (yi, yj) =

∑
yk∈Y

∣∣∣P tik − P tkj∣∣∣2 .
Here P tik sums the probability of all possible paths of length t between yi and yk. The
diffusion distance is small if there are many high probability paths of length 2t between
two points, where the path probability between yi, yk and yk, yi are roughly equal.
Alternatively, we write P tik = pt(yi, yk), i.e. treat pt as a kernel function. Then yi is close
to yj if the two kernels pt(yi, ·) and pt(yj , ·) are similar, i.e. the two “bumps” around
yi and yj are similar. Since for increasing t the kernels become wider, the points yi,
yj become more close in the diffusion distance Dt. Unlike the geodesic distance, the
diffusion distance is robust to noise and topological shortcuts because it is an average
over all paths connecting two points. See Fig. 2.8 for an illustration.
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Figure 2.7.: Heat diffusion at times t = 8, t = 64 and t = 1024 over a set containing 3
clusters. Points in Y are ordered so that the first 300 roughly correspond to
the first cluster, the next 300 are in the second c luster and the last 300 in the
third cluster. A graph is built with Gaussian weights and the corresponding
random walk matrix P is formed. The left column represents the set, and
the color encodes the intensity of diffusion from a fixed given point, that is,
it corresponds to a given row of the corresponding power of P . The right
column is a plot of the transition matrices P 8, P 64 and P 1024. At t = 8, the
set appears to be made of 3 distinct clusters. At t = 64, the two closest
clusters have merged, and the data set is made of 2 clusters. Last, at t = 1024,
all clusters have merged. Note also that P 1024 appears to be (numerically)
of rank one, as we have the approximate equality p1024(x, y) ≈ π(y) for all
x and y. This example illustrates, that the very notion of a cluster from a
random walk point of view is a region in which the probability of escaping
this region is low. This simple illustration also emphasizes the fact that, in
addition to being the time parameter, t plays the role of a scale parameter.
Taken form Diffusion Maps by [CL06].
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connected by a lot of paths and therefore are close. On the contrary, because of the presence
of a bottleneck, points A and B are connected by relatively few paths, making these points
very distant from each other. The di�usion distance is therefore able to separate the two
disks.
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Figure 2.3: Unlike the geodesic distance, the di�usion metric Dm is robust to short circuits.
In the example above, points B and C are connected by a lot of paths and therefore are
close in the sense of Dm. On the contrary, because of the presence of a bottleneck, points
A and B are connected by relatively few paths, making these points very distant from each
other.

In addition to being a distance between points of the set, Dm is also a distance between
the bumps mentioned in section 2.2.2. Indeed, D2m(x, y) is the Euclidean distance between
the columns of indices x and y in the matrix a(m). In other words,

D2
2m(x, y) =

∫

Γ
|a(m)(x, z)− a(m)(y, z)|2dµ(z) = ‖a(m)(x, ·)− a(m)(y, ·)‖2 .

A remarkable fact is that this complex quantity can be simply measured in the embedding
space l2(N):
Proposition 3. We have:

D2
m(x, y) =

∑

j≥0

λm
j (φj(x)− φj(y))2 .

In other words, the di�usion metric can be computed as a weighted Euclidean distance in the
embedding space, the weights being λm

0 , λm
1 , ... As a corollary, in l2(N) the di�usion balls are

ellipsoids whose axes are parallel to the coordinate axes, with lengths given by the powers of
the eigenvalues.

By the weighted Euclidean distance with weights (wi) we mean that

‖(ui)− (vi)‖2 =
∑

i

wi(ui − vi)2 .

17

Figure 2.8.: Unlike the geodesic distance, the diffusion metric Dm is robust to short
circuits. In the example above, points B and C are connected by a lot of
paths and therefore are close in the sense of Dm. On the contrary, because
of the presence of a bottleneck, points A and B are connected by relatively
few paths, making these points very distant from each other. Image taken
from [Laf04].
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2. Dimensionality reduction

If P t is symmetric, one obtains by multiplying out

D2
t (yi, yj) =

∑
yk∈Y

(
P tik P

t
ik︸︷︷︸

=P t
ki

− 2P tikP tkj + P tkj︸︷︷︸
=P t

jk

P tkj

)

= P 2t
ii − 2P 2t

ij + P 2t
jj

= p2t(yi, yi)− 2p2t(yi, yj) + p2t(yj , yj).

Again we can connect a distance measure to kernels.

Reminder: For the graph Laplacian, we had the definitions

Lsym = I −D−
1
2WD−

1
2

Lrw = I −D−1W

In general, to any reversible Markov process, one can associate a symmetric graph and
from a symmetric graph with nonnegative weights one can construct a reversible Markov
chain on the graph.

With that, we now introduce Diffusion Maps by Coifman, Lafon, 2004-2006, e.g. [Laf04;
CL06]. We consider a weighted graph [Y,E], where the weight function k(x, y) satisfies

• k(x, y) = k(y, x)

• k(x, y) ≥ 0

• k is positive semidefinite, i.e.∫
Y

∫
Y
K(x, y)f(x)f(y) dµ(x) dµ(y) ≥ 0.

for all real-values bounded functions and where µ(y) is a probability measure on Y .

From this, we obtain by normalization a Markov chain as follows: For all x ∈ Y let

d(x) =
∫
Y
k(x, y) dµ(y)

by a local measure of volume. We define

p(x, y) = k(x, y)
d(x) .

Surely p(x, y) ≥ 0 holds, but p is not symmetric anymore. However, we have∫
Y
p(x, y) dµ(y) = 1.
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2. Dimensionality reduction

So p describes a transition probability of a Markov chain. We can define a diffusion
operator P , which preserves constant functions

Pf(x) =
∫
Y
p(x, y)f(y) dµ(y)

From e.g. [Chu97] one knows that there is a spectral theory for these kind of Markov
chains. In particular, the integral operator P̃ defined on L2(Y ) with the kernel

p̃(x, y) = p(x, y)
√
d(x)
d(y) = k(x, y)√

d(x)
√
d(y)

is symmetric. Therefore, we have a spectral decomposition of the operator P̃ , so it
holds

p̃(x, y) =
∑
i≥0

λiφi(x)φi(y),

where under natural conditions p̃ has a discrete set of eigenvalues and λ0 = 1 > λ1 ≥
λ2 ≥ . . .. It can be seen φ0 =

√
π, with

π(y) = d(y)∫
Y d(z) dµ(z)

the stationary distribution of the Markov chain. This implies that p satisfies

p(x, y) =
∑
i≥0

λiψi(x)χi(y),

where
ψi(x) = φi(x)√

π(x)
, χi(y) = φi(y)

√
π(y).

In particular ψ0(x) = 1. The eigenvalues are as before. One can obtain analogous formula
for powers P t of P

pt(x, y) =
∑
i≥0

λtiψi(x)χi(y) (52)

The {φi}i≥0 form an orthonormal basis of L2(Y,dµ), consequentially the {χi}i≥0 form
an orthonormal basis of of L2

(
Y, dµ

π

)
.

For a fixed x, Eq. (52) can be seen as the orthogonal expansion of a function y 7→ Pt(x, y)
into the orthonormal basis {χi}i≥0, where the coefficients of the expansion are the
{λtiψi}i≥0.
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2. Dimensionality reduction

Definition 2.30. We define the family of diffusion distances {Dt}t∈N by

D2
t (x, y) = ‖pt(x, ·)− pt(y, ·)‖2L2(Y,dµπ )

=
∫
Y

(pt(x, u)− pt(y, u))2 dµ(u)
π(u) .

We define the family of diffusion maps {Ψs
t}t∈N,1≤s≤N−1:

Ψs
t (y) :=


λt1ψ1(y)
λt2ψ2(y)

...
λtsψs(y)

 ,

where λi, ψi come from Eq. (52), where we set Ψt := ΨN−2
t . Each component λtiψi is

called diffusion coordinate.

We now can connect the diffusion distance with the diffusion map.

Theorem 2.31. The diffusion distance Dt is equal to the Euclidean distance in the
diffusion map space.

D2
t (x, y) = ‖Ψt(x)−Ψt(y)‖22

=
∑
i≥1

λ2t
i (ψi(x)− ψi(y))2.

Proof. Inserting Eq. (52) into Dt gives

D2
t (x, y) =

∫
Y

(∑
i≥1

λti(ψi(x)− ψi(y))︸ ︷︷ ︸
C(i)

χi(u)
)2

dµ(u)
π(u) .

Multiplying out, exchanging integral and sum, and observing

〈χi, χj〉L2(Y,dµπ ) = δij

gives
D2
t (x, y) =

∑
i≥1

λ2t
i (ψi(x)− ψi(y))2 .

Remark. One can define this alternatively using p̃ and p̃t and their expansion into φi. In
that formulation it is easy to see

D̃t(x, y) = p̃2t(x, x)− 2p̃2t(x, y) + p̃2t(y, y)
=
∑
i=1

λ2t
i (φi(x)− φi(y))2.
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2. Dimensionality reduction

Figure 2.9.: As noted λ0 = 1 > λ1 ≥ λ2 ≥ . . ., so with increasing t the number of
significant eigenvalues decreases for P t, as does the numerical rank. Image
from [CL06].

If we define for δ > 0
s(δ, t) = max{i ∈ N | λti > δλt1}

then we have up to relative precision δ

Dt(x, y) =

s(δ,t)∑
i=1

λ2t
i (ψi(x)− ψi(y))2

 1
2

.

Note that Coifman and Maggioni introduced a decomposition of these “probability
bumps”, the so-called diffusion wavelets [CM06]. To compress P t in this view, the
eigenfunctions at the beginning of the spectrum close to λ0 = 1 have a low-frequency
content, while going down the spectrum the eigenfunctions become more and more
oscillatory.

Besides the manifold view, one can see the data as samples from the equilibrium distri-
bution of stochastic dynamical systems. These two views have different implications:

• when sampled from a manifold, we aim to recover the manifold structure regardless
of the data distribution

• when sampled from an equilibrium distribution, the density of the points is a
quantity of interest
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2. Dimensionality reduction

There is a (subtle) interplay between the statistics (in form of density) and the geometry
(in form of manifold structure) of the data set.

We considered so far isotropic weights, such as

K(x, y) = exp
(
−‖x− y‖

2

t

)
in Laplacian Eigenmap (LE). We now introduce a family of anisotropic diffusion processes.
We specify a parameter α ∈ R, which specifies the amount of influence of the density.
In the end, the usual graph Laplacian normalization will be applied on a renormalized
graph with non-isotropic weights.

Consider a continuous situation, i.e. Y = M and we have a density q(x) of the points of
M . For α ∈ R and a rotation invariant kernel

K(x, y) = h

(
d2(x, y)

ε

)
,

1. Let
qK(x) =

∫
Y
K(x, y)q(y) dy (53)

and form the new kernel

K(α)(x, y) = K(x, y)
qαK(x)qαK(y) .

2. Let
d(α)(x) =

∫
Y
K(α)(x, y)q(y) dy (54)

and apply the weighted graph Laplacian normalization to K(α) and define the
anisotropic transition kernel

p(α)(x, y) = K(α)(x, y)
d(α)(x)

.

Theorem 2.32. Let P (α) be the operator defined by

P (α)f(x) :=
∫
Y
p(α)(x, y)f(y)q(y) dy.

The eigenfunctions of P (α) approximate the eigenfunctions of the following symmetric
Schrödinger operator

∆φ− ∆(q1−α)
q1−α φ,

where φ = fq1−α.
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2. Dimensionality reduction

Proof. See [CL06, Appendix B] for the precise statement and proof.

Three main cases are relevant

• α = 0 gives the normalized graph Laplacian on isotropic weights. The corresponding
operator is

∆φ− ∆q
q
φ,

where for uniform densities the potential term vanishes. This fits with Belkin and
Niyogi, who, at least implicitly, considered this case. One can note, that in practice
a perfectly uniform density is difficult to achieve, or estimate. A non-constant
mode in q will be amplified by ∆q

q , therefore approximating the Laplace-Beltrami
operator on the manifold is unstable. But generally, the influence of the density is
maximal in this case.

• α = 1 approximates the Laplace-Beltrami operator by taking non-uniform densities
into account. Thereby, one is able to recover the Riemannian geometry of the data
set, regardless of the distribution of the points.

• α = 1
2 relates to Fokker-Planck diffusion. The operator is

∆φ−
∆√q
√
q
φ.

If one assumes q = e−U one can write this as

∆φ−
(
‖∇u‖2

4 − ∆u
2

)
φ,

which leads to the forward Fokker-Planck equation
∂q

∂t
= ∇(∇q + q∇u),

where q(y, t) represents the density of points at position y and time t for a dynamical
system satisfies

ẏ = −∇u(x) +
√

2ẇ,
where w is a d-dimensional Brownian motion. With this normalization one can
analyze such stochastic dynamical systems. See [Nad+06] for more.

To use this for actual finite data, the integrals are approximated by finite sums, i.e. we go
to the empirical mean using the data yi which are sampled from the density q(x). This
gives for Eq. (53)

N · qK(yi) ≈ q̃K(yi) =
N∑
j=1

K(yi, yj).
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2. Dimensionality reduction

Then we define the kernel as before:

K̃(α) = K(yi, yj)
q̃αK(yi)q̃αK(yj)

.

Thus for Eq. (54) we get

N · d(α)(yi) ≈ d̃(α)(yi) =
N∑
j=1

K̃(α)(yi, yj)

=
N∑
j=1

K(yi, yj)
q̃αK(yi)q̃αK(yj)


Hence, one has

p̃(α)(yi, yj) = K̃(α)(yi, yj)
d̃(α)(yi)

Note: In the algorithm, one has

p̂(α)(yi, yj) = K̃(α)(yi, yj)√
d̃(α)(yi)

√
d̃(α)(yj)

Due to the law of large numbers, the sums do converge to the integrals. In order
to achieve a given precision with high probability, the number N of samples must
grow faster than ε− d4− 1

2 where d is the intrinsic dimension of M . Regarding noise, the
approximation is valid as long as the scale parameter

√
ε remains larger than the size of

the perturbation.

General diffusion maps algorithm
Given: data Y , rotation invariant kernel K, α ∈ R, p ∈ N, t ∈ N
Output: embedding X

K = [K(yi, yj)]Ni,j=1
Q = diag(K · 1)
K(α) = (Qα)−1K(Qα)−1

D = diag(K(α) · 1)
P = D−

1
2K(α)D−

1
2

[Fp,Λp] = EVD(P, p+ 1)
return X =

[
λt2

F2
F1
, λt3

F3
F1
, . . . , λtp+1

Fp+1
F1

]

Note that in
K(x, y) = exp

(
−d2(x, y)

t

)
,

we can also use other distance measures, e.g. use dG or the Dynamic Time Warping
(DTW)-distance.
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Figure 2.10.: Curves in R3 (two helix curves and the trefoil curve) with some nonuniform
density. Although a natural ordering of these points is given by following
the curve, the points were given unordered. From left to right: original
curves, the densities of points on these curves, the embedding using the
graph Laplacian (α = 0), and the embedding using the Laplace-Beltrami-
approximation (α = 1). For the last case, the curve is embedded as a
perfect circle and the arc length parametrization is recovered, regardless of
the density of points on the original curves. The graph Laplacian tends to
generate corners at regions of high density. Taken from [CL06].
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2.2.7. Out of Sample Extensions

The embedding function f : Rd → Rp is only known point-wise, i.e. f(yi) = xi. Out of
sample extensions are needed for two reasons.

1. One gets new data y and does not want to do the eigenvalue decomposition again.

2. One has too many data for an eigenvalue decomposition and wants to use a subset
to compute the embedding and do 1. for the rest.

The common way to do this is the Nyström-extension. Denote by vi,k the i-th coordinate
of the k-th eigenvector of KN = [k(yi, yj)]Ni,j=1 associated with the eigenvalue lk. The
Nyström formula

fk,N (y) =
√
N

lk

N∑
i=1

vi,kk(y, yi),

where fk,N is the k-th Nyström estimator with N samples.

The underlying theory of this stems from integral operators. A different view on the
Nyström extension as from the standpoint of matrix completion, we can look at

G =
(
A B
BT C

)
N
M

N M

with N � M . The Nyström extension implicitly approximates C by BTA−1B. The
quality of approximation can be quantified by the norm of the Schur complement
‖C −BTA−1B‖.

To perform the Nyström extension for the studied approaches, a data-dependent kernel
is used, see [Ben+04] for examples.

2.2.8. t-SNE

A motivation for t-SNE [MH08] are certain problems of distance preserving dimensionality
reduction algorithms for visualization of (different) structures.

Consider a set of points that lie in high dimensions but are from

• an intrinsicially two-dimensional curved manifold

• an intrinsicially ten-dimensional curved manifold.
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2. Dimensionality reduction

While one can model the small pairwise distances between data well in a two-dimensional
map in the first case, it becomes problematic to model pairwise distances in two dimensions
to approximate pairwise distances between points on the ten-dimensional manifold. There
are two main observations, relating to the curse of dimensionality.

• in ten dimensions it is possible to have 11 points that are mutually equidistant

• volume of a sphere centered on point yi scales as rd

Pick any point yi in the first situation, then all others have the same distance to that
one in two dimensions, i.e. are on a circle around yi. But while this reflects the pairwise
distance to yi, one cannot respect the other pairwise distances among the remaining
points.

In the second situation, assume that some data are approximately uniformly distributed
in the region around yi on the ten-dimensional manifold. If one aims to model the
distances from yi to the other points in two-dimensions, one can observe the so-called
“crowding problem”: the area r2 around xi of the two-dimensional map is much smaller
than the volume rd−1 around yi. While an embedding can accommodate moderately
distant points of yi in the available area around xi it will be overcrowded.

Therefore one can aim for relaxing the distance preservation, in particular for visualization
of data in two or three dimensions.

t-SNE aims to address this by considering two distributions. One distribution p models
pairwise similarities of the input data Y , that can be empirically measured, and one distri-
bution q models pairwise similarities of the corresponding low-dimensional points in the
embedding. The approach now minimizes the divergence between these two distributions
to compute a low-dimensional distribution and a corresponding embedding.

Now, given a set {yi}Ni=1 and a distance function d(yj , yk). One models the similarity of
yj to yk by the conditional probability that yj would pick yk as its neighbour, where this
is given by

p(yk|yj) =
exp (−d(yj , yk)/2σ2

j )∑
l 6=j exp (−d(yj , yl)/2σ2

j )
.

Thereby, neighbours are picked in proportion to their probability density modelled by a
Gaussian centered at yj with variance σj . This is at first non-symmetric, due to potentially
different σj ’s. One uses instead of p(yk|yj) directly the following symmetrisation:

pjk := p(yk|yj) + p(yj |yk)
2N

In view of the second observation above, points that have a moderate distance from yi
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2. Dimensionality reduction

Figure 2.11.: Gradient of t-SNE as a function of the pairwise Euclidean distance between
two points in the high-dimensional space and low-dimensional data represen-
tation, respectively, from [MH08]. Positive values of the gradient represent
an attraction between the low-dimensional datapoints, whereas negative
values represent a repulsion between the two datapoints.

will have to be placed in comparison further away in the two-dimensional map. This
gives the motivation for the t in t-SNE, namely using Student’s t-distribution with one
degree of freedom (i.e. the Cauchy distribution) in the lower dimensional case, which is a
probability distribution that has much heavier tails than a Gaussian.

qjk = (1 + ‖xj − xk‖2)−1∑
l

∑
m6=l(1 + ‖xl − xm‖2)−1

t-SNE now computes points {x1, . . . , xN} that minimize the Kullback-Leibler divergence
between the distribution p for Y and q for X:

C(X) = KL(P |Q) =
∑
j

∑
k

pjk log pjk
qjk

. (55)

Lemma 2.33. The gradient of the Kullback-Leibler divergence between the distribution
p for Y and the Student’s t-based joint probability distribution q for X is:

∂C

∂xj
= 4

∑
k

(pjk − qjk)(xj − xk)(1 + ‖xj − xk‖2)−1

Proof. Straightforward calculation, see [MH08].

The bandwidth σj of the Gaussian that is centered over each high-dimensional datapoint
yj is unlikely to be constant for all points, since the density of the data is likely to vary.
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t-SNE has therefore a parameter, the determines σj such that it produces a probability
distribution Pj over all of the other datapoints with a fixed perplexity that is specified
by the user. The perplexity is defined as

Perp(Pj) = 2H(Pj),

where H(Pj) is the Shannon entropy of Pj measured in bits:

Hj(σ) = −
∑
k

p(yk|yj) log p(yk|yj).

Given the perplexity parameter K, the root of Hj(σ)− logK determines σj .

The embedding X is computed with a gradient descent algorithm. Since the cost function
Eq. (55) is non-convex, the obtained solution depends on the initial proposal and the
parameters of the descent algorithm. Therefore it may be different for different runs of
t-SNE on the same data set. This is a drawback for reproducibility and interpretability
of the embeddings.

The computational bottleneck is the normalization over all N(N − 1) pairs of points
to compute pjk or qjk. Therefore in [Maa14] an accelerated algorithm was introduced,
which computes an approximation to the gradient.

For pjk one computes a sparse approximation by using the neighborhood Nj of the b3Kc
nearest neighbors of yj for each point from Y . We redefine the pairwise similarities
between the points as

p(yk|yj) =


exp (−d(yj ,yk)/2σ2

j )∑
l∈Nj

exp (−d(yj ,yl)/2σ2
j ) if k ∈ Nj

0 otherwise

The nearest neighbor sets Nj can be found in O(KN logN) time by using a so-called
vantage-point tree on the input data [Maa14].

For the qjk this is not possible, since the xj change during the optimization. Here, a
so-called Barnes-Hut algorithm can be employed [Maa14]. Observing

qjk = (1 + ‖xj − xk‖2)−1

Z
,

with
Z :=

∑
l

∑
m6=l

(1 + ‖xl − xm‖2)−1,
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2. Dimensionality reduction

we can rewrite the gradient as:

∂C

∂xj
= 4

∑
k

(pjk − qjk)(xj − xk)(1 + ‖xj − xk‖2)−1

= 4
∑
k

(pjk − qjk)qjkZ(xj − xk)

= 4
(∑

k

(pjkqjk)qjkZ(xj − xk)−
∑
k

q2
jkZ(xj − xk)

)
= 4 (Fattr + Frep) .

Here Fattr denotes the sum of all attractive forces and Frep denotes the sum of all repulsive
forces. Computing Fattr can be done by summing over all non-zero elements of the sparse
distribution that was constructed earlier, this can be achieved in O(KN).

To compute Frep efficiently in O(N) one employs the Barnes-Hut algorithm for particle
simulations in astrophysics or molecular dynamics. Consider three points xj , xk, and xl
with ‖xj − xk‖ ≈ ‖xj − xl‖ � ‖xk − xl‖. The contributions of xk and xl to Frep for xj
will be very similar. This can be exploited by constructing a quad-tree (in 2D) or octtree
(in 3D) for the estimate X, see Fig. 2.12, and deciding at each node, if the contribution
from its cell can be used in an aggregate fashion, see Fig. 2.13. In particular, of a cell
is sufficiently small and sufficiently far away from xj , the contribution to Frep will be
roughly the same for all points in that cell. In such a case one uses

Ncellq
2
j,cellZ(xj − xcell),

with xcell the center of mass of that cell, Ncell the number of points in that cell, and

qj,cellZ = (1 + ‖xj − xcell‖2)−1.

Note that the tree can be built in O(N) time and the computation of the gradient in
depth-first traversal can be performed in O(N logN). See [Maa14] for details.
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2. Dimensionality reduction

Figure 2.12.: A quad-tree for nine two-dimensional data points. Nodes in the graph
correspond to square cells in the space, where for each cell we store the
number of points inside and the center-of-mass of those points. From
[Maa14].
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2. Dimensionality reduction

Figure 2.13.: The Barnes-Hut algorithm performs a depth-first search on the embedding
quadtree, checking at every node whether or not the cell can be used as an
aggregate, depending on the size of the cell and the distance to xj . From
[Maa14].
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2. Dimensionality reduction

2.2.9. Autoencoder

Autoencoder (AE) are special feed-forward neural networks, which consist of so-called
encoder layers, which perform the reduction step, and decoder layers, where vectors
from the low-dimensional space are mapped back to the high-dimensional space. In this
fashion, two parts are trained simultaneously: A dimensionality reduction architecture
and a high-dimensional vector reconstruction algorithm. Most of the material for the
lecture on the autoencoder is from the book [GBC16], which is available also online.

Essentially, an AE is built from two maps:

1. An encoder E : Rd → Rp mapping from the original data space Rd to the low-
dimensional embedding space Rp with p < d and

2. a decoder D : Rp → Rd mapping into the opposite direction.

Then, the AE f is just the concatenation of both maps

f := D ◦ E : Rd → Rd.

Therefore, the main question is how to build the en- and decoder.

In its most simple form, an autoencoder is just a fully-connected two-layer (feedforward)
neural network, where the hidden layer contains fewer neurons than the input layer.
Furthermore, the output layer has the same size as the input layer. In terms of the
dimensions p and d we assigned to the encoder E and decoder D, we have d input and
output neurons and p < d hidden neurons. See Fig. 2.14 for d = 6 and p = 2.

Encoder
E : Rd → Rp

Decoder
D : Rp → Rd

Figure 2.14.: An autoencoder with d = 5 and p = 2.

The encoder can be simply written as

E(y) = φE(WEy + bE)
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2. Dimensionality reduction

for a weight matrix WE ∈ Rp×d, a bias vector bE ∈ Rp and an activation function
φE : R→ R which acts element-wise. Analogously, the decoder is

D(x) = φD(WDx+ bD)

for a weight matrix WD ∈ Rd×p, a bias vector bD ∈ Rd and an activation function
φD : R→ R.

Popular activation functions are

φ(x) := tanh(x) or φ(x) = sigmoid(x) = 1
1− e−x .

Nowadays, a commonly used activation function is the so-called rectified linear unit
(ReLU)

φ(x) := max(0, x).

The main idea behind autoencoders is related to the original idea behind the PCA of
minimizing the (Euclidean) distance between the original vectors and their reconstructed
counterpart, cf. (35). For AEs this translates to

f = arg min
g=D◦E

1
N

N∑
i=1
‖yi − g(yi)‖2 = arg min

D,E

1
N

N∑
i=1
‖yi −D ◦ E(yi)‖2. (56)

In order to learn the weights and biases of E and D, we minimize the distance between
data points and their reconstructions as given in (56), usually by using stochastic gradient
with backpropagation. In this way, we learn the encoder and decoder simultaneously.

If φE = φD = id, there is a clear similarity to the PCA minimization problem, which
searches for

arg min
W∈Rd×p,b∈Rd,xi∈Rp

1
N

N∑
i=1
‖yi −Wxi + b‖2.

In the PCA formulation, we aim to minimize with respect to the low-dimensional data
points xi. In our autoencoder setting, they resemble the encoded inputs E(yi).

This simple architecture can be generalized by adding multiple layers to the en- and
decoder networks. Note that the term deep autoencoder is sometimes also used to describe
an architecture of several autoencoders chained together. Usually, the encoding layers
shrink in size monotonically until the stage of highest compression, while the decoding
layers grow in size vice versa. An example of a four-layer autoencoder with a two-layer
encoder and a two-layer decoder is depicted in Fig. 2.15.

The introduction of more layers, i.e. a deeper network, greatly enhances the capabili-
ties of autoeconders, as long as nonlinear activation functions are used. Besides fully
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2. Dimensionality reduction

Encoder
E : Rd → Rp

Decoder
D : Rp → Rd

Figure 2.15.: A multilayer/deep autoencoder with d = 6 and p = 2.

connected networks, it is also possible to employ other types of networks within the AE
framework. For instance, when working with pictures, it is quite natural to use so-called
2d-convolutional layers followed by pooling layers in the encoder. The decoder is then
built out of convolutional layers and upsampling layers, which enlarge the image by using
bilinear interpolation for instance.

Comparing autoencoder to what we saw before for nonlinear dimensionality reduction,
one key advantage would be the easy treatment of out-of-sample data, one just passed it
through the network to get the latent variable. Note that if the latent variable space is
high-dimensional, one case use t-SNE or other dimensionality reduction approaches to
reduce the latent space to two or three dimensions for visual analysis and inspection.

On the one hand, deep autoencoder allow much flexibility in nonlinear dimensionality
reduction by varying the type and number of layers in the intermediate stages. On the
other hand, how to choose these is often not obvious. Further, too much capability of
the decoder and encoder pair is not always useful. One can imagine an autoencoder with
a one-dimensional latent space, but very expensive non-linear encoder and decoder pair,
which learns ’just’ a space filling curve.

A way to address this by regularization. Common are in particular three approaches,
where we use a general loss function L(y, f(y)).

Sparse Autoencoders

With Ω a sparsity penalty on the encoding layer E one uses as the functional to minimize

L(y, g(y)) + Ω(E).

Sparse autoencoders are typically used to learn features for another task such as clas-
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2. Dimensionality reduction

sification. The sparsity penalty could be the L1-norm or the top-K units. For specific
penalties a Bayesian interpretation is possible.

Denoising Autoencoders

Here one minimizes
L(y, g(ỹ)),

where ỹ is a copy of y that has been corrupted by some form of noise. The autoencoder
must now undo this corruption rather than simply copying the input.

Regularizing by Penalizing Derivatives

One can use
L(y, g(ỹ)) + Ω(g),

with now
Ω(g) = λ

∑
i

‖∇y(g(y))i‖2 or Ω(g) = λ

∥∥∥∥∂g(y)
∂y

∥∥∥∥2

F

.

This enforces some smoothness of the learned function, i.e. it does not change much
when y slightly changes. This is also called contractive autoencoder.

2.2.10. Variational Autoencoder (VAE)

The lectures on the variational autoencoder are based on [KW19; Doe16].

As a different generative model successful for images are generative adversial networks
(GAN).

Note that there is a recent publication questioning some of recent results and observations
on VAEs [Loc+19].

2.2.11. UMAP

UMAP (Uniform Manifold Approximation and Projection) [MHM18] is constructed
from a theoretical framework based in Riemannian geometry and algebraic topology.
The UMAP algorithm is competitive with t-SNE for visualization quality, and arguably
preserves more of the global structure with superior run time performance.
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2. Dimensionality reduction

But, observe the article "Initialization is critical for preserving global data structure in
both t-SNE and UMAP" [KL21] and notice that the research on and understanding of
t-SNE and UMAP is still ongoing.
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A. Numerical Linear Algebra

Definition A.1 (Singular Value Decomposition). If A ∈ Rm×n is a real matrix,
there exist two orthogonal matrices

U = [u1, . . . , um] ∈ Rm×m, V = [v1, . . . , vn] ∈ Rn×n

such that
A = UΣV T , with Σ = diag (σ1, . . . , σp) ∈ Rm×n (57)

and σ1 ≥ σ2 ≥ . . . ≥ σp, for p = min(m,n).

The σi are called singular values, the ui are called left singular vectors, and the vi are
right singular vectors.

Theorem A.2 (Schmidt-Eckart-Young). Given a matrix A ∈ Rm×n of rank r,
the matrix

Ak :=
k∑
i=1

σiuiv
T
i , 0 ≤ k ≤ r, (58)

satisfies the optimality property

‖A−Ak‖F = min
B∈Rm×n

rank(B)≤k

‖A−B‖F =

√√√√ r∑
i=k+1

σ2
i . (59)

A similar result holds by considering the 2-norm instead of the Frobenius norm: for any
0 < k < r, the matrix Ak defined in Eq. (57) is also such that

‖A−Ak‖2 = min
B∈Rm×n,rank(B)≤k

‖A−B‖2 = σk + 1. (60)
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B. Differential Geometry

Definition B.1 (Smooth Mapping). Let X ⊂ Rk and Y ⊂ Rl be non-empty sets.
A mapping f : X → Y is called smooth mapping if “all partial derivatives exist and
are continuous”.

Definition B.2 (Diffeomorphism). Let X ⊂ Rk and Y ⊂ Rl be non-empty sets.
If a bijection f : X → Y and its inverse f−1 : Y → X both are smooth, then f is called
a diffeomorphism (differentiable homeomorphism) and X is said to be diffeomorph to
Y .

Definition B.3 (Manifold). LetM ⊂ Rn be non-empty. Assume that for all x ∈M
there exists an open set W ⊂M , with x ∈ intW , s.t. W is diffeomorph to an open
set U ⊂ Rk. Then M is called a k-dimensional smooth manifold.
A diffeomorphism g : U →W is called a parametrization of W , its inverse h(= g−1) :
W → U is called a coordinate mapping. The pair (W,h) is called a (local) coordinate
system, or a chart, of M .

x
U

h = g−1

g

W

M

An x ∈W has coordinates h(x) = [h1(x), h2(x), . . . , hm(x)]. We constrain ourselves to
simple manifolds, i.e. only one coordinate system.
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B. Differential Geometry

Definition B.4. A function f on an open set V ⊂M is called differentiable (smooth)
if f ◦ h−1 is differentiable on h(V ∩M) = h(V ) for the coordinate system (M,h). At
x ∈ V the derivative of f is the linear mapping defined by

dfx = lim
t→0

f(x + th)− f(x)
t

, h ∈ Rk,

which can be represented by the matrix

dfx =
[
∂fi(x)
∂xj

]l,k
i,j=1

.

Definition B.5 (Tangent space of a point on a manifold). Let M ⊂ Rm be a
k-dimensional manifold, U ⊂ Rk be an open set, and g : U →M be a parametrization
of the neighbourhood g(U) ⊂M . Assume p ∈M , u ∈ U and g(u) = p. The image
of the linear transformation dgu is called the tangent space of M at p.

TpM := dgu(Rk).

A vector in TpM is called a tangent vector .

Note that the set
{
∂g
∂u1

, . . . , ∂g∂uk

}
is a basis for TpM and can be represented by the basis

matrix
∂g

∂u
:=
[
∂gi
∂uj

]m,k
i,j=1

.

A tangent vector at p has the form

xp =
k∑
i=1

αi
∂g

∂ui
= ∂g

∂u
~α.

Now assume f is a function on M , which has a smooth extension on an open set O of Rm,
s.t. M ⊂ O. The composite f ◦ g is a function on Rk, but f can also be represented as a
function of the coordinates u, say F (u), of course f ◦ g(u) = F (u). Then the directional
derivatives of F in the direction ~α ∈ Rk can be given by

∂f ◦ g
∂~α

= dfp
∂g

∂u~α.

Riemannian metrics

Now let M be a k-dimensional manifold and TpM the tangent space at p ∈M . g is a
parametrization of M and (W,h) is the coordinate system on M . g defines a basis for
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TpM as before, represented by ∂g
∂u . The metric Gg(p) is defined by

Gg(p) =
(
∂g

∂u

)T ( ∂g
∂u

)
, p ∈M.

Gg(p) is a positive semidefinite matrix, it is called Riemann metric on M . Take two
tangent vectors x,y ∈ TpM, x = ∂g

∂u~x, y = ∂g
∂u~y, then their inner product is defined by

〈x,y〉p := ~xTG(p)~y (61)

and their norm by
‖x‖p := ~xTG(p)~x. (62)

Definition B.6. Let M be a k-dimensional manifold with the metric Gg(p) and
defines for each pair of tangent vectors Appendix B the inner product. Then M is
called a Riemannian manifold and is denoted by (M, g) or (M,G).

Often one chooses isometric parametrizations so that Gg(p) = Id.

Definition B.7 (Geodesic Distance). LetM be a connected Riemannian manifold
and γ ⊂M is a curve on M with the parametric equation

γ = [γ1(t), . . . , γm(t)]T , t ∈ [a, b].

Then the length of the curve γ is defined by

∥∥∥γ∥∥∥ =
∫ b

a
‖γ̇(t)‖ dt.

The geodesic distance dM is defined by

dM (x,y) = inf
γ⊂M,
γ(a)=x,
γ(b)=y

‖γ‖.
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C. Neighbourhood Graph

Definition C.1 (Undirected Graph). Let V be a given finite set. An undirected
(or simple) graph G is an ordered pair [V,E] so that the elements of E are 2-element
subsets of V . The elements of V are called vertices, nodes or points of the graph, and
the elements of E are called edges or lines of G.
The number of edges that connect a vertex x is called degree. The set of all vertices
that are connected to a vertex x is called the neighbourhood NG(x) of x. We use
x /∈ NG(x).

We can use an adjacency matrix to represent the edge set in a graph G = [V,E]

Aij =
{

1, if (vi,vj) ∈ E or (vj ,vi) ∈ E
0, else.

A weight matrix is a generalization where each edge has a non-zero weight.

ε-neighbourhood
Let Y be any data set. yi and yj are connected if and only if d2(yi,yj) ≤ ε.

• Distances between all connected points are of roughly similar size.

• If ε is small, weighting the edges does not “really” absorb more information about
the data into the graph.

This graph is also called r-ball graph graph, for ε = r in the above.

k-nearest neighbours graph
Vertex yi is connected to yj if yj is among the k-nearest neighbours of yi (w.r.t. d2).

• Ignore directions of edges, if (yi,yj) ∈ E also add (yj ,yi). (k-nearest neighbourhood
relationship is not symmetric.)

• The alternative would be: Only connect yi and yj if k-nearest neighbours
relation holds in both directions to begin with.
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C. Neighbourhood Graph

Here weighting the edges by the similarity of the edges can be useful.

Adaptive neighbourhood graph
For a constant c > 1 we define the c-neighbourhood of a point yi ∈ Y by

Nc(yi) =
{

yj ∈ Y \ {yi} : d2(yi,yj) ≤ c min
y∗∈Y \{yi}

d2(yi,y∗)
}
.

Then two vertices yi,yj are connected if either yi ∈ Nc(yj) or yj ∈ Nc(yi). Weighting
can again be useful.

Fully connected graph
All point pairs with positive similarity are connected and weighted by similarity, e.g. by
Gaussian similarity function S(yi,yj) = exp(−0.5d2(yi,yj)2/σ2), where σ controls the
width of the neighbourhood.
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D. Semidefinite Programming

Let P and Q be two N ×N symmetric matrices which are considered as vectors in RN2 .
We define their inner product by

P ·Q =
N∑
i=1

N∑
j=1

Pi,jQi,j .

Thus, P is a functional on the Euclidean space RN2 . Let Ci, 1 ≤ i ≤ m, be m symmetric
matrices and b = [b1, . . . , bm]T ∈ Rm. The following optimization is called a semidefinite
programming (SDP) problem

minimize P ·Q
s.t. Ci ·Q = bi 1 ≤ i ≤ m

Q � 0.

Observe, that the collection of psd matrices is a convex set in RN2 and each constraint
is a hyperplane in RN2 . Assume that {C1, . . . ,Cm} forms a linearly independent set in
RN2 . Then the intersection of the hyperplanes Ci ·Q = bi, 1 ≤ i ≤ m denoted by Sm is
an (N2 −m)-dimensional affine space.
The SDP-problem can be seen as finding the minimal value of the linear functional P ·Q
on the intersection of the convex set Q � 0 and the affine space Sm. It can be that no
psd matrix fulfills the constraints. If the set of matrices which fulfill the side constraints
is non-empty we call the SDP feasible.
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D. Semidefinite Programming

Acronyms

AE Autoencoder

CMDS classical multidimensional scaling

cpsd conditionally positive semidefinite

CV cross-validation

DTW Dynamic Time Warping

ECG electrocardiography

EDM Euclidean distance matrix

EEG electroencephalography

EVD eigenvalue decomposition

i.i.d. independent, identically distributed

k-NN k-Nearest Neighbour

LE Laplacian Eigenmap

MDS multidimensional scaling

MVU maximum variance unfolding

ONB orthonormal basis

PCA principal component analysis

PDE partial differential equation

psd positive semidefinite

RBF radial basis function

RKHS reproducing kernel Hilbert space
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D. Semidefinite Programming

R&D research & development

SDP semidefinite programming

SVD singular value decomposition

SVM support vector machine
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Index of key definitions

C
centered Gram matrix, 93
centering matrix, 93
collocation, 42
completely monotone, 48
configuration, 92
conditionally positive semidefinite

of order m, 47
curse of dimensionality, 85
curvature, 100

D
degrees of freedom, 85
diffeomorphism, 146
diffusion coordinate, 127
diffusion distance, 127
diffusion maps, 127
Dirichlet boundary value problem, 42
distance matrix, 93

E
Euclidean distance matrix (EDM), 92
empirical `-risk, 60
empty space phenomenon, 85
exact configuration, 94
expected `-risk, 60
extrinsic dimension, 83

F
feature map, 106
feature space, 6
fill distance, 32

G
Gaussian process, 72
geodesic distance, 148

graph, 149
ε neighbourhood, 149
k-nearest neighbours, 149

graph distance, 98
graph Laplacian

unnormalized, 116

H
Hadamard product, 10
heat kernel, 116
Hermite-interpolation, 43

I
interior cone condition, 38
intrinsic dimension, 83
intrinsic dimensionality, 85
Isomap, 98

K
kernel, 2

positive semidefinite, 9

L
latent variables, 85
loss function, 56

M
manifold, 146

Riemannian, 148
maximum variance unfolding (MVU),

110
Mercer’s theorem, 20
multidimensional scaling (MDS)

classical, 94
kernel, 109

m-unisolvent, 47
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N
native space, 14

P
power function, 25
principal component analysis (PCA) ,

86
kernel, 109
nonlinear, 107

principal components, 90
nonlinear, 107

R
radial basis function (RBF), 3
reach, 102
regularization operator, 64
reproducing kernel, 14
reproduction equation, 13
reproducing kernel Hilbert space

(RKHS), 15

S
sampling inequality, 33
Schur product, 10
semidefinite programming, 115, 151
singular value decomposition, 145
smooth mapping, 146
spectral clustering, 118
support vector machine

hard margin, 79
soft margin, 79

symmetric kernel, 2

T
tangent space, 147
tangent vector, 147
Tikhonov-regularization, 60

U
uniformly stable local polynomial

reproduction, 37
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