
Computer lab Numerical Algorithms
Winter term 2012/2013

Prof. Dr. M. Rumpf – B. Geihe, B. Heeren

Problem sheet 1 October 23rd, 2012

We consider the cell problem posed in the lecture: For a given (linear) profile uH we want
to compute a periodic correction uh such that −div (a(uH + uh)) = 0 and −

∫
uh dx = 0.

Using the periodicity assumptions the weak formulation is:∫
Q

a(x)∇uh(x) · ∇ϕh(x)dx = −
∫

Q
a(x)∇uH(x) · ∇ϕh(x)dx ∀ ϕh ∈ Vh

For discretization we consider a triangulation Th and a corresponding set of finite element
basis functions

{
ϕi

h

}
i∈I . By writing uh = ∑j∈I uj

h ϕ
j
h and choosing basis functions as test

functions in the weak formulation above we derive a linear system of equations Aūh = b̄
where

Aij = a
(

ϕi
h, ϕ

j
h

)
=
∫

Q
a(x)∇ϕi

h(x) · ∇ϕ
j
h(x)dx, bi = (AūH)i

The periodic boundary conditions will be enforced by modifying the stiffness matrix A
and the right hand side b̄.

We will start by assembling the stiffness matrix A which is usually done in the following
way:

Assemblation of the stiffness matrix A
foreach triangle T do

foreach pair of basis functions ϕi, ϕj which have T in their support do
foreach quadrature point γT with weight ωγT do

Aij += |T| ∗ωγT ∗ a(T, γT, i, j)

An implementation of this procedure can be seen in class LinearFEOperator. The function
a(T, γT, i, j) must now evaluate the integrand a(x(γT))∇ϕi

h(x(γT)) · ∇ϕ
j
h(x(γT)) at the

given quadrature point γT in T for basis functions ϕi
h and ϕ

j
h. It will be implemented in

a separate class IsoDiffusiveBilf .

This class must be able to evaluate the diffusivity a at a given point. Therefore it has
a member variable TensorOrder0. To allow for more general diffusivity terms later the
class TensorOrder0 is pure virtual and just defines that every derived class must supply

the required evaluate method. We will implement a derived class BlobTensor which
realizes the following diffusivity:

a(x) = ψε (‖x−m‖) , where ψε(s) = −
1
π

arctan
(

2s− 1
ε

)
+

1
2

The midpoint m and the “transition width” ε ∈ (0.01, 0.5) should be selectable.

To take periodic boundary conditions into account we propose to first assemble the
usual stiffness matrix A above and then perform modifications on A to reflect periodicity.
This will be done by class PeriodicBoundaryMask derived from BoundaryMask (as is
DirichletBoundaryMask which was used in problem 1).
In the constructor of this class a mapping needs to be generated which maps boundary
nodes to their periodic counterparts. This could e. g. be realized using a vector of pairs
of integers: std :: vector< SmallVector2<int> >. Here one has to decide which nodes get
eliminated by the periodic identification. Moreover the class should provide a method
apply which collapses the matrix as discussed on problem sheet 1. To tackle the right
hand side accordingly a method collapse should be implemented. Finally method
extend is supposed to copy values at remaining boundary nodes to their eliminated
counterparts.

So far the additional constraint −
∫

uh dx = 0 has not been accounted for. In the discrete
setting the non uniqueness of solutions to the periodic cell problem will result in a rank
deficiency of the resulting stiffness matrix. While in practice a CG method started from
a feasible point ūh might just iterate in the correct linear subspace we want to enforce
this by additional projection steps. Therefore the constraint is discretized in the known
manner:

0 = −
∫

uh dx = |Q|−1
∫

Q
uh 1 dx = |Q|−1 ∑

i,j
ui

h

∫
Q

ϕi ϕj dx

 |Q|−1 ū>h M 1̄ = 0 where Mij =
∫

Q
ϕi ϕj dx

That way ñ := |Q|−1M 1̄ is orthogonal to every ūh fulfilling the constraint. With a nor-
malized normal vector n := ñ/‖ñ‖ the orthogonal projection of an arbitrary point x is
given by P(x) = x− (x · n) n. This projection may be performed after each step of a CG
method as it does not affect the residual. To set up the normal vector n a mass matrix M
can be generated analogously to the stiffness matrix by using the bilinear form MassBilf.

Tasks:

• Implement the scalar tensor BlobTensor derived from TensorOrder0

• Complete the class IsoDiffusiveStiffBilf

• For the class PeriodicBoundaryMask implement the constructor and methods apply,
collapse and extend

• In the main function setup the right hand side from the given Vector uH and
perform the necessary periodic identification operations

• Implement projectingCGapply to perform a usual CG iteration with additional
orthogonal projection along a supplied Vector constr (= n)

