Aufgabe 2: Betrachte die folgende gewöhnliche Differentialgleichung:

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \begin{pmatrix} -y \\ x \\ 1 \end{pmatrix}$$

a) Schreiben Sie sie in der Form

$$\dot{P} = AP + b \tag{1}$$

wobei A eine 3×3 Matrix ist, und

$$P = \left(\begin{array}{c} x \\ y \\ z \end{array}\right).$$

- b) Interpretieren Sie die Form (1) der Differentialgleichung und die Lösung.
- c) Lösen Sie die gewöhnliche Differentialgleichung.

Aufgabe 3: Welche Aussagen sind richtig?

a)	Jede diagonalisierbare $n \times n$ Matrix hat n I genvektoren.	inear unabhan ja □	gige Ei- nein \square
b)	Jede diagonalisierbare $n \times n$ Matrix hat n ver	rschiedene Eige ja □	enwerte. nein \square
c)	Jede symmetrische $n \times n$ Matrix hat n ver	schiedene Eige ja □	enwerte. nein \square
d)	Jede symmetrische Matrix ist diagonalisierh	oar. ja □	nein \square
e)	Jede Spiegelungsmatrix ist diagonalisierbar.	ја 🗆	nein □