
Scientific Computing I

Winter Semester 2013 / 2014
Prof. Dr. Beuchler

Bastian Bohn and Alexander Hullmann

Exercise sheet 10. Closing date 7.1.2014.

Theoretical exercise 1. (Kronecker-product [7 points])

Let A ∈ Rk×l and B ∈ Rm×n. Then, the Kronecker-product of the matrices A and B is
given by

A⊗B =

a11B a12B . . . a1lB
a21B a22B . . . a2lB

...
. . .

ak1B ak2B . . . aklB

 ∈ Rkm×ln .

Show that the following relations hold for α ∈ R, A ∈ Rk×l, B ∈ Rm×n, C ∈ Rk×l, D ∈
Rl×s, E ∈ Rn×r.

a) (αA)⊗B = A⊗ (αB) = α(A⊗B)

b) (A⊗B)T = AT ⊗BT

c) (A+ C)⊗B = A⊗B + C ⊗B

d) (A⊗B)(D ⊗ E) = (AD)⊗ (BE)

e) (A⊗B)−1 = A−1 ⊗B−1

Theoretical exercise 2. (Structure of mass- and stiffness-matrices [7 points])

x1

x2

(1,0)

(0,1)

(0,0)

1 2 3

4 5 6

7 8 9

x1

x2

(1,0)

(0,1)

(0,0)

1 2 3

4 5 6

7 8 9

Figure 1: Triangulation for bilinear elements (left) and for linear triangle elements (right)

We are given the Poisson problem

−4u = 1 on (0, 1)2

with homogeneous boundary conditions u = 0 on ∂(0, 1)2. See Fig. 1 for two possible
triangulations of (0, 1)2 suited for bilinear elements and linear triangle elements. We
denote the basis functions that belong to the nine inner vertices by (ϕi)

9
i=1.

a) Show that for the bilinear element case, the following holds: The mass matrix M ∈
R9×9 with

(M)ij = (ϕi, ϕj)L2((0,1)2) for i, j = 1, . . . , 9

can be written as the Kronecker-product of two R3×3-matrices.

b) Show that for both the bilinear element case and the linear triangle element case, the
following holds: The stiffness matrix K ∈ R9×9 with

(K)ij = (∇ϕi,∇ϕj)L2((0,1)2) for i, j = 1, . . . , 9

can be written as the sum of two Kronecker-products of two R3×3-matrices.

c) Generalize above results to n2 quadratic patches or 2n2 triangles.

Theoretical exercise 3. (Bonus: Fundamental Lemma of Calculus of Variations
[5 points])

Let Ω ⊂ Rn be an a connected and open set and u ∈ L1,loc(Ω). Furthermore, k ∈ N0. If
Dαu = 0 for an α ∈ Nn

0 with |α| = k, then u is equal almost everywhere to a polynomial
of order k − 1.

Prove the Lemma stated above with the hints you got in your tutoring session.

The closing date for submission of the programming exercise is the 14th of
January!

Programming exercise 1. (Incorporation of boundary conditions and solving a PDE
[20 points])

After assembling the full stiffness matrices over the last weeks we now have to incorporate
the Dirichlet and Neumann boundary conditions. In a final step we will then put all
pieces together to result with a Finite Element program.

Tasks:

a) [10 points] Implement the member function
void incorporateBoundaryConditions(CSRMatrix* stiffnessMatrix, double*

loadVector) of the class PDE. As parameters you pass a pointer to the already
assembled stiffness matrix and the load vector.

First, iterate over the neumannEdgeIndices of Mesh which lie on the finest level, i.e.
for which isRefined is false. For every corresponding edge e you have to compute
the Jacobi determinant J of the linear transformation from the “interval” [0, 1] on
the x-axis (i.e. y-coordinate is 0) to the edge e such that (0, 0) is mapped to the first
edge-node and (1, 0) is mapped to the other one. Therefore |J | is just the length of
the edge e. Then call calcBoundaryIntegral of Basis for every node of e (with
the corresponding local node index as parameter) with |J | · a as factor and add this
value at the correct position of the load vector. Here, a is the value of the Neumann
boundary for the edge e.

Now, set g := 1030 ·n ·M with n being the number of nodes in the mesh and M being
the largest absolute value of an entry of the stiffness matrix. Then, iterate over the
DirichletEdgeIndices of Mesh which lie on the finest level. For every node index i
of a node of the corresponding edge e add g to the diagonal entry Kii of the stiffness
matrix and add g · b to the corresponding load vector position. Here, b is the value
of the Dirichlet boundary for the edge e.
Remark: For your convenience the member functions addToDiagonal(int i,

double value) and getMaxAbsEntry() have been added to the implementation of
the CSRMatrix class.

2

b) [10 points] Complete your finite element program: Implement the member function
void solvePDEFromFile(const char* infilename, int numMeshRefinements,

int maxIt, double eps, const char* outfilename) of PDE. The function should
read the file specified by infilename, refine the created mesh numMeshRefinements

times, assemble the global stiffness-matrix and load vector, incorporate the boundary
conditions, solve the resulting system with a CG-algorithm for CSR-matrices (exit
after maxIt iterations or if the relative error is below eps) and write the result to a
VTK-file called outfilename.

Here, the VTK-file should like this:
vtk DataFile Version 3.0

PDE solution

ASCII

DATASET UNSTRUCTURED GRID

POINTS N double

coord0 coord1 0.0

coord2 coord3 0.0
...

CELLS E X
L node1 node2 node3 node4 node5 node6

L node7 node8 node9 node10 node11 node12
...

CELL TYPES E
T
T
...

POINT DATA N
SCALARS u(x,y) double 1

LOOKUP TABLE default

s1

s2
...

Here, N denotes the number of nodes. coord0 and coord1 denote the x- and y-
coordinates of the first node. The other nodes follow analogously. E denotes the
number of elements. L denotes the number of local basis functions (i.e. 3 for the
linear and 6 for the quadratic Lagrange basis) and X = E · (L + 1). node1 denotes
the index of the first node of the first element. node4 node5 node6 and node10

node11 node12 are optional and have only to be given if the corresponding element
is quadratic. The other elements follow analogously. The number T is 5 for linear
elements and 22 for quadratic elements (this is a VTK-internal numbering). It has
to appear E times. s1 is the value of the solution of the PDE at node 1. The other
node values follow analogously.

Test your implementation:

• a) Enable quadrature (use the seven point rule) and call your function void

solvePDEFromFile(const char* infilename, int numMeshRefinements,

int maxIt, double eps, const char* outfilename) for the file
SampleGrid.txt. This resembles the Poisson problem

∆u = 1

on [0, 1]2 with u = 0 on ∂[0, 1]2 discretized by quadratic Lagrange elements.
The mesh should be refined six times. The CG-algorithm should be called with
parameters maxIt= 106 and eps= 10−20. Visualize the result (e.g. by paraview).

3

• b) To compare the diagonally preconditioned CG-algorithm to a standard CG
algorithm run the same routine for a non-preconditioned CG algorithm (you can
just set all entries of diag to 1 instead of calling genDiag in pcCG of CSRMatrix).
Compare the number of iterations.

Feel free to use your own code or the incomplete code from the website.
Note that the closing date for submission of the programming exercise is
the 14th of January.

4

