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Theoretical exercise 1. (The stokes equations [11 points])

Consider the discrete formulation of the Stokes problem[
A BT

B 0

] [
u
p

]
=

[
f
g

]
with the vector-Laplacian matrix

(A)ij =

∫
Ω
∇~φi : ∇~φj

and the divergence matrix

(B)kj = −
∫

Ω
ψk∇ · ~φj .

We have the discrete inf-sup stability condition

γ ≤ min
qh non-constant

max
~vh 6=~0

|(qh,∇ · ~vh)|
‖∇~vh‖‖qh‖

, (1)

with ‖∇~vh‖ := 〈Av,v〉1/2, ‖qh‖ := 〈Qq,q〉1/2 and |(qh,∇ · ~vh)| = |〈q, Bv〉|, where Q is
the pressure mass matrix with (Q)kl =

∫
Ω ψkψl. We want to express (1) in terms of the

eigenvalues of the pressure Schur complement BA−1BT . To this end, we consider the
generalized eigenvalue problem[

0 BT

B 0

] [
v
q

]
= σ

[
A 0
0 Q

] [
v
q

]
, (2)

a) [2 points] Show that for non-zero σ, we get 〈Av,v〉 = 〈Qq,q〉.

b) [2 points] Show that for non-zero σ, we also get〈
BA−1BTq,q

〉
〈Qq,q〉

=

〈
BTQ−1Bv,v

〉
〈Av,v〉

= σ2 . (3)

c) [5 points] Show that (1) implies

γ2 = min
q 6=1

〈
BA−1BTq,q

〉
〈Qq,q〉

. (4)

d) [2 points] Show that

γ2 = min
{v∈Rnu :〈Av,u〉=0,u∈kerB}

〈
BTQ−1Bv,v

〉
〈Av,v〉

.



The closing date for submission of the (bonus) programming exercise is the
28th of January!

Programming exercise 1. (Bonus: Variable functions and reentrant cracks/corners
[20 points])

a) [5 points] Use your code to calculate a discrete solution uh to the problem

−∆u(x, y) = 4− 2(x2 + y2) on Ω = (−1, 1)× (−1, 1)

u = 0 on ∂Ω

by using piecewise linear elements. The exact solution to the problem is given by
u(x, y) = (1− x2)(1− y2).

An easy method to employ the varying right hand side in the existing code is to create
a function resetRHS which is called after the refinement is done. This function then
calculates the value of the RHS-function in the barycenter of each element and sets
the corresponding material parameter for the elements (Note: you might have to
enlarge the materials vector of PDE). To this end, you can use a function pointer as
parameter for resetRHS and then just pass the right hand side function.

Use the mesh given in SampleGrid.txt (The right hand side still has to be corrected
by your code).

Calculate the L∞(Ω) and the normalized `2 errors on the finite element nodes, i.e.√
1
n

∑n
i=1(u(xi, yi)− uh(xi, yi))2. Here, n is the number of nodes, u is the real solu-

tion to the problem and uh is the discretized solution). Calculate the experimental
convergence rates of these errors by computing the solution for different grid refine-
ment levels.

b) [5 points] Calculate the L2-norm of the error, i.e.
√

(u− uh, u− uh)L2(Ω) (It will

be useful to create routines for assembling the mass-matrix (without the stiffness
part) and for numerical quadrature of the basis functions multiplied with variable
coefficients).

c) [5 points] Add Dirichlet zero boundary conditions to the edges 40 and 41 of
SampleGrid.txt. This can be interpreted as a crack in the underlying material
along the positive side of the x-axis. With this modification you are able to solve

−∆x,yu(r, θ) = (
175

2
r + 100r−

1
2 − 375

2
) · sin(

1

2
θ)

on Ω = (−1, 1)× (−1, 1) \ {(x, 0) | 0 ≤ x ≤ 1}
u = 0 on ∂Ω

where (r, θ) are the polar coordinates corresponding to the cartesian coordinates
(x, y). By ∆x,y we mean the Laplace operator corresponding to the cartesian coordi-
nates.

The solution can be written as

u(r, θ) =

{
(10r

1
2 − 50r

3
2 + 50r2 − 10r3) · sin(1

2θ) if r ≤ 1
0 else

Inspect the convergence rates of the above mentioned errors for this problem.

d) [5 points] In the same way you employed a variable right hand side in the previous
subtasks you can also employ varying boundary conditions. Additionally you have to
pay attention if you are dealing with Dirichlet or with Neumann boundary conditions
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for every specific edge. Implement a resetBC function which resets the boundary
condition after refinement. Then build a simple triangulation (e.g. divide the unit
square into two triangles) and solve the stationary heat equation with the following
prescribed temperatures and heat fluxes

∆u(x, y) = 0 on Ω = (0, 1)× (0, 1)

u(x, y) = y for all (x, y) ∈ ∂Ω ∩ {x = 1, 0 ≤ y ≤ 1}
u(x, y) = 0 for all (x, y) ∈ ∂Ω ∩ {0 ≤ x ≤ 1, y = 0}

∂u

∂~n
= −y for all (x, y) ∈ ∂Ω ∩ {x = 0, 0 < y ≤ 1}

∂u

∂~n
= x for all (x, y) ∈ ∂Ω ∩ {0 < x < 1, y = 1}.

It is easy to see that u(x, y) = xy is the exact solution. Calculate the convergence
rates for the L2- and L∞- errors.

Note that the closing date for submission of the programming exercise is
the 28th of January.
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