
Scientific Computing I

Winter Semester 2013 / 2014
Prof. Dr. Beuchler

Bastian Bohn and Alexander Hullmann

Excercise sheet 4. Closing date 12.11.2013.

Theoretical exercise 1. (Eigendecomposition of the Laplacian finite difference matrix
[5 points])

Let Lh be the operator matrix that stems from the discretization of −∆u = f on a
regular grid with mesh-width h = 1

n on (0, 1)2 using the 5-point-stencil.

a) Show that uνµ(x, y) = sin(νπx) sin(µπy) with (x, y) ∈ Ωh and 1 ≤ ν, µ ≤ n − 1 are
the (n− 1)2 eigenvectors of Lh.

b) Show that the corresponding eigenvalues are
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für 1 ≤ ν, µ ≤ n− 1.

c) Prove the following two results:
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Hint for (a) and (b): Set uνµ(x, y) = uν(x) · uµ(y). That way, the eigenvectors can be
written as the tensor product of one-dimensional functions, and we only need to consider
the one-dimensional case.

Theoretical exercise 2. (Finite difference stencil [5 points])

Show that the stencil

h−2

 −1/4 0 1/4
0 0 0

1/4 0 −1/4


is a discretization of ∂2

∂x∂y with central differences and prove that it is consistent of
order 2.

Theoretical exercise 3. (Limited regularity on non-convex domains [5 points])

We consider the domain

Ω = {(r, φ) : r ∈ (0, 1), φ ∈ (0, 32π)}

and the boundary value problem

−∆u = 0 on Ω , (1)

u = sin(23φ) on (r, φ) ∈ ∂Ω . (2)



a) Express the Laplacian operator in polar coordinates (r, φ) with

x = r cosφ

y = r sinφ

and compute the solution u that satisfies (1) and (2) using a product ansatz in φ
and r.

b) Show that if ∂u
∂x , ∂u

∂y were bounded, the same would hold for ∂u
∂r . Thereby conclude

that u 6∈ C1(Ω̄).

Programming exercise 1. (Data structure for meshes [10 points])

This week you will implement a class Mesh for your finite element project.

A two-dimensional “mesh” is a decomposition of a domain into simple subdomains, e.g.
quadrangles or triangles. For the implementation, we will use triangles as subdomains.
Each triangle is called an “element” and consists of exactly 3 “edges”. Each edge is
represented by 2 “nodes” for the linear Lagrange basis and by 3 “nodes” for the quadratic
Lagrange basis. Each node is a two-dimensional point defined by its coordinates in R2.
Note that certain “admissibility” assumptions have to hold, e.g. for two elements E1

and E2

• E1 ∩ E2 = ∅ or

• E1 ∩ E2 = e for an edge e or

• E1 ∩ E2 = n for a node n.

More on these assumptions and the possible structures of admissible meshes will be
introduced in the lecture during the next weeks.

Please stay consistent with the numbering of nodes in the reference triangle when you
index element nodes, i.e. for quadratic elements node P̂3 lies on the edge given by the
nodes P̂0 and P̂1 and so on.
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Figure 1: Reference triangles for linear (left) and quadratic (right) polynomials (num-
bering beginning with index 0)
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Tasks:

a) [4 points] Implement the following classes/structs

• Element – represents a triangle element. It contains the three indices of the
edges that belong to the element and an integer number which represents the
material inside the element (this will be relevant later).

• Edge – represents an edge. It contains the two indices of the nodes at the end of
the edge, one index for the node at the midpoint and two integer numbers which
represent the boundary condition and the boundary condition type (this will be
relevant later). For an edge-refinement algorithm which will be implemented in
a few weeks, we also need a boolean variable which indicates if the edge has
already been refined and also two integers indices for the two finer edges that
result from an edge-refinement.

• Node – represents a node (point) in the mesh. It contains the coordinates in R2

where the node lies.

Implement the necessary constructors and set- and get-routines for the member
variables for each of these classes.

b) [6 points] Implement the class/struct Mesh. It contains the following member vari-
ables:

• std::vector<Element> elements – the elements of the mesh.

• std::vector<Edge> edges – the edges of the mesh.

• std::vector<Node> nodes – the nodes of the mesh.

• std::vector<int> neumannEdgeIndices – this will be used for boundary con-
dition treatment of PDEs in a few weeks.

• std::vector<int> dirichletEdgeIndices – this will be used for boundary
condition treatment of PDEs in a few weeks.

(You can also use Element* instead of std::vector<Element> for example. How-
ever, you will have to pay attention to explicit memory allocation.)

Implement the following member functions for the Mesh class:

• void getNumElements() – returns the number of elements in the mesh.

• void getNumEdges() – returns the number of edges in the mesh.

• void getNumNodes() – returns the number of nodes in the mesh.

• void getNodesToElement(int ele, int* n, int size) – fills the array n of
size size with the node indices of the element with index ele. For linear La-
grangian basis, n must have size 3. For quadratic Lagrangian basis, n must have
size 6. Please stay consistent with the node numbering from Figure 1.

• int shareNode(int edg1, int edg2) – if the edges with indices edg1 and
edg2 share a node (i.e. if they touch each other) the index of the corresponding
node is returned. If the edges do not share a node the value −1 is returned.

• void createVTKFile(const char* filename) – Create a VTK-file (see e.g.
http://www.vtk.org/VTK/img/file-formats.pdf) to visualize the mesh. It
is stored as filename. The VTK-file looks like this:
# vtk DataFile Version 3.0

vtk output

ASCII

DATASET POLYDATA

POINTS x float
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http://www.vtk.org/VTK/img/file-formats.pdf


coord0 coord1 0.0

coord2 coord3 0.0
...

POLYGONS y z

3 ind0 ind1 ind2

3 ind3 ind4 ind5
...

where x denotes the number of nodes. coord0 and coord1 are the coordinates
of node 0, coord2 and coord3 are the coordinates of node 1 and so on. y is the
number of elements and z = 4·y. ind0, ind1 and ind2 are the indices (beginning
from 0) of the nodes in the corners of the first element. ind3, ind4 and ind5

are the indices of the nodes in the corners of the second element and so on.

Test your implementation:

• Construct the following mesh by hand and create a VTK file for it. You can
visualize the VTK-file using e.g. VTK or ParaView (both open source software).
You have to choose “Surface with Edges” in Paraview.
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