
Scientific Computing I

Winter Semester 2013 / 2014
Prof. Dr. Beuchler

Bastian Bohn and Alexander Hullmann

Excercise sheet 5. Closing date 19.11.2013.

Theoretical exercise 1. (Quadrature rules for continuous functions [5 points])

Let

Qn(f) =

n∑
i=1

w
(n)
i f(x

(n)
i) , n = 1, 2, . . .

be a sequence of quadrature rules on [a, b] with the following properties:

1. The quadrature rules converge for all polynomials, i.e., for all polynomials p we
have

lim
n→∞

Qn(p) =

∫ b

a
p(x)dx . (1)

2. There exists a constant C with

n∑
i=1

|w(n)
i | ≤ C , ∀n . (2)

a) Show that the quadrature rules Qn converge for all functions f ∈ C[a, b], i.e.,

lim
n→∞

Qn(f) =

∫ b

a
f(x)dx .

Hint: Use the Weierstrass approximation theorem.

b) Prove that the conditions (1) and (2) are satisfied for the Gauss quadrature rules.

Theoretical exercise 2. (Weak derivatives [5 points])

Consider the function u on the domain Ω = (−1, 1) and the weak derivative v = Dαu
with ∫

Ω
u(x)Dαφ(x)dx = (−1)α

∫
Ω
v(x)φ(x)dx ∀φ ∈ C∞0 (Ω) . (3)

a) Let

u =

{
1
2x

2 + x+ 1 for x < 0 ,

−1
2x

2 + x+ 1 for x ≥ 0 .

Does u have a second derivative in the strong or the weak sense? What is it?

b) Consider the Heaviside function

u(x) =

{
0 for x < 0 ,

1 for x ≥ 0 .

Show that no weak derivative Du exists!

Theoretical exercise 3. (Sobolev spaces [5 points])

Consider the function u(x) =
√
x on Ω = (0, 1).

For k ∈ {0, 1, 2}, what is the largest p ∈ N such that u ∈W k,p(Ω) holds?

Theoretical exercise 4. (Norm equivalence [5 points])

Show that for u ∈W 1,p(Ω) an equivalent norm is defined by

|||u|||1,p = ‖u‖Lp(Ω) + ‖Du‖Lp(Ω) .

Programming exercise 1. (Reading a PDE from a file and local stiffness matrices [10
points])

The overall result of the programming exercises will be a code to solve the PDE

∇ · (A(x, y)∇u(x, y)) + c(x, y) · u(x, y) = f(x, y)

for certain (Neumann and Dirichlet) boundary conditions on u : R2 → R by a triangular
finite element approach. The diffussion coefficients we employ look like this:

A(x, y) =

(
d11(x, y) 0

0 d22(x, y)

)
.

The task is simplified by assuming that the material coefficients A, c and f are constant
on each element.

Tasks:

a) [5 points] First we adress the automatic PDE and mesh generation from an input file
which contains information about the finite elements, the material and the boundary
conditions. To this end, implement a class/struct Material. It contains the (con-
stant) coefficients d11, d22, c, f and the necessary get- and set-routines. This
class is already fully implemented in this week’s code framework. Now create a
class/struct PDE. You will need your Mesh and Basis classes/structs from the last ex-
ercises (or the corresponding sample solutions from the website). Remark: It makes
sense to declare the Mesh class a friend of PDE. The PDE class/struct contains the
following information:

• std::vector<double> dirichletBCs – The values of different Dirichlet bound-
ary conditions.

• std::vector<double> neumannBCs – The values of different Neumann bound-
ary conditions.

• std::vector<Material> materials – The different material parameters which
are needed.

• Mesh* mesh – A pointer to the mesh that the PDE is solved on.

• Basis basis – The basis which is used on the finite elements.

Implement the following member functions:

• Mesh* getMesh() – Returns the mesh-pointer

• void createTriMeshAndPDEFromFile(const char* filename) – Creates a
mesh and sets the mesh information, material parameters and boundary condi-
tions according to the file filename. An example input file can be found on the
website. The file format has to be adhered to:

2

– In general an input file looks like this:

Materials: NumberofMaterials

Materialnr d11 d12 d21 d22 c f

Dirichlet: NumberofDirichletBCs

DirichletBCnr value

Neumann: NumberofNeumannBCs

NeumannBCnr value

Nodes: NumberofNodes

Nodenr Coordinate1 Coordinate2

Edges: NumberofEdges

Edgenr Nodenr1 Nodenr2 MidPointNodeNr bcType DirichletOrNeumannBCnr

Elements: NumberofElements

Elementnr Edgenr1 Edgenr2 Edgenr3 Materialnr

– Note that d12=d21= 0, but they are included in the input file anyhow.

– The Nodenr has to begin from 1 and go up to NumberofNodes (internally
they will be stored from 0 up to NumberofNodes−1), analogously for Edgenr,
etc.

– The MidPointNodeNr for edges has to be specified for quadratic basis func-
tions. For linear functions it is set to −1 for every edge.

– The bcType and DirichletOrNeumannBCnr fields for edges are optional.

– bcType is 1 for Dirichlet and 2 for Neumann boundary.

Test your implementation:

• Create a mesh from the file samplePDE.txt from the website and create the
VTK file for the mesh.

b) [5 points] Enhance your PDE class. You will need the classes/structs Basis and
IntegrationRule for this. Implement the following member functions:

• void enableQuadrature(IntegrationRule::RuleName ruleName) – enables
numerical quadrature for the member basis.

• void disableQuadrature() – disables numerical quadrature for the member
basis.

• void generateLocalStiffnessMatrixAndLoadVector(int ele, double**

stiffnessAndMassMatrix, double* loadVector, int matrixSize) – Re-
turns the matrix S + M where S is the stiffness- and M the mass-matrix and
a load vector for one finite element with index ele. matrixSize is the size of
loadVector and the number of rows (or columns) of stiffnessMatrix.

Instruction on the last task: You have learned on the exercise sheets 2 and 3 how to
calculate the mass- and stiffness matrices and load vectors on the reference triangle
T̂ . The integrands are the same this time, only the integration domain changed. This
time you integrate over an element T given by it’s 3 corner nodes a1, a2, a3 ∈ R2.
Therefore you have to calculate the absolute value of the 2 × 2 Jacobi determinant
|detJ | of the linear transformation from T̂ to T .

Then - given your material parameters d11, d22, c and f - you can call the routines
you already implemented for basis with the factor variable set to

• f · |detJ | for the load vector,

3

• c · |detJ | for the mass matrix,

• |detJ | for the stiffness matrix.

When applying the domain transformation to the stiffness integral a simple calcula-
tion yields that you need to pass (J−1)

T
as parameter A to get the right result.

Test you implementation:

• Create a PDE and mesh from samplePDE.txt. Calculate and print out the 3×3
stiffness- (plus mass-) matrices and the load vectors for all 4 elements.

Feel free to use your own code or the incomplete code from the website.

4

