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Theoretical exercise 1. (Weak formulation [7 points])

Consider the PDE
−4u+ λ2u = 0

on the domain Ω = (0, 1)2 with homogeneous Neumann boundary conditions on ∂Ω \
{1} × (0, 1), i.e.

∇u(x) · n(x) = 0 for x ∈ ∂Ω \ {1} × (0, 1) ,

where n(x) denotes the outer normal vector. State the weak formulation of the PDE
given the remaining boundary condition

a) u(x) = 1 for x ∈ {1} × (0, 1),

b) ∇u(x) · n(x) = 1 for x ∈ {1} × (0, 1),

c) ∇u(x) · n(x) = u(x) for x ∈ {1} × (0, 1).

Theoretical exercise 2. (Upper and lower bounds [7 points])

Consider the weak formulation: Find u ∈ H1
Γ1,0

(Ω) such that

a(u, v) = F (v) ∀v ∈ H1
Γ1,0(Ω)

with

a(u, v) =

∫
Ω
∇v(x)·D(x)∇u(x)dx+

∫
Ω

(b(x) · ∇u(x) + c(x)u(x)) v(x)dx+α

∫
Γ3

u(x)v(x)dS

and

F (v) =

∫
Ω
f(x)v(x)dx+

∫
Γ2

g2(x)v(x)dS + α

∫
Γ3

g3(x)v(x)dS

under the Assumptions 3.1 and 3.2.

a) Prove the boundedness of a(·, ·), see part (a) of Lemma 3.12, by showing that there
exists a constant γ with∫

Ω
(b(x) · ∇u(x) + c(x)u(x)) v(x)dx ≤ γ‖u‖1‖v‖1 ∀u ∈ H1(Ω), v ∈ H1(Ω)

and setting β = ‖D‖L∞ + c2
Ec

2
T + γ.

b) Prove the coercivity of a(·, ·), see part (b) of Lemma 3.12, for the case

• c(x) ≥ c0 > 0 almost everywhere, and for

• α > 0 and meas(Γ3) > 0.



c) Show that F (·) is bounded on H1(Ω), see part (c) of Lemma 3.12.

Programming exercise 1. (Uniform mesh refinement [10 points])

The creation of large meshes by hand is long-winded. To create a fine mesh from a
coarse one, you will implement a uniform mesh refinement routine this week. To this
end, a triangle element T is divided into four smaller triangle elements T1, T2, T3 and T4

by creating new edges which connect the old edge midpoints P01, P12 and P02 of T .
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Figure 1: Refinement of the triangle T

Tasks:

Enhance the Mesh class by three new methods (variable-names refer to the code from
the website)

a) [5 points] Implement the member function void refineEdge(int edg, int*

newEdge1, int* newEdge2, int* newNode). It refines the edge with index edg by
dividing it at the mid point and returns the indices of the two new edges newEdge1,
newEdge2 and the index of the mid point node of the old edge newNode. For example,
if the edge e1 from the left side of Figure 1 is to be refined, then the edges e11 and e12

and the node P01 have to be created. Their indices are then stored at the memory
pointed at by newEdge1, newEdge2 and newNode. The procedure of refinement is as
follows:

• Check if the edge with index edg has already been refined. If this is the case just
return the corresponding indices for the two finer edges and the mid point node.
This has already been implemented in the incomplete code on the website.

• Create the mid point node of the old edge if it does not already exist (i.e. if
midPointNodeIndex of edges[edg] is −1, this corresponds to the linear La-
grange basis) and add it to the nodes-vector.

• Create the two new edges and add them to the edges-vector. Copy the boundary
condition type and the boundary condition of the old edge to the new edges.
When using a linear Lagrange basis (i.e. if midPointNodeIndex of edges[edg]
was −1 in the beginning) you can pass −1 as midPointNodeIndex for the two
new edges. When using a quadratic Lagrange basis you have to create the mid
points of the two new edges, add them to the nodes-vector and pass their indices
to the two new edges.

• If the old edge had Dirichlet boundary condition, you need to add the edge in-
dices of the two new edges to DirichletEdgeIndices (analogously for Neumann
boundary conditions).
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• Refresh the information for the old edge: Set the refined variable to true and
set the refinedEdge indices accordingly.

b) [5 points] Implement the member function void refineElement(int ele). It re-
fines the element with index ele by dividing it into four new elements as shown in
Figure 1, i.e. you have to create T1, T2, T3 and T4 from T . In the code, T has to be
overwritten by one of the new elements. The procedure is as follows:

• Check if the mid points of the edges e4, e5 and e6 have to be created (i.e. check
if the quadratic Lagrange basis is used on the element). This is already imple-
mented in the incomplete code on the website.

• Call refineEdge for the edges e1, e2 and e3.

• Create the edges e4, e5 and e6 (and their mid points if they are needed, i.e. if
midPointsofNewEdgesNeeded is true) and add them to the edges-vector. Note
that these (inner) edges do not have any boundary conditions.

• Create the elements T1, T2, T3 (see Figure 1), copy the material information and
basis type of the old element to the new ones and add the elements to the
elements-vector. Here, the shareNode function might be helpful.

• Create the element T4, copy the material information and basis type of the old
element to the new one and overwrite the memory for T in the elements-vector
with this new element.

Finally write a member function void Mesh::uniformRefine(int numRefines)

which refines every element numRefines times. This function has already been im-
plemented in the incomplete code on the website.

Test your implementation:

• Create a mesh from the file SampleGrid.txt by using the method
createTriMeshAndPDEFromFile from the PDE class. Refine it four times and
write the resulting mesh to a VTK-file by the createVTKfile method of the
Mesh class.

Feel free to use your own code or the incomplete code from the website. If
you use the code from the website make yourself familiar with the design
of the Element,Edge and Node classes there.

The following has not been implemented during the exercises but has been added to
the incomplete code on the website for your convenience: The variable basisType

has been added to the Element class in the code of the website. Therefore,
also the constructors of Element have changed. The basisType is set by the
createTriMeshAndPDEFromFile method of PDE when creating the mesh. If you use
your own code you might need to add this information to get access to the basis type
on the elements when refining them.
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