
Scientific Computing I

Winter Semester 2013 / 2014
Prof. Dr. Beuchler

Bastian Bohn and Alexander Hullmann

Exercise sheet 7. Closing date 3.12.2013.

Theoretical exercise 1. (Weak form of the biharmonic equation [5 points])

Consider the biharmonic equation: Find u such that

4(4u) = f ∀x ∈ Ω ,

u = 0 ∀x ∈ ∂Ω ,

∂u

∂n
= 0 ∀x ∈ ∂Ω .

It can be written in weak form: Find u ∈ H2
0 (Ω) = {u ∈ H2(Ω) : u|∂Ω = 0, ∂u∂n |∂Ω = 0}

such that
a(u, v) = F (v) ∀v ∈ H2

0 (Ω) .

a) Determine the symmetric bilinear form a(·, ·).

b) Show that a(·, ·) is bounded on H2
0 (Ω).

c) Bonus question: What do you need to also show coercivity?

Theoretical exercise 2. (Weak form of the magnetostatics equation [5 points])

The equation reads: Find ~u such that

− curl(curl ~u) + κ · ~u = ~f ∀x ∈ Ω , (1)

(~u× ~n)× ~n = 0 ∀x ∈ ∂Ω ,

where ~n is the outer normal vector. Now let

H(curl,Ω) = {~u ∈ (L2(Ω))3 : (∇× ~u) ∈ (L2(Ω))3} ,
H0(curl,Ω) = {~u ∈ H(curl,Ω) : (~u× ~n)× ~n = 0 on ∂Ω} .

Our weak formulation of (1) reads: Find ~u ∈ H0(curl,Ω) such that

a(~u,~v) = F (~v) ∀~v ∈ H0(curl,Ω) .

a) Determine the symmetric bilinear form a(·, ·).

b) Show that a(·, ·) is bounded on H(curl,Ω).

c) Show that a(·, ·) is coercive.

Theoretical exercise 3. (Weak form of Lamé’s equation [5 points])

The stationary case of Lamé’s equation in strong form reads

−(λ+ µ) grad div ~u− λ∆~u = ~f in Ω ,

~u = 0 on ∂Ω

for λ, µ > 0 and can be written in weak form for ~u ∈
(
H1

0 (Ω)
)3

with

a(~u,~v) = F (~v) ∀~v ∈
(
H1

0 (Ω)
)3

.

a) Determine the symmetric bilinear form a(·, ·).

b) Show that a(·, ·) is bounded on
(
H1

0 (Ω)
)3

.

c) Bonus question: Show that a(·, ·) is coercive.

Programming exercise 1. ((Easy) assemblation of the global stiffness matrix [10
points])

Reminder: We want to solve

∇ · (D(x, y)∇u(x, y)) + c(x, y) · u(x, y) = f(x, y)

on some domain Ω with piecewise (i.e. elementwise) constant D, c and f (and with
certain boundary conditions).

Discretizing u by

u(x, y) =
N∑
i=1

αiφi(x, y)

for some basis φi, i = 1, . . . , N and using the same basis for the test function space, the
weak formulation (when omitting boundary integrals) reads

N∑
j=1

αj

∫
Ω

(∇φi(x, y))TD(x, y)∇φj(x, y)dxdy +
N∑
j=1

αj

∫
Ω
c(x, y)φi(x, y)φj(x, y)dxdy

=

∫
Ω
f(x, y)φi(x, y)dxdy ∀i = 1, . . . , N.

Therefore, the system K~α = ~f has to be solved with matrix entries

Kij =

∫
Ω

(∇φi(x, y))TD(x, y)∇φj(x, y)dxdy +

∫
Ω
c(x, y)φi(x, y)φj(x, y)dxdy

and vector entries
~fi =

∫
Ω
f(x, y)φi(x, y)dxdy.

Here, K is called global stiffness (plus mass-) matrix and ~f is called global load vector.

As you will see in the lecture, you can decompose the integrals into sums of local integrals
on the elements, i.e.

Kij =
∑

T∈Elements

∫
T

(∇φi(x, y))TD(x, y)∇φj(x, y)dxdy +

∫
T
c(x, y)φi(x, y)φj(x, y)dxdy

and
~fi =

∑
T∈Elements

∫
T
f(x, y)φi(x, y)dxdy.

Therefore you can assemble the global stiffness matrix and load vector by summing up
over all finite elements and calculating the local stiffness matrices and load vectors there.
However, you need to identify the global index i ∈ {1, . . . , N} that a local basis function
belongs to.

Tasks:

2

a) [10 points] Enhance the PDE class by the method
CSRMatrix* generateGlobalStiffnessMatrixAndLoadVector(double* loadVector,

int loadVecSize). It assembles the global stiffness matrix as CSRMatrix (see exer-
cise sheet 1) and returns a pointer to it. It also assembles the global load vector and
stores it at the memory of size loadVecSize pointed at by loadVector.

For this you just have to iterate over all elements in the mesh, call
generateLocalStiffnessMatrixAndLoadVector and add the results for the cur-
rent element to the corresponding entries in the global stiffness matrix and load
vector.

Note: As the number of (global) basis functions equals the number of nodes in the
mesh, you can just identify a node with a basis function. Therefore the function
getNodesToElement from the class Mesh is very useful to build a mapping from local
basis function indices to global ones.

For simplification: You are allowed to create the global stiffness matrix as full
N × N matrix (e.g. by using a N × N array) and then convert it to CSRMatrix
format, e.g. by the setEntries function. We will consider a more efficient method
which avoids this step next week.

Test your implementation:

• Create a PDE and mesh from SampleGrid.txt, enable quadrature by the seven
point rule and assemble the global stiffness matrix and load vector. Then call
the printMatrix routine of CSRMatrix.

Feel free to use your own code or the incomplete code from the website.

3

