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Theoretical exercise 1. (Compute FE solution by hand [5 points])

Consider the introductory example in Section 4.2.1 of the lecture. Compute the system
matrix K and the vector of the right hand side f. Then solve Ku = f for u by hand.

Theoretical exercise 2. (Quasi-unifom triangulation [5 points])

Show that the following two statements are equivalent formulations to enforce quasiuni-
form triangulations {Th}h based on triangles:

1. There exists a constant κ such that

ρT ≥ κ−1hT ∀ T ∈ Th, h > 0 ,

where ρT denotes the radius of the incircle of T and hT half of the diameter of T .

2. There exists an angle δ, such that

α(T ), β(T ), γ(T ) ≥ δ ∀ T ∈ Th, h > 0 ,

where α(T ), β(T ), γ(T ) denote the interior angles of T .

Theoretical exercise 3. (Gauss’s theorem for weakly differentiable functions [5 points])

We want to show that for u ∈ H2(Ω) and v ∈ H1(Ω), it holds that∫
Ω

(−4u)vdx =

∫
Ω
∇u · ∇vdx−

∫
∂Ω

∂u

∂~n
v , (1)

where ~n is the outward-pointing normal vector. This is the Gauss divergence theorem
for weakly differentiable functions.

By using a density argument and a trace theorem, it can be shown that∫
Ω
∇ · ~udx =

∫
∂Ω
~u · ~n

for ~u ∈ (W 1,1(Ω))n. Your task is to complete the proof by the following two steps:

a) Show that for v, w ∈ H1(Ω) and i = 1, . . . , n, we have∫
Ω

(
∂v

∂xi

)
wdx = −

∫
Ω
v

(
∂w

∂xi

)
dx+

∫
∂Ω
vw~ni .

b) Use the result in (a) to show (1).

The closing date for submission of the programming exercise is the 17th of
December!



Programming exercise 1. ((Efficient) assemblation of the global stiffness matrix [10
points])

Last week you implemented the function
CSRMatrix* generateGlobalStiffnessMatrixAndLoadVector(double* loadVector,

int loadVecSize) using a full matrix structure. This might work for small problem in-
stances but will fail for larger ones. This week we will consider an efficient assemblation
of the global stiffness matrix.

Tasks:

a) [10 points] Change the function
CSRMatrix* generateGlobalStiffnessMatrixAndLoadVector(double* loadVector,

int loadVecSize) from last week such that the assemblation of the CSRMatrix takes
place in an efficient way this time. For N basis functions you should achieve memory
use and a runtime which are at most O(N logN) (at least in the average case if you
use algorithms with randomness). The functionality should stay the same. In fact,
nothing has to be changed for the assemblation of the load vector.

One possible way would be to implement a helper-structure that first stores the
non-zero entries of all local stiffness matrices (together with the information of their
correct global positions) in a long array. Afterwards you can sort them according to
their lexicographical order in the global stiffness matrix (e.g. by a quick sort algorithm
with a corresponding lexicographic comparison of values) and finally iterate over them
to add up values with the same position in the global matrix. Then you can call the
setEntries routine of CSRMatrix with the results.

However, you do not have to chose this method as long as you come up with an
efficient algorithm to assemble the global matrix.

Test your implementation:

• Create a PDE and mesh from SampleGrid.txt, uniformly refine the mesh 8
times, enable quadrature by the seven point rule and assemble the global stiffness
matrix and load vector. Then use multiplyInto of CSRMatrix to multiply the
stiffness matrix with the unit-vector (1, 0, . . . , 0).

You can also try to do this with the old algorithm which should fail due to the
large storage requirements.

Feel free to use your own code or the incomplete code from the website.
Note that the closing date for submission of the programming exercise is
the 17th of December.
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