

Einführung in die Grundlagen der Numerik

Wintersemester 2014/2015 Prof. Dr. Marc Alexander Schweitzer Sa Wu

Übungsblatt 1.

Abgabe am 14.10, vor der Vorlesung.

Aufgabe 1. (Skalarprodukte, Gramsche und positiv definite Matrizen)

Es seien X ein reeller n-dimensionaler Raum, $\langle \cdot, \cdot \rangle$ und $[\cdot, \cdot]$ Skalarprodukte auf X, und $\{g_1, \ldots, g_n\}$ eine Basis von X. Ferner seien $\alpha := (\alpha_1, \ldots, \alpha_n)^T$, $\beta := (\beta_1, \ldots, \beta_n)^T$. Zeigen Sie:

a) Es gibt ein eindeutig bestimmtes $G \in \mathbb{R}^{n \times n}$ mit

$$\langle \sum_{i=1}^{n} \alpha_i g_i, \sum_{i=1}^{n} \beta_i g_i \rangle = \alpha^T G \beta$$
.

G ist symmetrisch, positiv definit.

b) Es gibt ein $A \in \mathbb{R}^{n \times n}$ mit

$$\langle \sum_{i=1}^{n} \alpha_i g_i, \sum_{i=1}^{n} \beta_i g_i \rangle = (A\alpha)^T (A\beta) .$$

c) Es gibt eine lineare Abbildung $S \in L(X, X)$ mit

$$[x,y] = \langle Sx,y \rangle$$
.

d) Es gibt eine lineare Abbildung $T \in L(X, X)$ mit

$$[x,y] = \langle Tx, Ty \rangle$$
.

(6 Punkte)

Aufgabe 2. (Polynomgrade)

Eine Funktion $f(\cdot)$ heisst gerade im Fall f(x) = f(-x) und ungerade im Fall der Beziehung f(-x) = -f(x).

Betrachten Sie den Polynomraum Π_n mit innerem Produkt

$$\langle f, g \rangle := \int_{-a}^{a} f(x)g(x)\omega(x) dx,$$

wobei $\omega(x)$ eine gerade nicht-negative Gewichtsfunktion ist.

- a) Zeigen Sie, dass $\langle f, g \rangle = 0$, wenn f ein gerades und g ein ungerades Polynom (aus Π_n) ist.
- b) Die Monome aus Π_n ordne man so an, dass erst die geraden und dann die ungeraden kommen, also $(v_0, \ldots, v_n) = (1, x^2, x^4, \ldots, x, x^3, \ldots)$. Zeigen Sie, dass die zugehörige Gram-Matrix G^n Block-Gestalt hat.
- c) Berechnen Sie für diese Anordnung und $a=1,\ n=4,\ \omega\equiv 1$ die zugehörige Gram-Matrix G^n . Geben Sie außerdem die Konditionszahlen der (Unter)matrizen $G^n, n=0,1,2,3$ bezüglich der $\|\cdot\|_2$ an.

(4 Punkte)

Aufgabe 3. (QR-Zerlegung, Gram-Schmidt)

Es sei $A \in \mathbb{R}^{n \times n}$ eine reguläre Matrix mit Spaltenvektoren $a_1, \ldots, a_n \in \mathbb{R}^n$ und $q_1, \ldots, q_n \in \mathbb{R}^n$ die durch das Gram-Schmidt-Verfahren gewonnene Orthonormalbasis, d.h.

$$\tilde{q}_j = a_j - \sum_{k=1}^{j-1} \langle a_j, q_k \rangle q_k$$
 und $q_j = \frac{1}{\|\tilde{q}_j\|_2} \tilde{q}_j$ für $j = 1, \dots, n$.

- a) Zeigen Sie, dass für $R \in \mathbb{R}^{n \times n}$ mit $r_{kj} = \left\{ \begin{array}{ll} \langle a_j, q_k \rangle & \text{für } k < j \\ \|\tilde{q}_j\|_2 & \text{für } k = j \\ 0 & \text{sonst} \end{array} \right\}$ die Zerlegung A = QR folgt.
- b) Berechnen Sie Q und R für $A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 1 & 0 & 2 \end{pmatrix}$.

(3 Punkte)

Aufgabe 4. (Gram-Schmidt-Verfahren)

Berechnen Sie mit dem Gram-Schmidt-Verfahren von der Monombasis $1, x, \dots, x^3$ auf [0,1] ausgehend eine Orthonormalbasis zum Skalarprodukt $\langle f,g\rangle=\int_0^1 fg$ für Π_3 .

(3 Punkte)