Aufgabe 7: Es sei $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

- a) Berechnen Sie $\mathbf{B} = e^{t\mathbf{A}}$.
- b) Bestimmen Sie \mathbf{B}^{-1} . Welche Matrix erhalten Sie?
- c) Zeigen Sie $\mathbf{B}^{-1} = e^{t\mathbf{A}^T} = (e^{t\mathbf{A}})^T$.

LÖSUNG:

a)

$$\begin{split} A^2 &= \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -1 \,, \\ A^3 &= AA^2 = A \cdot (-1) = -A \,, \\ A^4 &= AA^3 = A \cdot (-A) = -A^2 = 1 \,, \\ A^5 &= AA^4 = A \cdot 1 = A \,. \end{split}$$

Ab hier wiederholt sich alles!

$$\Rightarrow A^{k} = \begin{cases} A & \text{für } k = 4l+1, \ l = 0, 1, 2, \dots \\ -1 & \text{für } k = 4l+2, \ l = 0, 1, 2, \dots \\ -A & \text{für } k = 4l+3, \ l = 0, 1, 2, \dots \\ 1 & \text{für } k = 4l+4, \ l = 0, 1, 2, \dots \end{cases}$$

$$\Rightarrow B = e^{tA} = \sum_{k=0}^{\infty} \frac{t^{k} A^{k}}{k!} = \left(\sum_{l=0}^{\infty} \frac{(-1)^{l} t^{2l}}{(2l)!}\right) \mathbb{1} + \left(\sum_{l=0}^{\infty} \frac{(-1)^{l} t^{2l+1}}{(2l+1)!}\right) A$$

$$= \cos t \cdot \mathbb{1} + \sin t \cdot A = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}.$$

Alternativer Lösungsweg:

Die Eigenwerte der Matrix $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ sind $\lambda_1 = -i$ und $\lambda_2 = i$. Die zugehörigen Eigenvektoren sind $v_1 = \begin{pmatrix} 1 \\ -i \end{pmatrix}$ und $v_2 = \begin{pmatrix} 1 \\ i \end{pmatrix}$. Demnach lässt sich die Matrix A schreiben als

$$A = C \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} C^{-1}$$

$$= \begin{pmatrix} 1 & 1 \\ -i & i \end{pmatrix} \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{i}{2} \\ \frac{1}{2} & -\frac{i}{2} \end{pmatrix}$$

$$\Rightarrow e^{At} = C \begin{pmatrix} e^{-it} & 0 \\ 0 & e^{it} \end{pmatrix} C^{-1}$$

$$= \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}$$

b) Man rechnet leicht nach, dass

$$B^{-1} = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix} = B^{T}.$$

c) Es gilt $B^{-1} = B^T$, also ist B orthogonal.

$$\Rightarrow B^{-1} = B^{T} = (e^{tA})^{T} = \left(\sum_{k=0}^{\infty} \frac{t^{k} A^{k}}{k!}\right)^{T} = \sum_{k=0}^{\infty} \frac{t^{k} (A^{T})^{k}}{k!} = e^{tA^{T}} = e^{-tA} = (e^{tA})^{-1}.$$

Aufgabe 8: a) Gegeben seien die Matrix $A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix}$ und die beiden Vektoren $x = (1, 0, 1)^T$, $y = (0, 1, 1)^T$.

Zeigen Sie, dass der Winkel $\phi := \angle(x,y)$ zwischen x und y, definiert durch $\cos \phi := \frac{x \cdot y}{||x|| \ ||y||}$, gleich dem Winkel $\psi := \angle(Ax,Ay)$ zwischen Ax und Ay ist.

b) Eine 3×3 Matrix A heißt winkeltreu, falls A invertierbar ist und

$$\angle(Ax, Ay) = \angle(x, y)$$

für alle $x, y \in \mathbb{R}^3 \setminus \{0\}$ gilt. Zeigen Sie, dass jede Matrix A der Form $A = \lambda Q$ mit $Q \in O(3)$ und $\lambda \in \mathbb{R} \setminus \{0\}$ winkeltreu ist.

c) Die Matrix A aus Aufgabenteil a) kann in der Form $A = \lambda Q$ geschrieben werden, wobei $\lambda \in \mathbb{R} \setminus \{0\}$ und $Q \in O(3)$. Berechnen Sie diese λ und Q.

Tipp: Berechnen Sie | det A| unter Berücksichtigung der Tatsache, dass sich die Matrix A schreiben läßt als $A = \lambda Q$ mit $Q \in O(3)$.

LÖSUNG:

a)

$$||x|| = \sqrt{2} = ||y||,$$

$$\cos \phi = \frac{x \cdot y}{||x|| \cdot ||y||} = \frac{1}{\sqrt{2} \cdot \sqrt{2}} = \frac{1}{2}.$$

$$Ax = \begin{pmatrix} 1 \\ 1 \\ \sqrt{2} \end{pmatrix}, ||Ax|| = 2,$$

$$Ay = \begin{pmatrix} -1 \\ 1 \\ \sqrt{2} \end{pmatrix}, ||Ay|| = 2,$$

$$\cos \psi = \frac{Ax \cdot Ay}{||Ax|| \cdot ||Ay||} = \frac{2}{2 \cdot 2} = \frac{1}{2} = \cos \phi. \quad \checkmark$$

$$\angle(Ax, Ay) = \angle(x, y) \Leftrightarrow \frac{Ax \cdot Ay}{\|Ax\| \cdot \|Ay\|} = \frac{x \cdot y}{\|x\| \cdot \|y\|}.$$

 $A = \lambda Q$ mit $Q \in O(3)$ und $\lambda \in \mathbb{R} \setminus \{0\}$ impliziert:

$$\Rightarrow ||Ax|| = ||\lambda Qx|| = |\lambda|||Qx|| = |\lambda|||x||,$$

$$||Ay|| = ||\lambda Qy|| = |\lambda|||y||,$$

$$Ax \cdot Ay = \lambda Qx \cdot \lambda Qy = \lambda^2 (Qx \cdot Qy) = \lambda^2 (x \cdot y),$$

$$\Rightarrow \frac{Ax \cdot Ay}{||Ax|| \cdot ||Ay||} = \frac{\lambda^2 (x \cdot y)}{|\lambda|^2 ||x|| \cdot ||y||} = \frac{x \cdot y}{||x|| \cdot ||y||}, \text{ da } \lambda^2 = |\lambda|^2.$$

Da $\lambda \neq 0$ ist A offensichtlich invertierbar. $(A^{-1} = \lambda^{-1}Q^T)$

c) Allgemein gilt: $A = \lambda Q$

$$\Rightarrow \det A = \det(\lambda Q) = \lambda^n \det Q$$

Wir wissen: $|\det Q| = 1$. Also folgt

$$|\det A| = |\lambda|^n$$

$$\Leftrightarrow |\det A|^{\frac{1}{n}} = |\lambda|$$

Hier in unserem Beispiel gilt: det $A = \sqrt{2} + \sqrt{2} = 2\sqrt{2} = 2^{3/2} > 0$.

Behauptung: $\lambda = \sqrt{2} = 2^{1/2}$. Denn

$$(\det A)^{1/3} = (2^{3/2})^{1/3} = 2^{1/2} = \sqrt{2}$$

und

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix} = \underbrace{\sqrt{2}}_{\lambda} \cdot \underbrace{\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix}}_{Q \in O(3)!}.$$

Beachte: $\lambda = \sqrt{2} =$ Länge der Spaltenvektoren von A!

Im Allgemeinen muss man das Vorzeichen von λ prüfen. Hier ist das klar wegen n=3!

Aufgabe 9: Welche Aussagen sind richtig?

a)	Die Eigenwerte einer Drehmatrix sind stets	±1. ja □	nein □
b)	Die Eigenwerte einer Spiegelungsmatrix sin	d stets ± 1 . ja \square	nein \square
c)	Die Eigenwerte einer beliebigen orthogonaler	n Matrix sind stiga \square	tets ± 1 . nein \square
d)	Die Determinante einer beliebigen orthogon	alen Matrix ist ja □	$\pm 1.$ nein \square
e)	Jede längentreue (d.h. orthogonale) linear winkeltreu.	e Abbildung i	st auch
		ја 🗆	nein □
f)	Jede winkeltreue lineare Abbildung ist auch	längentreu. ja □	nein \square

LÖSUNG:

- a) Nein! In der Vorlesung wurde gezeigt, dass die Eigenwerte einer Drehmatrix komplex sein können.
- b) Ja! Siehe einleitendes Beispiel im Kapitel Diagonalisierung.
 Alternativ: Aus der Vorlesung wissen wir, dass die Spiegelungsmatrix eine orthogonale Matrix ist. Zudem wissen wir, dass der Betrag der Eigenwerte einer orthogonalen Matrix jeweils 1 ist. Da die Spiegelungsmatrix zudem symmetrisch ist und nur reelle Einträge hat, kann sie nur reelle Eigenwerte haben. Somit müssen die Eigenwerte ±1 sein.
- c) Nein! Wie im Fall der Drehmatrix können die Eigenwerte auch komplex sein.
- d) Ja! Siehe Vorlesung.
- e) Ja! Siehe Vorlesung.
- f) Nein! Die Matrix A = 21 ist zwar winkeltreu aber nicht längentreu.

Aufgabe 10: Thema: Eigenschaften schiefsymmetrischer Matrizen

Sei A eine reelle $n \times n$ Matrix mit $A^T = -A$, d. h. A ist schiefsymmetrisch. Welche Aussagen sind richtig?

a) Die Spur von A, tr A, ist gleich null. ja \square nein \square

b) Es gilt $\det A = 0$ für n = 2. ja \square nein \square

c) Es gilt det A=0 für n=3. ja \square nein \square

d) Es gilt $Ax \cdot x = 0$ für alle $x \in \mathbb{R}^n$. ja \square nein \square

e) Wenn $\lambda \in \mathbb{R}$ ein Eigenwert von A ist, dann folgt $\lambda = 0$.

 $ja \square$ nein \square

f) $\exp A$ ist eine orthogonale Matrix. ja \square nein \square

g) Es gilt $\det(\exp A) = 1$. ja \square nein \square

LÖSUNG: Die Antworten lauten:

a) Ja, denn alle Diagonaleinträge von A sind Null.

b) Nein! Beispiel
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

c) Ja. Man berechnet für eine beliebige schiefsymmetrische 3×3 -Matrix

$$\det \begin{pmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{pmatrix} = 0 + abc + (-a) \cdot (-b) \cdot (-c) - 0 - 0 - 0 = 0.$$

d) Ja.
$$Ax \cdot x = x \cdot A^T x = x \cdot (-A)x = -x \cdot Ax = -Ax \cdot x \Rightarrow 2Ax \cdot x = 0.$$

e) Ja. $Ax \cdot x = 0$ bedeutet, dass Ax stets senkrecht auf x steht. Also kann Ax kein Vielfaches von x sein, ausser das Nullfache.

Formal: Sei $Ax = \lambda x$ mit $x \neq 0$. Dann $0 = Ax \cdot x = \lambda x \cdot x = \lambda ||x||^2 \Rightarrow \lambda = 0$.

- f) Ja, siehe Vorlesung.
- g) Ja. $\det(\exp(tA))$ ist stetig (differenzierbar) in t und kann für beliebige t nur die Werte 1 und -1 annehmen, da $\exp(tA)$ stets orthogonal ist. Da die Werte dazwischen nicht möglich sind, muss die (stetige) Funktion für alle t konstant sein. Da

$$\det(\exp(0A)) = \det(\exp(0)) = \det(\mathbb{1}) = 1,$$

muss auch gelten

$$\det(\exp(A)) = \det(\exp(1A)) = 1.$$