
Numerical Algorithms

Winter Semester 2014/2015
Lecturer: Prof. Dr. Beuchler
Assistent: Katharina Hofer

Excercise sheet 1. Closing date Theory: 14.10.2014, Programming:
21.10.2014.

All exercises shall be solved in a group of two persons. For admittance to the final exam
you have to score 50% or more of the overall score (for both, the theoretical and the
programming exercises, separately). All theoretical exercises can be written by hand on a
sheet. For the programming exercises please prepare a pdf where you explain the code, put
the corresponding code parts there and where you show your results. Furthermore you shall
send me a running version of your program. There is a code with a lineare algebra package
and some additional functionality. This programm will be extended during exercises and for
all 1d programming exercises there will be a sample solution. This gives you the possibility
to use code which you mabe didn’t implement the week before. If you want to use the
code please send a mail to hofer@ins.uni-bonn.de and I will send you the code. If you have
question to the prepared code don’t hesitate to ask. Furthermore I will explain the parts
you will need in the first tutorial.
If you wish you can also use your own code. For the exercise you need at least a working
lineare algebra package.

1. Theoretical exercise. [5 points.] The integrated Legendre-polynomials are given
by

L̂n(x) =

∫ x

−1
Ln−1(s) ds n ≥ 1, (1)

(Ln(x) denotes the n-th Legendre-polynomial), the scaled integrated Legendre-
polynomials by

K̂n(x) = (−1)nγn

∫ x

−1
Ln−1(s) ds n ≥ 2

with γi =

√
(2i−3)(2i−1)(2i+1)

4 and

K̂0(x) =
1− x

2
K̂1(x) =

1 + x

2
.

(a) Show the relation

L̂n(x) =
1

2n− 1
(Ln(x)− Ln−2(x)) ∀n ≥ 2. (2)

(b) Show
L̂n(±1) = 0 ∀n ≥ 2.

(c) Show the Orthogonality:∫ 1

−1
L̂n(x)L̂m(x) dx = 0 |n−m| /∈ {0, 2}.

(d) Show the relation

L̂n(x) =
x2 − 1

2n− 2
P

(1,1)
n−2 (x) n ≥ 2

where P
(1,1)
n denotes the n-th Jacobi-polynomial.

(e) Calculate and scetch/plot the first five integrated Legendre-Polynomials L̂n(x)
and the first five scaled integrated Legendre-Polynomials K̂n(x) on the interval
[−1, 1]. (HINT: For this item you can use Mathematica/Maple or Matlab.)

2. Theoretical exercise. [5 points.] The Gaussian quadrature rule for

I(f) =

∫ 1

−1
f(x) dx

is given by

n∑
i=1

wif(xi) = Qn(f)

where the weights wi and the points xi are chosen such that

I(f) = Qn(f) ∀f ∈ P2n−1.

Explain how the weights wi and the points xi are computed.

3. C++/C. [5 points.] Legendre-polynomials:

(a) Implement a routine for the evaluation of Ln(x) for given values n and x.
You can either use the class LegendreBasis1D in the files basis.hpp, basis.cpp
(Attention, they need the linalg-Package) or you write your own code (please
consider that you will need your basis functions for the 1d and 2d code, so make
sure that this will be possible!). For a given polynomial degree p and a given
point x the Legendre-polynomials up to polynomial degree p shall be return in
the Vector basis.

void LegendreBasis1D::get_basisvalues(Vector & basis, int p, double x);

(HINT: Use the recurrence relation of the Legendre polynomials!)

(b) Test your implementation: Calculate the values of the Legendre-polynomials up
to n = 7 at the points x0 = −1, x1 = −0.3, x2 = 0.2, x3 = 0.9.

4. C++/C. [5 points.] Scaled integrated Legendre-polynomials:

(a) Implement a routine for the evaluation of K̂n(x) for given n and x. (call analogue
to the Legendre-Polynomials, if you use the files basis you can use the class
IntLegendreBasis1D). (HINT: Use the relation (2), derive a similar relation
between the Legendre and the polynomials

K̃n(x) = (−1)nK̂n(x)

and correct the sign at the end of the evaluation. You can use the global func-
tions intleg and gamma in glob.hpp. Another possibility would be to use a
recurrence relation for K̂n(x).)

(b) Test your implementation: Calculate the values of the scaled integrated
Legendre-polynomials up to n = 7 at the points x0 = −1, x1 = −0.3, x2 =
0.2, x3 = 0.9.

2

(c) Implement a routine for the evaluation of the first derivative of the scaled
integrated Legendre-polynomials for a given n and x. The call in IntLegendre-
Basis1D is

void IntLegendreBasis1D::get_diffbasisvalues(Vector & basis, int p, double x);

(d) Test your implementation: Calculate the values of the first derivatives of the
scaled integrated Legendre-polynomials at the points x0 = −1 and x1 = 0.4
(HINT: You can use (1)).

5. C++/C. [5 points.] Gauss-Legendre Integration (Attention: you will need your
implementation of the Legendre-Polynomials!)

(a) Implement the Gauss-Legendre Integration routine given in the lecture. You
can use the files integration.hpp, integration.cpp, then you need to implement

void Int1D::calculateWeightsIntpoints(int n);

(HINT: The weights and points of the integration formula can be efficiently
computed by solving an eigenvalue problem, see lecture “Einführung in die
Grundlagen der Numerik ”! Use the Lapack-Blas Library and use the function
dsteqr , documentation can be found at
http://www.netlib.org/lapack/double/dsteqr.f If you use the prepared code,
everything you need to use the function dsteqr was already done.)

(b) Test your routine with f1(x) = 100x · sin(πx) and f2(x) = 1
2x

2 + x12. Calculate∫ 1

−1
fi(x)dx i = 1, 2

for n = 2, 5, 8, 11 where n denotes the number of integration points. Which n
do you need to calculate f2 exactly?

3

