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Exercise 13. (Stability and consistency for the transport equation)

Consider the linear transport equation

(Pu)(z,t) = Owu(x,t) + bOyu(z,t) =0, (x,t) € (0,1) x (0,T),
u(z,0) = g(z) , z € (0,1).

Now assume that finite difference discretizations u} = u(x;,t,), (Du)? = 0, D being the
form the equation takes when using discrete operators, fulfilling the CFL condition
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are given. Further assume that the initial condition ¢ admits a solution u € C*.
Recall that a discretization uy for the transport equation is called stable if

K" := max |u]| < K° := max |g(z;)]| .
Also, recall that the consistency error of this discretization is given by
T;L = (Pu)(xj,t,) — (Du)?) .

Remark: In some literature the term conditionally stable (i.e. depending on some con-

dition, here CFL) is used. Stability can also be shown with von Neumann stability
!

analysis, i.e. checking boundedness of the amplification factor G = max]u;-”rl Juf] <1

for u(z,t) = exp(at + ibx) with a,b € R.

a) Show that the Friedrich method
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is stable and has consistency order 1 in time 2 in space, i.e.
2
|77 € O(At + Az?) .

b) Show that the Lax-Wendroff method
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is stable and has consistency order 2.

Hint: Show that G? =1 — (r?2 — r%)(1 — cos(bAx))?.
(6 Points )



Programming exercise 5. (Upwind scheme for the transport equation)

Consider the case of the transport equation used for the introduction of the upwind
scheme At
+1 _
= b (uf i)
with b = 1, u} ~ w(zj, ty), Az = ﬁ, xj = jAx, j =0,...,.M, At = %, tn, = nAt,

7 =0,..., N, for the initial boundary value problem

u

0w + bOru =0 (x,t) € (0,1) x (0,1)
u(0,t) =0 t>0
u(z,0) = g(x) x € (0,1).

Let ¢ = 0.2 and

o= {1 z € (0,2a) o exp(—l_(%a)z> z € (0,2a) ‘

. Y
0 otherwise 0 otherwise

a) Implement the upwind scheme.

b) Plot the exact solutions to initial data g1, g2 at times ¢ = 0,0.25,0.5 into one figure
for each g.

c) For M = N = 24,28 plot the numerical solutions obtained with the upwind scheme
to initial data g1, g2 at times t = 0,0.25,0.5 into one figure for each g.
(3 Points )

Exercise 14. (Consistency estimates for functions with insufficient regularity)

For 0 < h < 1 consider the difference operators 91, 9=, 8° and 0790~ applied to the
function

1

—(x—=1)3 for0<z<1
u:[0,2] - R xr—>{ (@ ) orU=T=

6 |(z—1)3 forl<z<2
Compute the errors of the difference operators in z = 1. Compare these results with the
theoretical results known from the lecture.

(3 Points )



Exercise 15. (Difference operators for non-uniform mesh widths)

Let hyw, hg, hy and hg be arbitrary positive numbers.
a) For r € R and u € C3(R) let
uw =u(r — hw) uz :=u(x) ug :=u(x + hg).

Show that
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with h := max{hw, hg}. What happens for hy = hy?

b) For (z,y) € R? and u € C3(R?) let

uy =u(x,y + hy)
uw =u(z — hy,y) uz =u(r,y) up =u(r + hg,y)
us =u(z,y — hg)

Show that
2 + 2 uw + 2 U
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with h := max{hw, hg, hn,hs}. What happens for h = hg = hyy = hy = hg?
(4 Points )
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