
Exercises to Wissenschaftliches Rechnen I/Scientific Computing I
(V3E1/F4E1)

Winter 2016/17

Prof. Dr. Martin Rumpf
Alexander Effland — Stefanie Heyden — Stefan Simon — Sascha Tölkes

Problem sheet 3

Please hand in the solutions of exercise 8 and 9 on Tuesday November 15!
Please prepare the solution of programming task 1 for Thursday November 24!

Exercise 8 2+4 Points

(i.) Show that ∆ log(|x|) = 0 if x ∈ R2\{0}.
(ii.) Determine the weak solution of the following boundary value problem in R2:

−div(a∇u) = 0 in B2(0) \ B 1
2
(0) ,

u = 1 on ∂B 1
2
(0) ,

u = 0 on ∂B2(0)

with

a(x) =

{
1 if |x| ≤ 1 ,
2 if |x| > 1 .

Exercise 9 4+2+2 Points

Consider the Argyris finite element (T,P5, Γ) with the following 21 degrees of free-
dom

Γ(p) = (Γα(P))α=1,...,21 = {p(xi), ∂k p(xi), ∂k∂l p(xi), ∂ni p(mi)}i∈{0,1,2},k,l∈{1,2} ,

where ni denotes the outer normal associated with the edge Ei at the edge midpoint
mi.

(i.) Show that any function in P5(T) is uniquely determined by an Argyris finite
element function on T.

x0 x1

x2

E0

E1

E2

Let Th be any triangulation of a polygonal domain Ω ⊂ R2, Vh be the space of Argyris
finite elements on Th.
(ii.) Show that a function v ∈ Vh is continuous.
(iii.) Show that a function v ∈ Vh restricted to an edge has continuous normal and
tangential derivatives and conclude that v is differentiable.

Programming task 1

Consider Poisson’s problem

−4 u = f on Ω , (1)

u = u∂ on ∂Ω .

We assume u∂ ≡ 0. Then the weak formulation of (1) is∫
Ω
∇u · ∇ϕ dy =

∫
Ω

f ϕ dy (2)

for f ∈ L2(Ω).
Consider two different functions f :

1. f ≡ 1 and

2. a function f that is obtained by mapping [0, 1]2 to [−1, 1]2, interpreting that
domain as the complex plain and then taking the imaginary part of z

2
3 . For

details on the implementation and a simplified formula, we refer to (4) below.

In this programming task, problem (2) should be solved using linear (P1) finite
elements. On the lecture web site, you can download a code framework written in
C++ which implements a general two-dimensional triangular mesh for 2D problems
and surfaces in 3D using P1 finite elements. All computations are performed on the
unit triangle and then mapped to the respective element using a transformation X.

x̂0 x̂1

x̂2

E2

E0E1

X(x̂) = Ax̂ + b

x0

x1
x2

xi = X(x̂i)

We denote the unit triangle by T̂ and set û = u ◦ X and v̂ = v ◦ X as the pullback of u
and v. Using the transformation formula we derive∫

T
∇u · ∇v dy =

∫
T̂

√
det DXTDX∇ûT

(
DXTDX

)−1
∇v̂ dŷ (3)

for a triangle T ∈ Th, where Th is a triangulation of Ω. The transformation formula
also has to be applied to the right hand side integral.
To assemble the system matrix, we use the common scheme of iterating over all
elements, assembling local matrices there and then mapping local indices on the
element to global node indices.

The following code fragments have to be filled in:

lib/triangleMesh/unityTriangleIntegratorShellFE.h
The local assembly of∫

T̂
∑
k,l
∇(φi)kakl∇(φj)l dŷ

for basis functions φi and φj and a given matrix A = (akl)k,l.

lib/triangleMesh/unityTriangleIntegratorShellFE.h
The assembly of the global system matrix from local matrices.

course/stiffnessMatrixIntegrator.h
Implement the transformation of

∫
T∇u · ∇v dy using formula (3).

course/rhs.h
The assembly of the right hand sides. Implement f ≡ 1 and

f (y) =
(
(−1 + 2y1)

2 + (−1 + 2y2)
2
) 1

3 sin
(2

3atan2(1+ 2y2,−1 + 2y1)
)

. (4)

atan2(y2, y1) is a C++ function computing the angle in radians.

In the operator structure given, you only have to implement the evaluation of
the numerical quadrature of f on a triangle T (given as element el in the code).

Further information: The code can be downloaded from the lecture web site, where
you can also find input files containing discretized computational domains of varying
grid size, additional information and a documentation of the classes needed to solve
this task. A configuration file for CMake, which can be used to create Makefiles and
project files for different IDEs, is provided. To compile, you need to download and
install the Eigen library.
Results will be saved in the legacy VTK format which can be visualized by a number
of tools, e. g. Paraview.

• http://numod.ins.uni-bonn.de/teaching/ws16/WissRechI/

• https://cmake.org/

• http://eigen.tuxfamily.org/

• http://www.paraview.org

