
Exercises to Wissenschaftliches Rechnen I/Scientific Computing I
(V3E1/F4E1)

Winter 2016/17

Prof. Dr. Martin Rumpf
Alexander Effland — Stefanie Heyden — Stefan Simon — Sascha Tölkes

Problem sheet 6

Please hand in the solutions on Tuesday December 6!

For the whole exercise sheet let

• Ω ⊂ Rd be a polygonal domain with d ≤ 3,

• Th be a regular triangulation of Ω, i.e. h(T) ≤ cρ(T),

• Vh ⊂ H2,2
0 (Ω) be a finite element space with P1 ⊂ P̂, s.t. all elements are affine

equivalent to a reference element,

• Ih be the Lagrange interpolation operator,

• f , fh ∈ L2(Ω),

• a(φ, v) :=
∫

Ω ∆φ∆v dx for all φ, v ∈ H2,2
0 (Ω), in particular u

∣∣
∂Ω = 0 and

∇u
∣∣
∂Ω = 0 in the sense of traces,

• u ∈ H2,2
0 (Ω) be the weak solution of the biharmonic equation, i.e.

a(u, v) =
∫

Ω f · v dx for all v ∈ H2,2
0 (Ω),

• uh ∈ Vh be the discrete solution of the biharmonic equation, i.e.
a(uh, vh) =

∫
Ω fh · vh dx for f ∈ Vh and all vh ∈ Vh.

Note that for d ≤ 3 the space H2,2(Ω) compactly embeds into C0(Ω), s.t. Ih is well
defined.

Exercise 18 2 Points

Let Pk+1 ⊂ P̂ for k ≥ 0. Use the Céa-Lemma to show that
‖u− uh‖2,2,Ω ≤ Chk‖u‖k+2,2,Ω.

Exercise 19 4 Points

Prove that for all u ∈ H2,2(Ω) and for all T ∈ Th and E ∈ E(T) :

(i) ‖φ− Ihφ‖0,2,E ≤ Ch(T)
3
2‖φ‖2,2,T

(ii) ‖φ− Ihφ‖1,2,E ≤ Ch(T)
1
2‖φ‖2,2,T

Exercise 20 4 Points

(i) Show that for φh ∈ Vh, v ∈ H2,2
0 (Ω) and T ∈ Th:

a(φh, v) =
∫

Ω
∆2φhvh dx +

∫
∂T

∆φh∂nvh −∇∆φh · n vh da .

(ii) Prove the a posteriori error estimate

‖u− uh‖2,2,Ω ≤ C‖ f − fh‖0,2,Ω + C

(
∑

T∈Th

η2
T

) 1
2

,

where

η2
T := ‖h(T)2(fh − ∆2uh)‖2

0,2,T + ∑
E∈E0(T)

‖h(T) 1
2 [∆uh]E ‖

2
0,2,E + ‖h(T) 3

2 [∇∆uh · nE]E ‖
2
0,2,E .

Hint: For (ii) follow the proof of theorem 2.3 and use the estimates from exercise 19.

Programming task 2

Consider a given triangular mesh T on a domain Ω. In this programming task, you
will implement an adaptive grid refinement algorithm using the longest edge bisection
method.
A common way to implement refinement algorithms on simplex grids is to use a
concept called the dart iterator. This structure is defined via a triangle T, a node of
that triangle (given by the local node index) and an edge of that triangle (given by
the local edge index), as a “dart” pointing from the node along the edge .

x0

x1

x2

E2

E0

E1 Td

Figure 1: Example of a dart iterator d(T, 0, 1)

Figure 1 illustrates an example dart iterator d on T at node x0 along edge E1. Using
this iterator three different types of actions are possible. These actions transform a
dart iterator into another (well-defined) dart iterator:

flipTriangle() transforms d(T, x, E) into the dart iterator d′(T′, x, E), where T′ is the
neighbor triangle of T for which T̄ ∩ T̄′ = E holds. Use canFlipTriangle() to
check if this operation is possible, i. e. if T has a neighbor sharing E.

flipNode() results in the dart iterator d′(T, x′, E) along the same edge, but in the
opposite direction.

x0

x1

x2

E2

E0

E1 Td′

(a) d.flipTriangle()

x0

x1

x2

E2

E0

E1 Td′

(b) d.flipNode()

x0

x1

x2

E2

E0

E1 T d′

(c) d.d.flipEdge()

Figure 2: d′ = d.flip {Triangle, Node, Edge}()

flipEdge() results in the dart iterator d′(T, x, E′) on the same triangle and point along
the edge E′ that shares the point x with E.

Figure 2 shows the effects of the three functions on the iterator d shown in Figure 1.
The code fragment you have to complete is located in
lib/triangleMesh/adaptiveTriangMesh.h.

• Use the dart iterator to navigate the triangles that are marked for refinement
and recursively modify the grid. Make sure only to subdivide the longest edge
of each triangle (i. e. to subdivide longer edges, too, if necessary). Marked
triangles are listed in _markedForRefinement and can be unmarked using the
unmark(int element) function.

Please note that the constructor of the class DartIterator in the C++ framework
takes an additional constructor argument, the mesh. When working on an
adaptive grid, *this can be passed as the first argument.

• The refinement rule used does not allow hanging nodes. Thus, neighbor elements
may have to be refined even if they are not marked for refinement.

not allowed allowed

• The GlobalIndex addEdgeMidpoint(const DartIterator &d) function can be
used to subdivide an edge. The index returned is the index of the newly created
vertex.

• Make sure to update and extend the _neighbour_ vector. This vector contains
vectors of integers storing the neighbors of a triangle on each edge.

• The index IndexNotSet can be used when an index should not refer to a triangle,
index, or edge. This is e. g. useful, when a triangle does not have neighbors on
all edges (triangles at the boundary of the domain).

Hint: It is helpful to split the refinement into several functions instead of using just
the one function that already exists in the code.

On the lecture web site you can download an updated version of the C++ framework
that already contains a program that can be used for testing.

