Institut fur Mumerische Simulation U n |Ve rS Itatbonn

Rheinische Friedrich-Wilhelms-Universitat Bonn

Exercises to Wissenschaftliches Rechnen I/Scientific Computing I
(V3E1/F4E1)
Winter 2016/17

Prof. Dr. Martin Rumpf
Alexander Effland — Stefanie Heyden — Stefan Simon — Sascha Toélkes

Problem sheet 9

Please hand in the solutions on Tuesday January 10!

Exercise 27 4 Points

Let V be a Hilbert space and a any V-elliptic bilinear form. Show that the conditions
of Theorem 4.1 with U = V are satisfied.

Exercise 28 4 Points

Let 3 C R" and A € R""" be a symmetric and positive definite matrix. Prove that

1/ AVu-Vudx = sup AVu-VU—lAVU-Vde
2Ja veH)(Q) 74 2

holds true for all u € H}(Q)).

Exercise 29 4 Points
Let) C R". Show that for any f € H3(Q) the inequality
I£1F 20 < V2l fllozallfll22.0
is valid.
Exercise 30 4 Points

Let f,¢ € R" and F,G : R" — R defined by F(x) = |x|>— f-x and G(x) = g .
For the constrained minimization problem
min F(x)
x€R” : G(x)=0
consider the Lagrangian L(x,A) = F(x) + AG(x).
(i.) Compute the first and second derivative of L.
(ii.) Describe a Newton method to compute a saddle point of L.

Programming task 3

In this programming task, the code of the last two tasks will be combined to imple-
ment an adaptive grid refinement algorithm using an a-posteriori error estimator.
First, consider Poisson’s problem

—Au=fon(Q, (1)

u = u° on 9Q).

as already known from programming task 1. Here, we will assume f = 0 and u? # 0.
The method to handle non-zero boundary conditions that was discussed in the lecture
can be translated into the following algorithm:

1. Fill a vector #° with boundary values
2. Apply the (unmasked) stiffness matrix to i’

3. Set right hand side vector b to f — Lii?, where f is the right hand side contribu-
tion resulting from f, as discussed in programming task 1 (f = 0 here)

4. In b overwrite the entries corresponding to boundary nodes with the respective
values of 7’

5. Mask L as discussed in programming task 1
6. Solve

To efficiently implement this method, the class
UnitTriangleFELinWeightedStiffIntegrator

(from which StiffnessMatrixIntegrator is derived) provides methods
assemble () and assembleDirichlet().

Now, consider the a-posteriori error estimator for Poisson’s problem

1
Nr = {”hT (div(a <7 up,) +fh||%,2,T +), lhglazuy nelg ”%,Z,E . (2)
E€&Y(T)

For adaptive grid refinement, we will refine the elements contributing the top a% of
the error. A good choice is & = 30.

Task: Solve problem (1) for f = 0 and

1
12 (x) = (x2 +x3)3sin (3atan2(xp, x1)) x € 9QY,)
0 x € Q).

Compare the numerical solution uj, to the exact solution u (the right hand side from
equation (3) extended to the whole domain ()) in the L?- and the H!'-norm using
adaptive and uniform grid refinement. Your program output should be two tables
containing the number of elements and |1 — uy|| in the two norms for adaptive and
uniform refinement, respectively.

The code that needs to be filled in is located in the following files:

exercise 3/ex3.cpp
The handling of L and i1° needed for the solution of (1), the grid refinement
and program output.

exercise 3 /errorEstimator.h
The evaluation of #7 and the code for element marking and refinement.

exercise 3 /errorMeasurements.h
The evaluation of the L2- and the H!-norm using center-of-mass quadrature.

The updated code framework and a new computational domain will be made available
on the lecture website.

Note on programming task 1: In rhs.h, line 87 (evalRHS()) 2 - rhs has to be returned
despite the function name implying that the factor is not needed. A more convenient
implementation can be achieved by changing line 79 of rhs.h to

RealType nl = 2.0 * el.getAreaOfFlattenedTriangle() * evalRHS(cartCoord);

thus moving the factor 2 out of evalRHS().

