
Exercises to Wissenschaftliches Rechnen I/Scientific Computing I
(V3E1/F4E1)

Winter 2016/17

Prof. Dr. Martin Rumpf
Alexander Effland — Stefanie Heyden — Stefan Simon — Sascha Tölkes

Problem sheet 9

Please hand in the solutions on Tuesday January 10!

Exercise 27 4 Points

Let V be a Hilbert space and a any V-elliptic bilinear form. Show that the conditions
of Theorem 4.1 with U = V are satisfied.

Exercise 28 4 Points

Let Ω ⊂ Rn and A ∈ Rn,n be a symmetric and positive definite matrix. Prove that

1
2

∫
Ω

A∇u · ∇u dx = sup
v∈H1

0(Ω)

∫
Ω

A∇u · ∇v− 1
2

A∇v · ∇v dx

holds true for all u ∈ H1
0(Ω).

Exercise 29 4 Points

Let Ω ⊂ Rn. Show that for any f ∈ H2
0(Ω) the inequality

‖ f ‖2
1,2,Ω ≤

√
2‖ f ‖0,2,Ω‖ f ‖2,2,Ω

is valid.

Exercise 30 4 Points

Let f , g ∈ Rn and F, G : Rn → R defined by F(x) = 1
2 |x|2 − f · x and G(x) = g · x.

For the constrained minimization problem

min
x∈Rn : G(x)=0

F(x)

consider the Lagrangian L(x, λ) = F(x) + λG(x).
(i.) Compute the first and second derivative of L.
(ii.) Describe a Newton method to compute a saddle point of L.

Programming task 3

In this programming task, the code of the last two tasks will be combined to imple-
ment an adaptive grid refinement algorithm using an a-posteriori error estimator.
First, consider Poisson’s problem

−4 u = f on Ω , (1)

u = u∂ on ∂Ω .

as already known from programming task 1. Here, we will assume f ≡ 0 and u∂ 6= 0.
The method to handle non-zero boundary conditions that was discussed in the lecture
can be translated into the following algorithm:

1. Fill a vector ū∂ with boundary values

2. Apply the (unmasked) stiffness matrix to ū∂

3. Set right hand side vector b to f̄ − Lū∂, where f̄ is the right hand side contribu-
tion resulting from f , as discussed in programming task 1 (f̄ = 0 here)

4. In b overwrite the entries corresponding to boundary nodes with the respective
values of ū∂

5. Mask L as discussed in programming task 1

6. Solve

To efficiently implement this method, the class
UnitTriangleFELinWeightedStiffIntegrator
(from which StiffnessMatrixIntegrator is derived) provides methods
assemble() and assembleDirichlet().
Now, consider the a-posteriori error estimator for Poisson’s problem

ηT :=
[
‖hT (div(a5 uh) + fh‖2

0,2,T + ∑
E∈E0(T)

‖h
1
2
E [a5 uh · nE]E ‖

2
0,2,E

] 1
2

. (2)

For adaptive grid refinement, we will refine the elements contributing the top α% of
the error. A good choice is α = 30.

Task: Solve problem (1) for f ≡ 0 and

u∂(x) =

{(
x2

1 + x2
2
) 1

3 sin
(2

3atan2(x2, x1)
)

x ∈ ∂Ω ,
0 x ∈ Ω .

(3)

Compare the numerical solution uh to the exact solution u (the right hand side from
equation (3) extended to the whole domain Ω) in the L2- and the H1-norm using
adaptive and uniform grid refinement. Your program output should be two tables
containing the number of elements and ‖u− uh‖ in the two norms for adaptive and
uniform refinement, respectively.
The code that needs to be filled in is located in the following files:

exercise_3/ex3.cpp
The handling of L and ū∂ needed for the solution of (1), the grid refinement
and program output.

exercise_3/errorEstimator.h
The evaluation of ηT and the code for element marking and refinement.

exercise_3/errorMeasurements.h
The evaluation of the L2- and the H1-norm using center-of-mass quadrature.

The updated code framework and a new computational domain will be made available
on the lecture website.

Note on programming task 1: In rhs.h, line 87 (evalRHS()) 2 · rhs has to be returned
despite the function name implying that the factor is not needed. A more convenient
implementation can be achieved by changing line 79 of rhs.h to

RealType nl = 2.0 * el.getAreaOfFlattenedTriangle() * evalRHS(cartCoord);

thus moving the factor 2 out of evalRHS().

