Aufgabe 37: a) Gegeben seien die Vektoren

$$\mathbf{v}_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \ \mathbf{v}_2 = \begin{pmatrix} -1\\2\\-1 \end{pmatrix}, \ \mathbf{v}_3 = \begin{pmatrix} -2\\13\\-2 \end{pmatrix}, \ \mathbf{v}_4 = \begin{pmatrix} 2\\11\\2 \end{pmatrix}.$$

Zeigen Sie, daß diese vier Vektoren des \mathbb{R}^3 linear abhängig sind.

b) Bilden die drei Vektoren

$$\mathbf{w}_1 = \begin{pmatrix} 2\\1\\0 \end{pmatrix}, \ \mathbf{w}_2 = \begin{pmatrix} 3\\-1\\1 \end{pmatrix}, \ \mathbf{w}_3 = \begin{pmatrix} 1\\3\\-1 \end{pmatrix}$$

eine Basis des \mathbb{R}^3 ? Falls nicht, so geben Sie bitte einen Vektor $\mathbf{x} \in \mathbb{R}^3$ an, der sich nicht als Linearkombination dieser drei Vektoren darstellen läßt.

Tipp: Berücksichtigen Sie die Eigenschaften des Kreuzproduktes $\mathbf{a} \wedge \mathbf{b}$ zweier Vektoren $\mathbf{a}, \mathbf{b} \in \mathbb{R}^3$.

c) Sind die drei Vektoren

$$\mathbf{u}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\mathbf{u}_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$, $\mathbf{u}_3 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$

linear unabhängig? Bilden Sie eine Basis des \mathbb{R}^3 ? Wie lauten die Koordinaten des Vektors

$$\left(\begin{array}{c}1\\1\\1\end{array}\right)$$

bezüglich dieser Basis?

Aufgabe 38: Welche der folgenden Teilmengen des \mathbb{R}^3 sind Untervektorräume?

a)
$$\{(1, x, y) | x, y \in \mathbb{R}\}$$
 ja \square nein \square
b) $\{(x, x, x) | x \in \mathbb{R}\}$ ja \square nein \square
c) $\{(x, 2x, 3x) | x \in \mathbb{R}\}$ ja \square nein \square
d) $\{(x_1, x_2, x_3) | 2x_1 + x_2 = 5x_3\}$ ja \square nein \square
e) $\{(x_1, x_2, x_3) | x_1 + 2x_2 = 7\}$ ja \square nein \square

Aufgabe 39: Es sei $\mathcal{P}^k = \text{span}\{1, t, t^2, \cdots, t^k\}$ der Vektorraum der Polynome, deren Grad höchstens $k \in \mathbb{N}$ sei. Zeigen Sie, dass

$$U := \{ p \in \mathcal{P}^k \mid p(5) = 0 , \ p(7) = 0 \}$$

ein Unterraum von \mathcal{P}^k ist.

Aufgabe 40: a) Gegeben seien die folgenden drei Punkte im \mathbb{R}^3 :

$$P_0 = \begin{pmatrix} -2 \\ -2 \\ 0 \end{pmatrix}, \quad P_1 = \begin{pmatrix} -2 \\ -1 \\ -1 \end{pmatrix}, \quad P_2 = \begin{pmatrix} 6 \\ 5 \\ -7 \end{pmatrix}.$$

Geben Sie die Ebene E, welche durch diese drei Punkte geht, in Parameterform, d.h. in der Form

$$E = \{ x + \lambda r + \mu q \, | \, \lambda, \mu \in \mathbb{R} \},\,$$

mit $x, r, q \in \mathbb{R}^3$ an.

b) Berechnen Sie mit Hilfe des Kreuzproduktes eine Darstellung der Ebene der Form $E = \{ \mathbf{x} \in \mathbb{R}^3 \mid n_1x_1 + n_2x_2 + n_3x_3 = d \}.$