

Scientific Computing 1

Winter term 2017/18 Priv.-Doz. Dr. Christian Rieger Christopher Kacwin

Sheet 0

Submission on -.

For completion, we state the divergence theorem, also known as Gauss' theorem. On this sheet, let $\Omega \subset \mathbb{R}^d$ be an open and bounded subset, with smooth boundary $\partial\Omega$ and outer normal vector n(x).

Theorem. For a continuously differentiable vector field $F: \Omega \longrightarrow \mathbb{R}^d$, it holds

$$\int_{\Omega} \operatorname{div} F(x) \, \mathrm{d}x = \int_{\partial \Omega} F(x) \cdot n(x) \, \mathrm{d}x$$

Exercise 1. (Green's identity)

Prove Green's first identity: Let $u, v \in \mathcal{C}^2(\Omega)$. Then one has

$$\int_{\Omega} v(x) \Delta u(x) \, \mathrm{d}x = -\int_{\Omega} \nabla v(x) \cdot \nabla u(x) \, \mathrm{d}x + \int_{\partial \Omega} v(x) \nabla u(x) \cdot n(x) \, \mathrm{d}x \,.$$
(0 points)

Exercise 2. (maximum principle)

Let $\Omega = \mathbb{R}^d$. Let A(x) be a continuously differentiable, symmetric, uniformly positive definite matrix and consider the operator

$$L_x(u)(x) \coloneqq -\operatorname{div}[A(x)\nabla u(x)]$$

for functions $u \in \mathcal{C}^2(\Omega)$. We say that L_x is an elliptic operator in divergence form. We first consider how some differential operators behave under a change of variable.

- a) For an invertible matrix $B \in \mathbb{R}^{d \times d}$, we consider the coordinate transform x = Byand the scalar functions v(y) = u(By) = u(x). State $\nabla_y v(y)$ in terms of B, u and x.
- b) For two vector fields V, U on Ω with V(y) = U(By) = U(x), state $\operatorname{div}_y V(y)$ in terms of B, U and x.
- c) For the scalar functions v(y) = u(By) = u(x), use a) and b) to state $\operatorname{div}_y[A(By)\nabla_y v(y)]$ in terms of B, u, A, x. Define an operator L_y such that $L_y(v)(y) = L_x(u)(x)$ for all u, v with v(y) = u(By) = u(x).
- d) Show that a function u with $L_x(u)(x) \leq 0$ for all $x \in \Omega$ has no strict local maximum.

(0 points)