

## Scientific Computing 1

Winter term 2017/18 Priv.-Doz. Dr. Christian Rieger Christopher Kacwin



Sheet 0.1

Submission on -.

**Exercise 1.** (parallelogram identity)

Let  $(V, \|\cdot\|)$  be a Banach space over  $\mathbb{R}$ . Show that the following are equivalent:

- 1) there exists an inner product  $(\cdot, \cdot)$  on V which induces  $\|\cdot\|,$  making V a Hilbert space
- 2) For all  $u, v \in V$  one has  $||u + v||^2 + ||u v||^2 = 2(||u||^2 + ||v||^2)$

(0 points)

**Exercise 2.** (continuous functions and inner product)

Let I = (-1, 1) and consider continuous functions C(I) and the inner product  $(f, g) = \int_I f(x)g(x) dx$ . Show that  $(C(I), (\cdot, \cdot))$  is not a Hilbert space.

(0 points)

**Exercise 3.** (differentiable functions and inner product)

Let I = (-1, 1) and consider continuously differentiable functions with homogeneous boundary conditions, i.e.

$$\mathcal{C}_0^1(I) = \left\{ f \in \mathcal{C}^1(I) \mid \lim_{x \to \pm 1} f(x) = 0 \right\}$$

and the inner product  $(f,g) = \int_I f'(x)g'(x) \, dx$ . Show that  $(\mathcal{C}^1_0(I), (\cdot, \cdot))$  is not a Hilbert space.

(0 points)