

Scientific Computing 1

Winter term 2017/18 Priv.-Doz. Dr. Christian Rieger Christopher Kacwin

Sheet 5

Submission on Thursday, 23.11.17.

Exercise 1. (bilinear elements)

Consider the unit square $\Omega = [0,1]^2 \subset \mathbb{R}^2$. We call a continuous function $f: \Omega \to \mathbb{R}$ affine bilinear if $f(\cdot, y)$ is affine linear for all $y \in \Omega$ and $f(x, \cdot)$ is affine linear for all $x \in \Omega$.

a) Let $Q(\Omega)$ be the space of affine bilinear functions on Ω . Show that $Q(\Omega)$ has dimension 4, and find a basis which is nodal with respect to the corners of Ω .

Let $n \in \mathbb{N}$. We define $a_i = i/n$ for i = 1, ..., n and decompose Ω into a union of squares

$$\Omega_{ij} = \{ (x, y)^{\top} \in \Omega \mid a_{i-1} \le x \le a_i, a_{j-1} \le y \le a_j \} \subset \Omega$$

for i, j = 1, ..., n.

b) Find the dimension of

$$V = \{ f \in \mathcal{C}(\Omega) \mid f|_{\Omega_{ii}} \in Q(\Omega_{ij}) \text{ for } i, j = 1, \dots, n \}$$

and determine whether a nodal basis with respect to the gridpoints $(a_i, a_j)^{\top}$, $i, j = 0, \ldots, n$ exists.

(4 points)

Exercise 2. (change of variable)

We consider the reference triangle element $T_0 = \{(x, y)^\top \in \mathbb{R}^2 \mid x \ge 0, y \ge 0, x + y \le 1\}$ with the three nodes $a_1 = (0, 0)^\top$, $a_2 = (1, 0)^\top$ and $a_3 = (0, 1)^\top$. Furthermore, let ϕ_1, ϕ_2, ϕ_3 be the nodal basis with respect to a_1, a_2, a_3 . For an arbitrary nondegenerate triangle $T \subset \mathbb{R}^2$ with corners $b_1, b_2, b_3 \in \mathbb{R}^2$, we consider the affine linear map $J(x, y) = C(x, y)^\top + d$ which maps a_i to b_i for i = 1, 2, 3.

- a) Determine the matrix $C \in \mathbb{R}^{2 \times 2}$ and the vector $d \in \mathbb{R}^2$.
- b) We consider new coordinates $(\hat{x}, \hat{y})^{\top} = J(x, y)$ and define the nodal basis ψ_1, ψ_2, ψ_3 on T via

$$\psi_i(\hat{x}, \hat{y}) = \phi_i(x, y), \quad i = 1, 2, 3$$

Express

$$\int_T \psi_i(\hat{x}, \hat{y}) \psi_j(\hat{x}, \hat{y}) \operatorname{d}(\hat{x}, \hat{y}) \text{ and } \int_T \nabla_{(\hat{x}, \hat{y})} \psi_i(\hat{x}, \hat{y}) \cdot \nabla_{(\hat{x}, \hat{y})} \psi_j(\hat{x}, \hat{y}) \operatorname{d}(\hat{x}, \hat{y})$$

as integrals of the form

$$\int_{T_0} \cdot \operatorname{d}(x, y) \, .$$

(4 points)