

Scientific Computing 1

Winter term 2017/18 Priv.-Doz. Dr. Christian Rieger Christopher Kacwin

Sheet 6

Submission on Thursday, 30.11.17.

Exercise 1. (triangular Lagrange element in 2D)

Consider the reference triangle $T_0 = \{(x, y)^\top \in \mathbb{R}^2 \mid x \ge 0, y \ge 0, x + y \le 1\}$. For a fixed $n \in \mathbb{N}$, define $z_{i,j} = (i/n, j/n)^\top$ for all $i, j = 0, \ldots, n$ with $i + j \le n$. Also define $P_n(T_0)$ to be the space of polynomials with order at most n, i.e.

$$P_n(T_0) = \operatorname{span}\{x^i y^j \mid i+j \le n\}.$$

Show that the dimension of $P_n(T_0)$ coincides with the number of nodes $\{z_{i,j}\}$ and find the nodal basis of $P_n(T_0)$ with respect to these nodes.

(4 points)

Exercise 2. (rectangular Lagrange element in 2D)

Consider the reference rectangle $R_0 = [0, 1]^2$. For a fixed $n \in \mathbb{N}$, define $z_{i,j} = (i/n, j/n)^\top$ for $i, j = 0, \ldots, n$. Also define $Q_n(R_0)$ to be the space of polynomials of mixed order at most n, i.e.

$$Q_n(T_0) = \operatorname{span}\{x^i y^j \mid i, j \le n\}.$$

Show that the dimension of $Q_n(R_0)$ coincides with the number of nodes $\{z_{i,j}\}$ and find the nodal basis of $Q_n(R_0)$ with respect to these nodes.

(4 points)

Programmieraufgabe 1. (local mass/stiffness matrix)

We consider the reference triangle element $T_0 = \{(x, y)^\top \in \mathbb{R}^2 \mid x \ge 0, y \ge 0, x + y \le 1\}$ with the three nodes $a_1 = (0, 0)^\top$, $a_2 = (1, 0)^\top$ and $a_3 = (0, 1)^\top$. Furthermore, let ϕ_1, ϕ_2, ϕ_3 be the nodal basis with respect to a_1, a_2, a_3 . For an arbitrary nondegenerate triangle $T \subset \mathbb{R}^2$ with corners $b_1, b_2, b_3 \in \mathbb{R}^2$, we consider the affine linear map $J(x, y) = C(x, y)^\top + d$ which maps a_i to b_i for i = 1, 2, 3. With the new coordinates $(\hat{x}, \hat{y})^\top = J(x, y)$, the nodal basis ψ_1, ψ_2, ψ_3 on T is given via

$$\psi_i(\hat{x}, \hat{y}) = \phi_i(x, y), \quad i = 1, 2, 3.$$

a) Write a routine that takes $b_1, b_2, b_3 \in \mathbb{R}^2$ as input and returns the local mass matrix $M_T \in \mathbb{R}^{3 \times 3}$, given by

$$(M_T)_{ij} = \int_T \psi_i(\hat{x}, \hat{y}) \psi_j(\hat{x}, \hat{y}) \,\mathrm{d}(\hat{x}, \hat{y})$$

for i, j = 1, 2, 3.

b) Write a routine that takes $b_1, b_2, b_3 \in \mathbb{R}^2$ as input and returns the local stiffness matrix $A_T \in \mathbb{R}^{3 \times 3}$, given by

$$(A_T)_{ij} = \int_T \nabla_{(\hat{x},\hat{y})} \psi_i(\hat{x},\hat{y}) \cdot \nabla_{(\hat{x},\hat{y})} \psi_j(\hat{x},\hat{y}) \operatorname{d}(\hat{x},\hat{y})$$

for i, j = 1, 2, 3.

c) Test your implementations for $b_1 = (0.5, 0.5)^{\top}, b_2 = (0, 0)^{\top}, b_3 = (1, 0)^{\top}.$

(16 points)

The programming exercise should be handed in during the exercise classes (bring your own laptop!) in two weeks, i.e. on 7.12/8.12.17. All group members need to attend the presentation of your solution to get points.