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Exercise 12. (Computation rules for symmetric, positive (semi)definite matrices)

Recall that with < ·, · > denoting an inner product on Rn = RI we call a symmetric
matrix A = (ai,j)i,j∈I ∈ Rn×n

1. positive definite, if ∀0 6= x ∈ Rn :< Ax, x >> 0. We use the notation A > 0.
Analogously we have A < 0.

2. positive semidefinite, if ∀x ∈ Rn :< Ax, x >≥ 0. We use the notation A ≥ 0.
Analogously we have A ≤ 0.

3. If B is another symmetric matrix, we introduce the notation A > B if A−B > 0
i.e. if A−B is positive definite. Anologously we have A < B.

4. If A,B are (possibly non-symmetric) matrices, we write A ≥ B if A − B ≥ 0.
Anologously we have A ≤ B.

Recall that A > 0 ⇔ σ(A) ⊂ (0,∞), A ≥ 0 ⇔ σ(A) ⊂ [0,∞) and that A > 0 implies
that A is regular.

Show that the following rules for this notation hold.

a) A > 0⇔ CACT > 0, A > B ⇔ CACT > CBCT for all regular matrices C ∈ Rn×n,

b) A ≥ 0⇒ CACT ≥ 0, A ≥ B ⇒ CACT ≥ CBCT for all matrices C ∈ Rn×n,

c) A,B ≥ 0⇒ A+B ≥ 0

d) A > 0, B ≥ 0⇒ A+B > 0, A+B ≥ A,A+B > B.

e) A > 0⇒ ξA > 0 for all ξ > 0,

f) ζI ≤ A ≤ ξI ⇔ σ(A) ⊂ [ζ, ξ], −ξI ≤ A ≤ ξI ⇔ ‖A‖2 ≤ ξ for symmetric A,

g) A ≥ B > 0⇒ 0 < A−1 ≤ B−1,

h) A > 0⇔ A−1 > 0,

i) All principal submatrices of a positive (semi)definite matrix are positive
(semi)definite,
A > 0⇒ ∀J ⊂ I : (ai,j)i,j∈J > 0 and A ≥ 0⇒ ∀J ⊂ I : (ai,j)i,j∈J ≥ 0,

j) All diagonals of a positive (semi)definite matrix are positive (non-negative),
A > 0⇒ ∀i ∈ I : ai,i > 0 and A ≥ 0⇒ ∀i ∈ I : ai,i ≥ 0,

k) The diagonal and each block-diagonal submatrix of a positive (semi)definite matrix
are positive (semi)definite.

(4 Points )

1



Exercise 13. (Convergence of block-Jacobi and block-Gauss-Seidel)

In the lecture and exercise 11 we have already established a link between Gauss-Seidel /
Jacobi methods and Schwarz methods if the partition Λ is ordered and non-overlapping.
In this case the convergence proofs are also easier and can be directly adapted from the
classical Gauss-Seidel and Jacobi convergence proofs.

These classical proofs use (variations of) the following convergence criterium for an
iterative method with matrices M = I −W−1A = I −NA in third normal form.

If
W +W T > A > 0

then the iteration xm+1 = xm−W−1(Axm−b) converges monotonously
in the energy norm ‖·‖A

ρ(M) ≤ ‖M‖A < 1 .

Let A > 0 and Λ be ordered and nonoverlapping, yielding the results from exercise 11.
Show that

a) The multiplicative Schwarz/block-Gauss-Seidel method converges.

b) The damped additive Schwarz/block-Jacobi-method converges for θ small enough. A
sufficient condition is θ < 2

#Λ .

Hint: Use exercise 12 and the lemma from the lecture establishing A ≤ #ΛWadd.
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Exercise 14. (Nested iterations)

In the lecture’s section on subdomain solvers we have already seen a case of a nested
iteration. An iterative method Φ with matrices M = I −NA = I −W−1A

xm+1 = xm −W−1(Axm − b)

which is computed as

Wδ = (Axm − b) , xm+1 = xm − δ

hinges on an efficient solution of Wδ = d.

We, thus, introduce another iteration ΦW with MW = I −NWW = I −W−1
W W , namely

δm+1 = δm −W−1
W (Wδm − d) = MW δ

m +NWd

for the solution of Wδ = d.

Let Φk,Mk, Nk,Wk be the resulting iterative method when using k steps of the nested
iteration.

Assume that Φ,ΦW are consistent. Show that

a) Mk = I −
∑k−1

q=0 M
q
WNWA = M +Mk

WW
−1A,

b) Nk = (I −Mk
W )W−1,

c) If MW has and eigenvalue λ with λk = 1 then Φk diverges. Otherwise we have
Wk = W (I −Mk

W )−1.

d) Φk is a consistent linear iteration.

Hint : For an iteration xm+1 = Mxm +Nb It holds that

xm = Mmx0 +
m−1∑
q=0

M qNb .
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Programming exercise 5. (L-Shape domain decomposition)

For the application of the domain decomposition methdos from the lecture we now need
to first establish a mesh with a splitting of the index set I of the nodes xi, i ∈ I into
subsets

Λ = {λ1, . . . , λK} .

a) Write a function to create a mesh of

ΩL := (−1, 1)2 \ (0, 1)2 , ΓD := ∂[−1, 1]2 ∩ ∂ΩL , ΓN := ∂ΩL \ ΓD = [0, 1]2 ∩ ∂ΩL .

Hint : Modify the functions for creating the meshes in programming exercises 1d)
and 2b). Take special care of indices of shared nodes when creating the arrays for
the triangles and boundary edges.

b) Create an overlapping partition of the index set I of the vertices into

λ1 := {i ∈ I : xi ∈ [−1, 0]2} ,
λ2 := {i ∈ I : xi ∈ [−1, 0]× [0, 1]} ,
λ3 := {i ∈ I : xi ∈ [0, 1]× [−1, 0]} .

c) Create an non-overlapping partition Λn

λ1 := {i ∈ I : xi ∈ [−1, 0]2} ,
λ2 := {i ∈ I : xi ∈ [−1, 0]× (0, 1]} ,
λ3 := {i ∈ I : xi ∈ (0, 1]× [−1, 0]} .

d) Plot the resulting mesh, marking the vertices according to each of the partitions.
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e) For both cases, compute the local problem (sub)matrices Kλ = rλKpλ of the global
stiffness matrix K computed from programming exercise 3. Hint : This can be done
using only array slices.
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