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Exercise 31. (B-spline derivatives)

We have already looked into B-splines but not yet at their derivatives.

a) Show that

d

dξ
Ni,p(ξ) = p

(
Ni,p−1(ξ)

ξi+p − ξi
− Ni+1,p−1(ξ)

ξi+p+1 − ξi+1

)
.

Hint : Recursion formula and induction starting with p = 1.

b) Using a), compute the derivative of the B-spline curve

d

dξ
C(ξ) =

d

dξ

n∑
i=1

Ni,p(ξ)Bi .

(2 Points )

Exercise 32. (Minimal degree condition)

A not yet posed or answered is how pT , pe should be related in a higher order FEM with
V -E-C shape functions. One strategy for this is the minimal degree condition.

Let T be an element of some triangulation τ of the domain Ω for some PDE. For each
edge e of the triangulation it should hold that

pe = min{pT |e is edge of T} .

For the depicted mesh, choose the degrees pe of each edge e such that the minimal degree
condition is fulfilled
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(2 Points )
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Exercise 33. (sup− inf and n-width)

In the lecture the notion of classification of best approximation of a set Y ⊂ X with
some normed space (X, ‖·‖X) was introduced with the Kolmogorov n-width

dn := inf
En⊂X,dimEn≤n

sup
u∈Y

inf
vn∈En

‖u− vn‖X .

If X, (·, ·)X is a Hilbert space and Y = TH with H, (·, ·)H being another Hilbert space
that can be compactly embedded in Y via the operator T

H
C
↪→ X , T : H → X , ‖Tx‖X ≤ C‖x‖H , T compact .

these quantity allows for a more practical expression. With H being a linear space it is
reasonable to exclude multiplicative constants leading to

Y := {x ∈ H : ‖x‖H = 1} = {Tx : x ∈ H, ‖x‖H = 1} ⊂ X ,

Ψ(En) := sup
u∈Y

inf
vn∈En

‖u− vn‖X ,

dn = inf
En⊂X,dimEn≤n

Ψ(En) .

Ψ is called a sup− inf of En with respect to the ‖·‖X approximation of Y . For conve-
nience the embedding T is dropped from notation.

In this special case of a compact embedding these quantities are related to the generalized
eigenvalue problem

(uk, v)X = λk(uk, v)H , ∀v ∈ H

with eigenpairs (λk, uk), k = 0, . . . and eigenvalues

λ0 ≥ λ1 ≥ λ2 . . . > 0 , dn =
√
λn

There exists a similar generalized eigenvalue problem for the computation of Ψ(En).

a) Show that for u ∈ H, En ⊂ X and dimEn = n we have

inf
vn∈En

‖u− vn‖X ≤ ‖u‖HΨ(En)

b) Assume that H ⊂ Z with Z being another Hilbert space with a basis ϕi, i ∈ I =
{1, . . . , N}. Using the coefficients of a H basis with respect to ϕi, give the matrix
representation of the generalized eigenvalue problem for the computation of dn.

(4 Points )
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Exercise 34. (Moving Least Squares)

Given data xi, fi, i = 1, . . . , N and an approximation space P = span〈ϕi〉 the natural
extension of least squares is moving least squares (MLS) approximation.

For a locally supported non-negative function W , often referred to as window function
or weight function, the pointwise moving least squares energy of an approximation π is
given as

Jx(π) =
N∑
i=1

W (x− xi)(fi − π(ξ))2 =
∑

W (x−xi)>0

W (x− xi)(fi − π(xi))
2 .

The MLS approximation π of the data xi, fi is given pointwise via the minimizers πx ∈ P
of Jx

π(x) = πx(x) .

Using the basis ϕi and a representation πx =
∑

i ux,iϕi, ux = (ux,i)i we can compute the
solutions πx as

Gxux = fx ,

(Gx)k,l :=
∑

W (x−xi)>0

ϕk(xi)W (x− xi)ϕl(xi) ,

fx :=
∑

W (x−xi)>0

fiW (x− xi)ϕl(xi) .

a) Expand and compute
d

dx
π(x) .

b) The case P = span〈1〉 is called Shepard approximation. For this case, compute
π, d

dxπ.

(4 Points )
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Programming exercise 11. (Refined Spinoraptor)

Consider the B-Spline curve defined through the knot vector and control points given in
programming exercise 10. Since the resolution of the model is rough, a further analysis
requires the refinement of the model.

The analogue of h-refinement from finite elements for B-Splines (and B-Spline curves
and surfaces and volumes) is knot insertion. Similarly to h-refinement, this can be done
without changing the curve geometrically or parametrically.

Given a knot vector
Ξ = (ξ1, . . . , ξn+p+1)

and let ξ̂ ∈ [ξk, ξk+1) be a desired new knot. The n+ 1 basis functions N̂i,p are formed
recursively using the new knot vector

Ξ̂ = (ξ1, . . . , ξk, ξ̂, ξk+1, . . . , ξn+p+1)

of length n+ p+ 2.

The new n + 1 control points B̂i, 1 ≤ i ≤ n + 1 are formed from the original control
points Bi, 1 ≤ i ≤ n by

B̂i = αiBi + (1− αi)Bi−1 , αi =


1 , 1 ≤ i ≤ k − p ,
ξ̂−ξi

ξi+p−ξi , k − p+ 1 ≤ i ≤ k ,
0 , k + 1 ≤ i ≤ n+ p+ 2 .

a) Write a function using the described algorithm for insertion of valid knots. The
function should compute the modified control points accordingly.

b) Using appropriate knots and control points, show an example of internal knots ap-
pearing more than p times leading to discontinuous functions.

c) Compute the midpoints of the unique knots

ηj =
1

2
(ξi + ξi+1) , ξi < ξi+1 .

d) Use a) to insert the knots ηj into the knot vector from programming exercise 10.

e) Use the modified knots and control points from d) to plot N̂i,p.

f) Use the modified knots and control points from d) to plot the corresponding B-Spline
curve.

(4 Points )

Send to duesseldorf@ins.uni-bonn.de
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