
Prof. Dr. Michael Griebel
Prof. Dr. Jochen Garcke

Dr. Bastian Bohn
Jannik Schürg

1
L INEAR LEAST SQUARES AND k -NEAREST
NE IGHBORS

Send your solutions
to this chapter’s tasks
until

October 30th.

data analysis basics

In most branches of science, economy and industry the amount of
available data has become immense during the recent years. Most
of these data do not contain any valuable information at all. However,
the differentiation between useful data compared tomeaningless “data
waste” is seldom straightforward. The phenomenon of the availability
of enormous amounts of data and the consequential tasks and prob-
lems arising from this are commonly summarized by the term Big Data.
Tomeet the different challenges of Big Data, such as describing the use-
ful information in a more compact format (dimensionality reduction) or
making predictions on unseen data (machine learning), many ideas and
approaches have emerged. For a thorough introduction into machine
learning we refer the interested reader to [3].

In this practical lab, we aim at exploring and implementing several
well-known machine learning and data analysis algorithms. Further-
more, we will apply them to real-world data sets to get an intuition on
the specific needs in different applications. To this end, you will need
to be able to use certain python tools/libraries.

Task 1.0. (a) Make yourself familiar with programming in Python1 and
its libraries NumPy2 and MatPlotLib.3 Furthermore, you will need
Jupyter Notebooks4 to run the template codes.

(b) Have a look at the tutorial notebook on the practical lab website and
familiarize yourself with the concept of vectorization, i.e. using opera-
tions on whole arrays instead of using loops and operating on single
array elements.

(c) Create a jupyter-notebook in which you create an array z consisting of
10000 random numbers drawn from {0, 1, 2}. Implement two versions
of a function which counts the number of appearances of the subse-
quence (2, 0, 1) in z. The first version should work with a loop that

1 https://www.python.org/
2 http://www.numpy.org/
3 https://matplotlib.org/
4 https://jupyter.org/

5

Send anonymous feedback for this page.

https://www.python.org/
http://www.numpy.org/
https://matplotlib.org/
https://jupyter.org/
https://beta.ins.uni-bonn.de/feedback/mllab?page=5&vcs=0f57f25c&obj=Script

6 linear least squares and k-nearest neighbors

accesses the array z elementwise and makes elementwise comparisons.
The second version should be a vectorized one (Hint: The numpy func-
tion logical_and might help you), which operates on (almost) the
whole array z. Compare the runtime of the two versions.

classification and regression

One of the most common tasks in machine learning is supervised learn-
ing. Here a function5 f is learned from input–output samples. The goal
is that not only the sample points—usually called training data—are
(approximately) fitted by f , but also new data points—usually called
test data or evaluation data—which stem from the same distribution as
the training data.

Some specific examples are:

• Identifying handwritten letters or digits.

• Estimate risk of disease from patient data.

• Identify email messages that are spam and those that are not.

• Detect critical failures in industrial facilities.

Let us state a supervised learning problem in a mathematical way:
Let Ω, Γ be arbitrary sets. To this end, we assume we are given input
data D := {(xi, yi) ∈ Ω× Γ | i = 1, . . . , n} drawn i.i.d. according to
some probability measure µ on Ω× Γ. Our goal is to find f : Ω → Γ
such that

f (xi) ≈ yi for all i = 1, . . . , n. (1.1)

Furthermore, we want f (x̃i) ≈ ỹi for i = 1, . . . , ñ on a test data set,
which is also drawn i.i.d. according to µ. This is called a regression
problem. We will make the notion of f (xi) ≈ yi precise soon.
In the special case of Γ beingfinite, in particular if given in categorical

form, and if we substitute “≈” by “=” above, we call this a classification
problem.

linear least squares (lls)

Now, let Ω = Rd and Γ ⊂ R. Instead of searching for any function f
which fits the input data, we will make a restriction on the model, i.e.
we assume that f has a certain structure. Let us first consider the most
simple, a linear structure of f :

f (t) = α0 +
d

∑
i=1

αi · ti = (1 t1 t2 . . . td)︸ ︷︷ ︸
=: t̂>

·α. (LIN)

5 More generally, one could also consider learning a measure modelling the connection
between the input–output pairs.

Send anonymous feedback for this page.

https://beta.ins.uni-bonn.de/feedback/mllab?page=6&vcs=0f57f25c&obj=Script

1.3 linear least squares (lls) 7

Here, the d + 1 free parameters, which determine the function f are
α0, . . . , αd ∈ R. Our task is now to determine α using the input data D.
To this end, we have to reformulate the problem of finding an f which
fulfills (1.1) into a mathematical (optimization) problem. To achieve
this, we use a so-called loss function L : (Γ× Γ)n → [0, ∞]. One of the
most common loss functions is the quadratic or least squares loss:

L ((a1, b1) , (a2, b2) , . . . , (an, bn)) =
1
n

n

∑
i=1

(ai − bi)
2 .

The so-called linear least squares algorithm then solves

min
affine linear f

L ((f (x1), y1) , (f (x2), y2) , . . . , (f (xn), yn))

= min
affine linear f

1
n

n

∑
i=1

(f (xi)− yi)
2

= min
α∈Rd+1

1
n

n

∑
i=1

(
α> · x̂i − yi

)2. (1.2)

If we let X := (x̂1 x̂2 . . . x̂n)
> ∈ Rn×(d+1) be the (modified) input data

matrix and y := (y1 y2 . . . yn)
> ∈ Rn be the vector of outputs, we can

rewrite the algorithm as

min
α∈Rd+1

1
n
(Xα− y)> (Xα− y) =

1
n

min
α∈Rd+1

‖Xα− y‖2.

Since this is a quadratic optimization problem, the optimal coefficients
are given by The numerically

inclined reader
should prefer using a
QR factorization.

α =
(
X>X

)−1X>y. (LLS)

Let us try this least squares algorithm on some artificial data, which
we need to create first.We consider an easy classification examplewith
Ω = R2 and Γ = {0, 1}.

Task 1.1. Create n = 200 data points in the following way:

(a) Draw ten random i.i.d. samples from the two-variate normal distribu-
tionN

(
(3

2 0)>, I
)
and store them in a numpy array a. Draw another ten

samples according to N
(
(0 3

2)
>, I
)
and store them in another numpy

array b. Use MatPlotLib to make a scatter plot (i.e. plot the points in a
2D coordinate system) of the elements in a and the elements in b using
different colors for the two arrays.

(b) Pick 100 equidistributed indices i1, . . . , i100 from {1, 2, . . . , 10} and set
the j-th data point xj to

xj := a[ij]︸︷︷︸
ij-th element of a

+ ε j for all j = 1, . . . , 100 with ε j ∼ N
(
(0 0)>,

1
4

I
)
.

Proceed analogously for j = 101, . . . , 200 by substituting a by b. Make
a scatter plot for the data points xj with j = 1, . . . , 200 with different
colors for the first 100 points and the second 100 points.

Send anonymous feedback for this page.

https://beta.ins.uni-bonn.de/feedback/mllab?page=7&vcs=0f57f25c&obj=Script

8 linear least squares and k-nearest neighbors

(c) The first j = 1, . . . , 100 data points get the label yj = 0, the next
j = 101, . . . , 200 ones get yj = 1.

Task 1.2. Implement a linear least squares algorithm, i.e. solve (LLS). Hint:
You can use numpy.linalg.solve to solve a system of linear equations.
Apply it to the data from task 1.1. Plot the scattered input data as in step (b)
of task 1.1 together with the separating hyperplane, i.e. the contour line given
by

α0 + α1x1 + α2x2 =
1
2

,

where x1 and x2 denote the coordinates in R2 (not to be confused with the data
xi). The result should look (approximately) like this:

Quantifying the misclassification error

The separating hyperplane from task 1.2 can be used to divide or
classify the data into two parts. Let us quantify how good our classifier
really is.

Task 1.3. Build the so-called confusion matrix for the data and the hyper-
plane from task 1.2, i.e. a matrix C, with entries

Cij = # {Points classified as i, where the real label is j} .

In our case this is a 2× 2 matrix with i, j ∈ {0, 1} since |Γ| = 2. Calculate
the accuracy trace(C)

n .

As we mentioned above, machine learning engineers are not re-
ally interested in building algorithms which only perform well on the
training data, but rather in having methods which generalize well to
(unseen) test data, which—in the best case—follow the same law/dis-
tribution as the training data.

Task 1.4. Create 10 000 test points for each of the two classes in the same
way as you created the training data in step (b) of task 1.1. Evaluate the

Send anonymous feedback for this page.

https://beta.ins.uni-bonn.de/feedback/mllab?page=8&vcs=0f57f25c&obj=Script

1.3 linear least squares (lls) 9

LLS classifier built in task 1.2 on the test data and compute the confusion
matrix and the accuracy of the test data. Compare your results to the ones
from task 1.3.

Our first “real” data set and Pandas

Next, we will try our LLS classifier on real-world data, namely the Iris
dataset [1, 2]. The dataset consists of 150 points, which describe three
different types of Iris plants. We have three classes

{Iris-setosa, Iris-versicolor, Iris-virginica}.

The four features, i.e. the coordinates in Ω = R4 refer to certain length
and width measurements of the plants.

We will classify one of the three plant classes against both of the
remaining classes by using our LLS algorithm. To this end, we first
have to read in the data set and cast the class names to Γ = {0, 1}.
Instead of reading in the data by hand, we employ the very useful
Pandas library6 in python:
import pandas as pd
url = ’https://archive.ics.uci.edu/ml/machine-learning -

databases/iris/iris.data’

irisDataFrame = pd.read_csv(url, header=None)

In Pandas, the data is stored in an instance of DataFrame on which
many useful operations can be run.

Task 1.5. Make yourself familiar with the basics of Pandas.

(a) Read in the Iris data set and use the data labels yi = 0 for the Iris-setosa
instances and yi = 1 for the Iris-versicolor and Iris-virginica classes:

a.1. Run the LLS algorithm by using only the first two dimensions of
Ω in the input data, i.e. we only look at the first two features. Plot
the scattered data and the separating hyperplane as in task 1.2.

a.2. Now run the LLS algorithm by using all four features/dimensions
of the input data. Compute the confusion matrix and the accuracy.

(b) Finally, run the same two steps as in (a), but now try to classify Iris-
versicolor instances (label yi = 0) against both Iris-setosa and Iris-
virginica (label yi = 1). What do you observe?

Another approach to solving the optimization problem

Although (LLS) is the exact solution for the linear least squares ap-
proach above, we could pursue a different, iterative approach to solv-
ing (1.2). To this end, we consider a gradient descent method approach.

6 https://pandas.pydata.org/

Send anonymous feedback for this page.

https://pandas.pydata.org/
https://beta.ins.uni-bonn.de/feedback/mllab?page=9&vcs=0f57f25c&obj=Script

10 linear least squares and k-nearest neighbors

(a) Iris Setosa.a (b) Iris Versicolor.b (c) Iris Virginica.c

Figure 1.1: Pictures of three Iris plants.

a Photo by Emma Forsberg from Anchorage, USA.
b Photo by Cliff from Arlington, Virginia, USA.
c Photo by Christer T. Johansson.

Let J(α) := 1
n ∑n

i=1
(
α> · x̂i − yi

)2 be the goal functional, which should
be minimized. A gradient descent approach corresponds to the follow-
ing pseduo-algorithm:

Initialize alpha randomly

step = 0

while (not converged) and (step < maxSteps):

alpha = alpha - nu * grad(J(alpha))

step = step + 1

The stepwidth ν > 0 and themaximumnumber of iterationsmaxSteps
have to be chosen before running this method. A possible convergence
criterion is reached if ∇J(α) is almost zero.

Task 1.6. (Master students only) Implement the gradient descent method
and run an LLS algorithm with a gradient descent optimizer for the data from
task 1.5 (a.1.). Choose ν ∈ {1, 10−1, 10−2, . . .} as the largest value such that
convergence is achieved. Create a plot of the value of J vs. the actual iteration
number. What do you observe?

Although it is not very meaningful to use a gradient descent opti-
mizer for our LLS algorithm, wewill encountermore elaboratemodels
for the function f later on for which this approach will be more appro-
priate.

Data normalization

An underestimated pre-processing step in data analysis is data normal-
ization or data scaling. The way in which a data set is scaled can have
significant impact on the outcome and/or the runtime of a machine
learning algorithm.

Task 1.7. (Master students only) Normalize the data from task 1.5 (a.1.).
To this end, calculate the mean µj and the standard deviation σj for each feature

Send anonymous feedback for this page.

https://commons.wikimedia.org/wiki/File:Iris_setosa_var._setosa_(2595031014).jpg
https://commons.wikimedia.org/wiki/File:Blue_Flag_(Iris_versicolor)_-_United_States_National_Arboretum.jpg
https://commons.wikimedia.org/wiki/File:IMG_7911-Iris_virginica.jpg
https://beta.ins.uni-bonn.de/feedback/mllab?page=10&vcs=0f57f25c&obj=Script

1.4 k-nearest neighbors 11

j (i.e. each coordinate direction j of the data set) and set the j-th component of
the i-th data point to

[xi]j :=
[xi]j − µj

σj
.

Now run the gradient descent LLS algorithm on the normalized data. Again,
choose ν as the largest value such that convergence is achieved. Compare the
first 100 iteration steps by plotting the value of J vs. the iteration number for
both the normalized and the unnormalized case. What do you observe?

k-nearest neighbors

Next, we consider a different regression/classification technique: The
so-called k-nearest neighbor algorithm. Here, a data point x from a test
set is assigned a specific mean of training data values

nearNeighk (x) =
1
k ∑
{ i |x i∈Nk (x)}

y i ,

where Nk (x) are the closest k training points to x. For a two class
problem (Γ = {0, 1}), the data point x would be assigned to class 0 if
nearNeighk (x) < 0.5 and to class 1 otherwise. If nearNeighk (x) =

0.5 you can choose which class to assign to x.

Task 1.8. Implement the k-nearest neighbor algorithm. There are many pos-
sible ways to calculate the pairwise distances between data sets. For instance,
you can use the scipy.spatial.distance library. Run the algorithm with
k = 1, k = 15 and k = 30 and calculate the confusion matrix and the
accuracy for the data set from task 1.1 (using it as training and test data set).
Make a scatter plot of the data and plot the separation level set, i.e. the contour
of nearNeighk (x) = 1

2 .

Task 1.9. Let us test how the algorithm performs for every possible k.

(a) Run the k-nearest neighbors algorithm for the data from task 1.1 for all
k = 1, . . . , 200 and store the accuracy for each k.

(b) Do the same thing as in step (a) but now use the data created in task 1.4
as test data.

(c) Plot the accuracies from steps (a) and (b) vs. the value of k. What do
you observe?

what we did not cover . . .

stochastics Since we can usually assume that the input data is
drawn according to an (unknown) probability distribution, we can
formulate the problem of finding an optimal classificator/regressor as
a stochastic problem. In this context, especially the so-called Bayesian

Send anonymous feedback for this page.

https://beta.ins.uni-bonn.de/feedback/mllab?page=11&vcs=0f57f25c&obj=Script

12 linear least squares and k-nearest neighbors

methods are commonly used. Here, Bayes’ theorem is applied to obtain
a solution to the corresponding stochastic optimization problem, see
e.g. [3].

logistic regression Another famous linear model to obtain op-
timal classifiers is the logistic regression model, where the distribution
of the underlying random variables is modelled, see [3]. The approach
also involves a different loss function than least squares.

regularization Instead of simply minimizing a loss function as
in the case of linear least squares, we could add a regularization term
to the minimization problem. This can be interpreted as a trade-off
between minimizing the loss on the training data and obtaining a
simple or sparsemodel, see [3]. Examples for such regularization terms
are `p normsof the coefficients (Lasso, Tikhonov) ormore complexnorms
involving derivatives of the minimizer.

references

[1] Dua Dheeru and Efi Karra Taniskidou. UCI Machine Learning
Repository. 2017. url: http://archive.ics.uci.edu/ml.

[2] R. A. Fisher. “The use of multiple measurements in taxonomic
problems.” In: Annals of Eugenics 7.2 (1936), pp. 179–188. issn:
2050-1439. doi: 10.1111/j.1469-1809.1936.tb02137.x.

[3] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The El-
ements of Statistical Learning. Springer Series in Statistics. New
York, NY, USA: Springer New York Inc., 2009. url: https://web.
stanford.edu/~hastie/ElemStatLearn/download.html.

Send anonymous feedback for this page.

http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://web.stanford.edu/~hastie/ElemStatLearn/download.html
https://web.stanford.edu/~hastie/ElemStatLearn/download.html
https://beta.ins.uni-bonn.de/feedback/mllab?page=12&vcs=0f57f25c&obj=Script

