

Scientific Computing I

Winter Semester 2018/2019 Prof. Dr. Carsten Burstedde Jose A. Fonseca

Exercise Sheet 1.

Due date: Tue, 23.10.2018.

Exercise 1. (Green's formulas)

Let Ω a bounded domain in \mathbb{R}^n with Lipschitz boundary $\partial\Omega$. If $u \in \mathcal{C}^1(\Omega)$, we know that

$$\int_{\Omega} u_{x_i} \,\mathrm{d}x = \int_{\partial\Omega} u\vec{\nu}_i \,\mathrm{d}s, \quad i = 1, \dots, n, \tag{1}$$

where $\vec{\nu}_i$ is the *i*-th component of the outward pointing normal to the surface of Ω .

Assuming that $u, v \in C^2(\Omega)$, prove the following identities:

a)
$$\int_{\Omega} \Delta u \, dx = \int_{\partial \Omega} \nabla u \cdot \vec{\nu} \, ds$$

b)
$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = -\int_{\Omega} u \Delta v \, dx + \int_{\partial \Omega} u \nabla v \cdot \vec{\nu} \, ds$$

c)
$$\int_{\Omega} (u \Delta v - v \Delta u) \, dx = \int_{\partial \Omega} (u \nabla v \cdot \vec{\nu} - v \nabla u \cdot \vec{\nu}) \, ds$$

Exercise 2. (PDE classification)

(6 Points)

(6 Points)

Let $u : \mathbb{R}^3 \times (0, T) \to \mathbb{R}, T > 0$ and $\epsilon > 0$. Investigate if the following partial differential equations are of elliptic, parabolic or hyperbolic type.

- a) $\Delta u = a^2 u_{tt}, a \in \mathbb{R}$ constant.
- b) $\epsilon u_t \Delta u + au = f, a \in \mathbb{R}$ constant.

c)
$$u_t - \Delta u + \epsilon u_{x_1} - u_{x_2} = f$$
,

d) $-\Delta u + t(1 - \|\vec{x}\|_2^2)u = f.$

In all the equations the Laplace operator is taken with respect to the spatial variables only, that is, $\Delta u = \sum_{i=1}^{3} u_{x_i x_i}$.

Exercise 3. (Rotation invariance)

Let Ω a domain in \mathbb{R}^n , $n \geq 1$ and $u : \Omega \to \mathbb{R}$ a function that satisfies the Laplace equation $\Delta u = 0$. Given an orthogonal $n \times n$ matrix O, define

$$v(\vec{x}) := u(O\vec{x}) \quad \vec{x} \in \Omega.$$
⁽²⁾

Show that $\Delta v = 0$.

Exercise 4. (Polar coordinates)

(6 Points)

(6 Points)

a) Show that the Laplace operator $\Delta u = u_{xx} + u_{yy}$ in two dimensions can be written in polar coordinates (r, θ) as

$$\Delta u = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta}.$$
(3)

b) Let a and b positive constants with a < b. Find the solutions of the form $u(r, \theta) = v(r)$ of the equation $u_{xx} + u_{yy} = 1$ in the annular region $a^2 < x^2 + y^2 < b^2$, with u vanishing on both parts of the boundary.