

Scientific Computing I

(Wissenschaftliches Rechnen I)

Winter term 2019/20

Priv.-Doz. Dr. Christian Rieger Fabian Hoppe

2nd excercise sheet

Submission on October 24, before the lecture

Excercise 1.

(2 + 2 = 4 points)

For $d \in \mathbb{N}$ and $\alpha > 0$ we consider the function

$$f: \mathbb{R}^d \to \mathbb{R}, \qquad x \mapsto \|x\|_2^{-\alpha}.$$

- **a)** Compute the range of all α such that $f \in L^1_{loc}(\mathbb{R}^d)$.
- **b)** For $p \in (1, \infty)$ determine all α such that $f \in W^{1,p}([-1, 1]^d)$.

Excercise 2.

(2 + 2 = 4 points)

We consider the absolute value function f and the so called Heaviside function g defined as follows:

 $\begin{aligned} f: \ \mathbb{R} & \to \mathbb{R}, \quad x \mapsto |x|, \\ g: \ \mathbb{R} & \to \mathbb{R}, \quad x \mapsto \begin{cases} 0 & x < 0 \\ 1 & x \ge 0 \end{cases} \end{aligned}$

- **a)** Compute the weak derivative of *f*. Use directly the definition and not Excercise 3a.
- b) Show that g is not weakly differentiable.
 Which kind of object could be a candidate for an even "weaker" kind of derivative¹ of g?

¹This kind of derivative, the *distributional derivative*, will not be required in this lecture...

Excercise 3.

- **a)** Let $\{\Omega_j\}_{j=1,...,J}$ be a partition of a domain Ω into piecewise smooth subdomains Ω_j , i.e. $\Omega \subset \bigcup_{j=1}^{J} \overline{\Omega_j}$ and $\Omega_j \cap \Omega_{j'} = \emptyset$ for $j \neq j'$. Show that every $u \in C^0(\overline{\Omega})$ such that $u|_{\Omega_j} \in C^1(\overline{\Omega_j})$ for all j = 1, ..., J is weakly differentiable on Ω .
- **b)** Let $\Omega \subset \mathbb{R}^n$ be a domain and $B \in \mathbb{R}^{n \times n}$ invertible. With $B(\Omega)$ we denote the image of Ω under *B*. With a function $u \in C^1(B(\Omega))$ we associate $v := u \circ B \in C^1(\Omega)$.

Express the $W^{1,p}$ -norm on $B(\Omega)$, i.e. $||u||_{W^{1,p}(\Omega)}^p := \int_{B(\Omega)} |u|^p dx + \int_{B(\Omega)} |\nabla u|_2^p dx$, in terms of v and integrals over Ω .

Excercise 4.

(3 + 4 = 7 points)

- **a)** Let $u, v \in W^{1,2}(\Omega)$ for some domain $\Omega \subset \mathbb{R}^n$. Show that $uv \in W^{1,1}(\Omega)$.
- **b)** Let Ω be a bounded domain and $f \in C^1(\mathbb{R})$ such that $|f'| \leq M$ with some constant M > 0. Show that it holds:

$$u \in W^{1,p}(\Omega) \implies f \circ u \in W^{1,p}(\Omega)$$

for $p \in [1, \infty)$.

<u>Hint</u>: Determine a "intuitive" candidate for the respective weak derivatives. Use the density of $C^{\infty}(\Omega)$ in $W^{k,p}(\Omega)$ for $p \in [1, \infty), k \in \mathbb{N}$.