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Exercise 18. (Sobolev Spaces)
(6 Points)

a) Let Q C R? be an open set. Show that H'(Q) is a Hilbert space.

b) Show that there is no constant C' > 0 such that

Ifllz2) < CIVflirz@ forall f € HY(Q).

c¢) Suppose that  is a bounded Lipschitz domain and let 1 < p < co. We define |-[yy1,0(q)
as the seminorm

» 1/p
olel f
|flwiwe) = > 5o for p < oo,
a€Ng |a|=1 Lr(Q)
olel
|flwie) = max 50 for p = co.
a€eNG |al=1 €T Loo(Q)
Show that the | - |1y and || - 1) are equivalent on Wol’p(Q), i.e., there are

constants C, ¢ > 0 which can depend on the domain €2 and p such that
o flwiw) < Iflwir@) < Clflwin  for all f € WyP(9Q).

Exercise 19. (Singularities of H! functions)
(0 Points)

Let © = B1(0) C R? be the open unit ball around the origin. Show that

-n(u(3)

is in HY(Q).



Programming exercise 2. (Piecewise linear finite elements)
(12 Points)

The goal of this programming exercise is to solve the Poisson problem with mixed boun-
dary conditions,

—Au=f in Q,
u=g¢9 on JdQp, (1)
Vu-v=0 on 0y,

using a piecewise linear finite element method. The domain  C R¢ and our degrees of
freedom shall be encoded by lookup tables, and we would like to write code only once
that can be adapted easily to 1D and 2D as well as to new choices for the Dirichlet and
Neumann boundaries.

a) Consider a triangulation 7 of 2 and store the relevant information for this trian-
gulation 7. By this we mean a division of ) into line segments (1D) or triangles
(2D) Ty, k = 1,..., K where each simplex is defined by M = d + 1 vertices zj(;),
r=1,..., M.

We encode the topology of the discretized domain by the map from local to global
indices. For each element T}, we can identify any local index r € {1..., M} with one
matching global index ¢ € {1,...,I} where [ is the total number of vertices in 7. To
this end, define the following table in the program:

i=1ig(r)=1i(k,r) fork=1,...,Kandr=1,..., M. (2)

The global indices are used to compose the numerical solution using global basis
functions,

I
up () = Zui¢i($)~ (3)
=1

We will also separate the global degrees of freedom into two nonempty sets. The
first set of cardinality L < I contains interior (volume) vertices and vertices on the
Neumann boundary and the second set the complementary Dirichlet set. To this end,
we need to configure two non-intersecting lists,

iv =1y(j) where j=1,...,L iy €1,...,1, (4a)
ip =1ip(j’) where j =1,....I-L,ipel,...,I. (4b)

Consider different discretizations of one- and two-dimensional domains with different
boundary conditions. Create the lists described in (2) and (4). For example, in the
case where Q = (0,1)2, you may consider the discretization where the square is
divided into 2n? similar triangles (see Figure 1).

b) We pull each of the T} back to the reference element Ty with vertices &, r =1,..., M.
In 2D we choose as reference element the convex hull of the points & = (0,0),
& =(1,0) and &3 = (0,1), and for the 1D case the line segment between £ = 0 and
& =1
On this reference simplex, we define nodal linear functions ¥, that is, ¥, (&) = dys,
r,s € {1,..., M}. Moreover, we define for each element T} an affine linear transfor-

mation
F: Ty — Ty (5)

such that the basis functions v; over this element satisfy

\I"r o Fk_l = lzji(k,r)‘Tk- (6)
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Figure 1: (Uniform) Triangulation of the unit square (0, 1)2.
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Figure 2: Reference element Ty and transformation Fj onto a triangle T}.

For each element T}, compute the local mass and stiffness matrices Mr, , A7, € RMxM
as
(MTk)rs :/T wi(k,r)wi(k,s) dz, (7&)
k
(A1)rs = . Vi) - Vi(r,s) dx (7b)
k
for r,s = 1,..., M, using the transformation theorem to integrate over Typ. Write

a routine that carries out the matrix-vector multiplication for the global stiffness
matrix A € R’/ given by

K

Ai(k,r),i(k,s) = Z(ATk)r,a (8)
k=1

and analogously for the global mass matrix M. Test your implementation by verifying
that for the I-vector e of all ones

e’Me = |, elAe=0. (9)

c) Write a routine that returns the local load vector fr, € RM for each element Tj,
k=1,..., K with

(1) = /T Fosgon da (10)

for r =1,..., M. To this end, transform the integral to the reference triangle Ty and
approximate it with the quadrature

- flz,y)dedy =~ é [f <é, é) f (%, é) + f (é, %>] in 2D and  (11la)

Sl (V3-1 V3+1 :
. f(z)dx =~ 3 [f (2—\/§> + f (2—\/§> in 1D. (11b)




f)

Combine them into a global load vector f € R”.

Use the conjugate gradient method from the last programming exercise to solve the
discrete problem. We utilize the projector Py € R'*! that sets all Dirichlet entries
of a vector to zero and its complement projector Pp = id — Py . With given Dirichlet
values (up); = g(z), i =ip(j’), and (up); =0, i =iy (j), solve the equation

(PvApv+PD)u:PV (f—AuD)—i—uD. (12)

Plot the solution that you obtained. Try your code for different problems. To this
end, you can choose a true solution v and define the right hand side and boundary
conditions such that (1) is satisfied. Then use your code to find an approximation uy,
to u. Use the triangulation shown in Figure 1 and also consider other discretizations.

Bonus: Now we want to measure the error between the approximate solution wuy
and the true solution wu. First, use the quadrature rule in part (c) to evaluate
IV (u —up)| 12(q)- Alternatively, interpolate the true solution u to the finite element
space and use an application of the stiffness matrix to compute [|V(u — up)| 12(q)-
Compare the two errors. Vary the number of elements and examine the order of
convergence for different choices of .

Bonus: Run your code also for non-rectangular domains.

You have two weeks to turn in the programming exercises, in this case until Monday,
December 19th, 2022.




