
Scientific Computing I

Winter semester 2022/2023
Prof. Dr. Carsten Burstedde

Uta Seidler and Denis Düsseldorf

Exercise sheet 10. Submission (theory) by 19.01.2023.

Exercise 25. (Scaling)

(6 Points)

Let K ⊂ Rd be an open and bounded set and u ∈ W k,p(K) for some 1 ≤ p < ∞.
Furthermore, let 0 < s ∈ R and L(x) = sx be a scaling operation on Rd and define
K̂ = L(K) = {L(x) | x ∈ K} as well as new coordinates x̂ = L(x). For the function
û ∈W k,p(K̂) defined via û(x̂) = u(x), show that

|û|Wk,p(K̂) = s
d
p
−k |u|Wk,p(K) .

Exercise 26. (Interpolation error)

(6 Points)

For (x, y) ∈ R2 set u(x, y) := 1− x2 and let s > 0.

a) Let T be the triangle with corners (−1, 0), (1, 0) and (0, s), and let ITu be the nodal
interpolant of u in P1(T). Show that

‖∇(u− ITu)‖L2(T) ≥
1

2s
‖D2u‖L2(T).

b) Let T be triangle with corners (0, 0), (1, 0) and (0, s), and let ITu be the nodal
interpolant of u in P1(T). Show that

‖∇(u− ITu)‖L2(T) =
1√
12
‖D2u‖L2(T).

Exercise 27. (Piecewise C1-functions)

(0 Points)

Let u1:
[
0, 1

2

]
→ R and u2:

[
1
2 , 1
]
→ R be continuously differentiable functions. We define

u: [0, 1]→ R, x 7→

{
u1(x) if x ≤ 1/2,

u2(x) if x > 1/2.

Show that u ∈ H1([0, 1]) if and only if u1

(
1
2

)
= u2

(
1
2

)
.

1

Programming exercise 3. (Piecewise linear finite elements)

(12 Points)

The goal of this programming exercise is to solve the Poisson problem in 2D with mixed
boundary conditions,

−∆u = f in Ω,

u = g on ∂ΩD,

∇u · ν = 0 on ∂ΩN ,

(1)

using a piecewise linear finite element method. The domain Ω ⊂ R2 and our degrees of
freedom shall be encoded by lookup tables, and we would like to write code only once
that can be adapted to new choices for the Dirichlet and Neumann boundaries.

a) Consider a triangulation T of Ω and store the relevant information for this triangu-
lation T . By this we mean a division of Ω into triangles Tk, k = 1, . . . ,K where each
triangle is defined by M = 3 vertices zi(k,r), r = 1, . . . ,M .

We encode the topology of the discretized domain by the map from local to global
indices. For each element Tk, we can identify any local index r ∈ {1 . . . ,M} with one
matching global index i ∈ {1, . . . , I} where I is the total number of vertices in T . To
this end, define the following table in the program:

i = ik(r) = i(k, r) for k = 1, . . . ,K and r = 1, . . . ,M. (2)

The global indices are used to compose the numerical solution using global basis
functions,

uh(x) =

I∑
i=1

uiψi(x). (3)

We will also separate the global degrees of freedom into two nonempty sets. The
first set of cardinality L < I contains interior (volume) vertices and vertices on the
Neumann boundary and the second set the complementary Dirichlet set. To this end,
we need to configure two non-intersecting lists,

iV = iV (j) where j = 1, . . . , L, iV ∈ 1, . . . , I, (4a)

iD = iD(j′) where j′ = 1, . . . , I − L, iD ∈ 1, . . . , I. (4b)

Create the lists described in (2) and (4). For example, in the case where Ω = (0, 1)2,
you may consider the discretization where the square is divided into 2n2 similar
triangles (see left figure).

1
n

1
n

(Uniform) Triangulation of the unit
square (0, 1)2.

1

1

ξ3

ξ2ξ1

T0

y

x

Tk

z1

z2

z3Fk

Reference element T0 and transformation Fk on-
to a triangle Tk.

2

b) We pull each of the Tk back to the reference element T0 with vertices ξr, r = 1, . . . ,M .
We choose as reference triangle the convex hull of the points ξ1 = (0, 0), ξ2 = (1, 0)
and ξ3 = (0, 1).

On this reference triangle, we define nodal linear functions Ψr, that is, Ψr(ξs) = δrs,
r, s ∈ {1, . . . ,M}. Moreover, we define for each element Tk an affine linear transfor-
mation

Fk : T0 → Tk (5)

such that the basis functions ψi over this element satisfy

Ψr ◦ F−1
k = ψi(k,r)|Tk

. (6)

For each element Tk compute the local mass and stiffness matrices MTk
, ATk

∈ RM×M

as

(MTk
)rs =

∫
Tk

ψi(k,r)ψi(k,s) dx, (7a)

(ATk
)rs =

∫
Tk

∇ψi(k,r) · ∇ψi(k,s) dx (7b)

for r, s = 1, . . . ,M , using the transformation theorem to integrate over T0. Write
a routine that carries out the matrix-vector multiplication for the global stiffness
matrix A ∈ RI×I given by

Ai(k,r),i(k,s) =

K∑
k=1

(ATk
)r,s, (8)

and analogously for the global mass matrix M. Test your implementation by verifying
that for the I-vector e of all ones

eTMe = |Ω|, eTAe = 0. (9)

c) Write a routine that returns the local load vector fTk
∈ RM for each element Tk,

k = 1, . . . ,K with

(fTk
)r =

∫
Tk

fψi(k,r) dx (10)

for r = 1, . . . ,M . To this end, transform the integral to the reference triangle T0 and
approximate it with the quadrature∫

T0

f(x, y) dx dy ≈ 1

6

[
f

(
1

6
,
1

6

)
+ f

(
4

6
,
1

6

)
+ f

(
1

6
,
4

6

)]
(11)

Combine them into a global load vector f ∈ RI .

d) Use the conjugate gradient method from the last programming exercise to solve the
discrete problem. We utilize the projector PV ∈ RI×I that sets all Dirichlet entries
of a vector to zero and its complement projector PD = id−PV . With given Dirichlet
values (uD)i = g(zi), i = iD(j′), and (uD)i = 0, i = iV (j), solve the equation

(PV APV + PD)u = PV (f −AuD) + uD. (12)

Plot the solution that you obtained. Try your code for different problems. To this
end, you can choose a true solution u and define the right hand side and boundary
conditions such that (1) is satisfied. Then use your code to find an approximation uh
to u.

For example, solve the Laplace problem on Ω = (0, 1)2 where the true solution is
given by

3

i)
u(x, y) = (1− x)x(1− y)y

and zero-Dirichlet boundary conditions on the entire boundary, i.e. ∂ΩD = ∂Ω

ii)
u(x, y) = 1 + 3x2y − 2x3y + 3x2y3 − 2y3x3

with ∂ΩN = {0} × (0, 1) ∪ {1} × (0, 1) and ∂ΩD = (0, 1)× {0} ∪ (0, 1)× {1}

and the values on the boundary and right hand side are chosen accordingly.

e) Now we want to measure the error between the approximate solution uh and
the true solution u. For that, use the quadrature rule in part (c) to evaluate
‖∇(u− uh)‖L2(Ω). Alternatively, interpolate the true solution u to the finite element
space, i.e.

Ihu(x) =
I∑

i=1

ũiψi(x) with ũi = u(zi)

and use the stiffness matrix to compute ‖∇(u− uh)‖L2(Ω). Compare the two errors.

Moreover, compute the L2(Ω)-error ‖u − uh‖L2(Ω) by either using the quadrature
rule or interpolating the true solution to the finite element space and using the mass
matrix.

Analyze the convergence of the finite element method by solving the PDE with the
uniform triangulation for different n. Plot both errors versus n using a logarithmic
scaling for both axis.

Examine the error for the following problems

(i)

−∆u = 20π2 sin(2πx) cos(4πy) in Ω = (0, 1)2

u = sin(2πx) on (0, 1)× {0},
u = 0 on {0} × (0, 1) ∪ {1} × (0, 1),

∇u · ν = 0 on (0, 1)× {1},

such that the true solution is u(x, y) = sin(2πx) cos(4πy).

(ii)

−∆u = f in Ω = (0, 1)2

u = g on ∂Ω

such that the true solution is u(x, y) =
√
x

1+y2
.

f) Run your code also for a non-rectangular domain of your choice.

You have until Monday, 23rd January 2023 to work on this programming exercise. The
points will mainly be given for the parts (d)-(f) this time.

4

