

Numerical Algorithms

Winter 2023/24 Prof. Dr. Carsten Burstedde Hannes Brandt

Submission: 16.01.2024

Exercise Sheet 11.

Exercise 1. (Morton Encoding)

Let $d \in \mathbb{N}_{>0}$ and $(\ell, I_{\ell}), (\ell', J_{\ell'})$ with $\ell, \ell' \in \mathbb{N}, I_{\ell} \in [0, 2^{d\ell}) \cap \mathbb{N}, J_{\ell'} \in [0, 2^{d\ell'}) \cap \mathbb{N}$ the Morton encodings of two mesh elements.

a) Prove the following properties of the morton_parent and morton_child functions introduced in the lecture

$$\mathtt{morton_parent} \ (\mathtt{morton_child} \ (\ell, I_\ell, i)) = (\ell, I_\ell) \qquad i = 0, \dots, 2^d - 1.$$

- b) Propose a function morton_sibling (ℓ, I_{ℓ}, i) that computes the sibling of (ℓ, I_{ℓ}) with child id i.
- c) Propose a function morton_compare $(\ell, I_{\ell}, \ell', J_{\ell'})$ that returns
 - -1, when (ℓ, I_{ℓ}) precedes $(\ell', J_{\ell'})$ in the Morton order
 - 1, when (ℓ', J'_{ℓ}) precedes (ℓ, I_{ℓ}) in the Morton order
 - 0, when (ℓ, I_{ℓ}) and $(\ell', J_{\ell'})$ are identical.

If one element is an ancestor of the other, we define it to precede the other element in the Morton order.

- d) Derive an algorithm that computes the Morton encoding of the nearest common ancestor of two mesh elements using the morton_parent function presented in the lecture.
- e) Derive an algorithm that computes the Morton encoding of the nearest common ancestor of two mesh elements that operates in a direct (non-iterative, non-recursive) manner.

(1+2+3+3+3 Points)