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Approximation with finite linear information

Setting: X and Y normed spaces, F ⊂ X , T : F → Y .

Problem: We cannot evaluate Tf for some f ∈ F .

Capabilities: We can evaluate Af for a certain class of
admissible algorithms A ∈ A ⊂ Y F .

Errors: The worst-case error of the algorithm A ∈ A is

e(A,T ) = sup
f∈F
‖Tf − Af‖Y .

The minimal worst-case error in the class A is

e(A,T ) = inf
A∈A

e(A,T ).
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Approximation with finite linear information

Examples of admissible algorithms:
The class An of algorithms that evaluate less
than n linear functionals.
The class A∗n = {A ∈ L(X ,Y ) | rank(A) < n}.
The class Aeval

n of algorithms that evaluate
less than n function values.

Our Mission: We want to study the case
X = Hs

mix

(
Gd) and F its unit ball, Y = L2

(
Gd)

T : F → Y , Tf = f
A = An
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Approximation with finite linear information

Theorem (Bakhvalov, Gal & Michelli, Creutzing & Wojtaszczyk, Hinrichs & Novak & Woźniakowski)
If F is the unit ball of a pre-Hilbert space and T is linear and
bounded,

e (An,T ) = e (A∗n,T ) = an (T ) .

Contents: Unbounded functionals are not necessary.
Adaption does not help.
Linear algorithms are optimal.

If X and Y are Hilbert spaces:
T approximable with finite linear information⇐⇒ T compact.
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Approximation with finite linear information

Fact

There is a countable orthonormal basis B of N(T )⊥ such that
TB is an orthogonal basis of R(T ).

B is called singular value decomposition (SVD) of T , the values
‖Tb‖Y for b ∈ B are called singular values (SVs). Clearly,

Tf =
∑

b∈B
〈f ,b〉Tb.

Fact
Moreover, an(T ) is the nth largest SV of T . The algorithm

An : F → Y , An(f ) =
∑

b∈Bn
〈f ,b〉Tb,

is optimal in An, if Bn ⊂ B corresponds to the n− 1 largest SVs.
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Tensor product operators

For i = 1 . . . d , let Gi be a nonempty set and let G =
∏d

i=1 Gi .
The tensor product of functions fi : Gi → C is

f1 ⊗ . . .⊗ fd : G→ C, x 7→ f1(x1) · . . . · fd(xd).

The tensor product of Hilbert spaces Xi of functions Gi → C

X = X1 ⊗ . . .⊗ Xd

is the smallest Hilbert space of functions G→ C that contains
all tensor product functions and satisfies

〈f1 ⊗ . . .⊗ fd ,g1 ⊗ . . .⊗ gd〉 = 〈f1,g1〉 · . . . · 〈fd ,gd〉 .

Analogously let Y = Y1 ⊗ . . .⊗ Yd .
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Tensor product operators

For bounded linear operators Ti : Xi → Yi , the tensor product

T = T1 ⊗ . . .⊗ Td : X → Y

is the unique bounded and linear operator with

T (f1 ⊗ . . .⊗ fd) = T1f1 ⊗ . . .⊗ Td fd .

Fact
If Ti is compact for i = 1 . . . d, then so is T .
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Tensor product operators

Example

Let Ti be the embedding of Hsi (Gi) into L2(Gi). Then

L2(G1)⊗ . . .⊗ L2(Gd) = L2(G),

Hs1(G1)⊗ . . .⊗ Hsd (Gd) = Hs
mix(G)

and T is the embedding of Hs
mix(G) into L2(G).

Fact
If Bi is a SVD of Ti for each index i, then B = B1 ⊗ . . .⊗ Bd is a
SVD of T . In particular, e (An,T ) is the nth largest product
σ1 · · ·σd of singular values σi of Ti .
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L2-Approximation in univariate Sobolev spaces

The periodic case. Consider P : Hs (T) ↪→ L2 (T).

The Fourier basis is an orthogonal basis in both spaces.
Hence,

an(P) =

 s∑
j=0

(2π bn/2c)2j

−1/2

and in particular,
an(P)

n→∞∼ (πn)−s .
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L2-Approximation in univariate Sobolev spaces

The nonperiodic case. Consider S : Hs ([0,1]) ↪→ L2 ([0,1]).

Lemma

an(P) ≤ an(S) ≤ an−s(P)

Hence,
an(S)

n→∞∼ an(P)
n→∞∼ (πn)−s .

Problems:
What about an(S) for small values of n?
Optimal algorithms?
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L2-Approximation in univariate Sobolev spaces

We need the eigenfunctions of W = S∗S.

Lemma (K.)

Let λ > 0 and f ∈ Hs([0,1]). Then,

Wf = λf ⇐⇒


∑s

k=1(−1)k f (2k) =
( 1
λ − 1

)
f ,

f (s)(x) = 0 and f (s+k)(x) = f (s−k)(x)
for k = 1, . . . , s − 1 and x ∈ {0,1} .

↪→ Recipe for optimal algorithms and explicit singular values.
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Tensor product sequences

Setting: (σn)n∈N a nonincreasing zero sequence,
(σn)n∈Nd its d th tensor power,(
an,d

)
n∈N its nonincreasing rearrangement.

Example: T1 = . . . = Td compact operator between Hilbert
spaces and σn = an(T1). Then, an,d = an(T ).

Notation: Pd : Hs
mix

(
Td) ↪→ L2

(
Td),

Sd : Hs
mix

(
[0,1]d

)
↪→ L2

(
[0,1]d

)
.
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Tensor product sequences

Theorem (K.)

If σn ≤ C n−s for all n ≥ N1, then there is some Nd ∈ N such
that

an,d ≤ Cd n−s

(
(log n)d−1

(d − 1)!

)s

for all n ≥ Nd . (1)

If σn ≥ c n−s for all n ≥ n1, then there is some nd ∈ N such that

an,d ≥ cd n−s

(
(log n)d−1

(d − 1)!

)s

for all n ≥ nd . (2)
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Tensor product sequences

Corollary (K.)

e
(
An,Sd

)
n→∞∼ e

(
An,Pd

)
n→∞∼

(
(log n)d−1

πd (d − 1)!n

)s

.

Remark: Compare Kühn/Sickel/Ullrich (2015) for the
periodic case.

Meaning: If n is large enough, periodicity does not affect the
approximation error.

Problem: Estimate is useless for n ≤ ed−1.
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Tensor product sequences

Theorem (K.)

Let σ1 = 1 > σ2 > 0 and assume that σn ≤ C n−s for all n ≥ 2.
For any n ∈

{
2, . . . ,2d},

(
1
n

) logσ−1
2

log
(

1+ d
log2 n

)
≤ an,d ≤

(
exp

(
C2/s)
n

) logσ−1
2

log
(
σ
−2/s
2 d

)
.

Roughly: For small n, we obtain that an,d ≈ n−
logσ−1

2
log d .

Example: Let s ≥ 2. Then

an

(
Pd
)
≈ n−

s log(2π)
log d and an

(
Sd
)
≈ n−

1.28
log d .
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Tensor product sequences

Theorem (Novak & Woźniakowski)

The problem
{

Hs
mix

(
Gd) ↪→ L2

(
Gd)} is not polynomially

tractable for both G = T and G = [0,1].

Does an increasing smoothness yield tractability?

Theorem (K.)

The problem
{

Hsd
mix

(
[0,1]d

)
↪→ L2

(
[0,1]d

)}
is not polynomially

tractable for any choice of natural numbers sd . The problem{
Hsd

mix

(
Td) ↪→ L2

(
Td)} is strongly polynomially tractable, iff it is

polynomially tractable, iff sd grows at least logarithmically in d.

Compare Papageorgiou/Woźniakowski 2010.
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Tensor product sequences

What about tensor products of different sequences?

Results on the order of convergence by Mityagin and
Nikol’skaya.

The full asymptotic behavior is not determined by the
asymptotic behavior of the factors.

Preasymtotics?


