Product Operators

Univariate Functions

Product Sequences

▲□▶▲□▶▲□▶▲□▶ □ のQ@

On the approximation of tensor product operators

David Krieg

University of Jena

Bonn February 9, 2017

Product Sequences

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Approximation with finite linear information

Setting: *X* and *Y* normed spaces, $F \subset X$, $T : F \to Y$.

Problem: We cannot evaluate *Tf* for some $f \in F$.

Capabilities: We can evaluate *Af* for a certain class of admissible algorithms $A \in A \subset Y^F$.

Errors: The worst-case error of the algorithm $A \in A$ is

$$e(A, T) = \sup_{f \in F} \|Tf - Af\|_Y.$$

The minimal worst-case error in the class $\ensuremath{\mathcal{A}}$ is

$$e(\mathcal{A}, T) = \inf_{A \in \mathcal{A}} e(A, T).$$

Univariate Functions

Product Sequences

(日) (日) (日) (日) (日) (日) (日)

Approximation with finite linear information

Examples of admissible algorithms:

- The class A_n of algorithms that evaluate less than *n* linear functionals.
- The class $\mathcal{A}_n^* = \{ A \in \mathcal{L}(X, Y) \mid \operatorname{rank}(A) < n \}.$
- The class $\mathcal{A}_n^{\text{eval}}$ of algorithms that evaluate less than *n* function values.

Our Mission: We want to study the case

• $X = H^s_{mix}(G^d)$ and F its unit ball, $Y = L_2(G^d)$ • $T : F \to Y$, Tf = f• $\mathcal{A} = \mathcal{A}_n$

Univariate Functions

Product Sequences

Approximation with finite linear information

Theorem (Bakhvalov, Gal & Michelli, Creutzing & Wojtaszczyk, Hinrichs & Novak & Woźniakowski)

If F is the unit ball of a pre-Hilbert space and T is linear and bounded,

$$e(\mathcal{A}_n, T) = e(\mathcal{A}_n^*, T) = a_n(T).$$

- Contents: Unbounded functionals are not necessary.
 - Adaption does not help.
 - Linear algorithms are optimal.
- If X and Y are Hilbert spaces:

T approximable with finite linear information \iff T compact.

Univariate Functions

Product Sequences

Approximation with finite linear information

Fact

There is a countable orthonormal basis \mathcal{B} of $N(T)^{\perp}$ such that $T\mathcal{B}$ is an orthogonal basis of $\overline{R(T)}$.

 \mathcal{B} is called singular value decomposition (SVD) of T, the values $||Tb||_{Y}$ for $b \in \mathcal{B}$ are called singular values (SVs). Clearly,

$$Tf = \sum_{b \in \mathcal{B}} \langle f, b \rangle Tb.$$

Fact

Moreover, $a_n(T)$ is the nth largest SV of T. The algorithm

$$A_n: F o Y, \quad A_n(f) = \sum_{b \in \mathcal{B}_n} \langle f, b \rangle \ Tb,$$

is optimal in A_n , if $B_n \subset B$ corresponds to the n-1 largest SVs.

Linear Information	Product Operators ●○○	Univariate Functions	Product Sequences

lensor product operators

For $i = 1 \dots d$, let G_i be a nonempty set and let $G = \prod_{i=1}^{d} G_i$. The tensor product of functions $f_i : G_i \to \mathbb{C}$ is

 $f_1 \otimes \ldots \otimes f_d : G \to \mathbb{C}, \quad x \mapsto f_1(x_1) \cdot \ldots \cdot f_d(x_d).$

The tensor product of Hilbert spaces X_i of functions $G_i \to \mathbb{C}$

$$X = X_1 \otimes \ldots \otimes X_d$$

is the smallest Hilbert space of functions $G \to \mathbb{C}$ that contains all tensor product functions and satisfies

$$\langle f_1 \otimes \ldots \otimes f_d, g_1 \otimes \ldots \otimes g_d \rangle = \langle f_1, g_1 \rangle \cdot \ldots \cdot \langle f_d, g_d \rangle.$$

Analogously let $Y = Y_1 \otimes \ldots \otimes Y_d$.

Linear Information	Product Operators ○●○	Univariate Functions	Product Sequences
Tensor prod	uct operators		

For bounded linear operators $T_i : X_i \rightarrow Y_i$, the tensor product

 $T = T_1 \otimes \ldots \otimes T_d : X \to Y$

is the unique bounded and linear operator with

$$T(f_1 \otimes \ldots \otimes f_d) = T_1 f_1 \otimes \ldots \otimes T_d f_d.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Fact

If T_i is compact for $i = 1 \dots d$, then so is T.

Linear	Information

Product Operators

Univariate Functions

Product Sequences

Tensor product operators

Example

Let T_i be the embedding of $H^{s_i}(G_i)$ into $L_2(G_i)$. Then

$$L_2(G_1)\otimes\ldots\otimes L_2(G_d)=L_2(G),\ H^{s_1}(G_1)\otimes\ldots\otimes H^{s_d}(G_d)=H^{\mathbf{s}}_{\mathrm{mix}}(G)$$

and T is the embedding of $H_{\min}^{\mathbf{s}}(G)$ into $L_2(G)$.

Fact

If \mathcal{B}_i is a SVD of T_i for each index *i*, then $\mathcal{B} = \mathcal{B}_1 \otimes \ldots \otimes \mathcal{B}_d$ is a SVD of T. In particular, $e(\mathcal{A}_n, T)$ is the nth largest product $\sigma_1 \cdots \sigma_d$ of singular values σ_i of T_i .

Linear Information Product Operators Univariate Functions Product Sequences

*L*₂-Approximation in univariate Sobolev spaces

- **The periodic case**. Consider $P: H^{s}(\mathbb{T}) \hookrightarrow L_{2}(\mathbb{T})$.
- The Fourier basis is an orthogonal basis in both spaces. Hence,

$$a_n(P) = \left(\sum_{j=0}^s (2\pi \lfloor n/2 \rfloor)^{2j}\right)^{-1/2}$$

and in particular,

 $a_n(P) \stackrel{n o \infty}{\sim} (\pi n)^{-s}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Linear Information	Product Operators	Univariate Functions ○●○	Product Sequences
L_2 -Approximation	ion in univariate	Sobolev space	S

The nonperiodic case. Consider $S : H^{s}([0,1]) \hookrightarrow L_{2}([0,1])$.

Lemma

$$a_n(P) \leq a_n(S) \leq a_{n-s}(P)$$

Hence,

$$a_n(S) \stackrel{n \to \infty}{\sim} a_n(P) \stackrel{n \to \infty}{\sim} (\pi n)^{-s}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Problems:

- What about $a_n(S)$ for small values of n?
- Optimal algorithms?

Linear Information Product Operators Univariate Functions Product Sequences

*L*₂-Approximation in univariate Sobolev spaces

We need the eigenfunctions of $W = S^*S$.

Lemma (K.)

Let $\lambda > 0$ and $f \in H^{s}([0, 1])$. Then,

$$Wf = \lambda f \iff \begin{cases} \sum_{k=1}^{s} (-1)^k f^{(2k)} = \left(\frac{1}{\lambda} - 1\right) f, \\ f^{(s)}(x) = 0 \quad \text{and} \quad f^{(s+k)}(x) = f^{(s-k)}(x) \\ \text{for } k = 1, \dots, s-1 \text{ and } x \in \{0, 1\}. \end{cases}$$

 \hookrightarrow Recipe for optimal algorithms and explicit singular values.

Product Operators

Univariate Functions

Product Sequences

Tensor product sequences

Setting:
$$(\sigma_n)_{n \in \mathbb{N}}$$
 a nonincreasing zero sequence,
 $(\sigma_n)_{n \in \mathbb{N}^d}$ its *d*th tensor power,
 $(a_{n,d})_{n \in \mathbb{N}}$ its nonincreasing rearrangement.

Example: $T_1 = \ldots = T_d$ compact operator between Hilbert spaces and $\sigma_n = a_n(T_1)$. Then, $a_{n,d} = a_n(T)$.

Notation:
$$P^d : H^s_{\text{mix}} (\mathbb{T}^d) \hookrightarrow L_2 (\mathbb{T}^d),$$

 $S^d : H^s_{\text{mix}} ([0,1]^d) \hookrightarrow L_2 ([0,1]^d).$

Product Operators

Univariate Functions

Product Sequences

Tensor product sequences

Theorem (K.)

If $\sigma_n \leq C n^{-s}$ for all $n \geq N_1$, then there is some $N_d \in \mathbb{N}$ such that

$$a_{n,d} \leq C^d n^{-s} \left(rac{(\log n)^{d-1}}{(d-1)!}
ight)^s$$
 for all $n \geq N_d$. (1)

If $\sigma_n \ge c n^{-s}$ for all $n \ge n_1$, then there is some $n_d \in \mathbb{N}$ such that

$$a_{n,d} \ge c^d n^{-s} \left(\frac{(\log n)^{d-1}}{(d-1)!} \right)^s \quad \text{for all } n \ge n_d. \tag{2}$$

Product Operators

Univariate Functions

Product Sequences

(日) (日) (日) (日) (日) (日) (日)

Tensor product sequences

Corollary (K.)

$$e\left(\mathcal{A}_{n}, S^{d}\right) \stackrel{n \to \infty}{\sim} e\left(\mathcal{A}_{n}, \mathcal{P}^{d}\right) \stackrel{n \to \infty}{\sim} \left(\frac{\left(\log n\right)^{d-1}}{\pi^{d} \left(d-1\right)! n}\right)^{s}.$$

Remark: Compare Kühn/Sickel/Ullrich (2015) for the periodic case.

- **Meaning**: If *n* is large enough, periodicity does not affect the approximation error.
- **Problem**: Estimate is useless for $n \le e^{d-1}$.

Linear	Information

Product Operators

Univariate Functions

Product Sequences

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Tensor product sequences

Theorem (K.)

Let $\sigma_1 = 1 > \sigma_2 > 0$ and assume that $\sigma_n \leq C n^{-s}$ for all $n \geq 2$. For any $n \in \{2, ..., 2^d\}$,

$$\left(\frac{1}{n}\right)^{\frac{\log \sigma_2^{-1}}{\log\left(1+\frac{d}{\log 2^n}\right)}} \le a_{n,d} \le \left(\frac{\exp\left(C^{2/s}\right)}{n}\right)^{\frac{\log \sigma_2^{-1}}{\log\left(\sigma_2^{-2/s}d\right)}}.$$

Roughly: For small *n*, we obtain that $a_{n,d} \approx n^{-\frac{\log \sigma_2^{-1}}{\log d}}$. **Example**: Let $s \ge 2$. Then

$$a_n\left(P^d\right) \approx n^{-rac{s\log(2\pi)}{\log d}}$$
 and $a_n\left(S^d\right) \approx n^{-rac{1.28}{\log d}}.$

Product Operators

Univariate Functions

Product Sequences

Tensor product sequences

Theorem (Novak & Woźniakowski)

The problem $\{H_{\min}^{s}(G^{d}) \hookrightarrow L_{2}(G^{d})\}$ is not polynomially tractable for both $G = \mathbb{T}$ and G = [0, 1].

Does an increasing smoothness yield tractability?

Theorem (K.)

The problem $\{H_{\min}^{s_d}([0,1]^d) \hookrightarrow L_2([0,1]^d)\}$ is not polynomially tractable for any choice of natural numbers s_d . The problem $\{H_{\min}^{s_d}(\mathbb{T}^d) \hookrightarrow L_2(\mathbb{T}^d)\}$ is strongly polynomially tractable, iff it is polynomially tractable, iff s_d grows at least logarithmically in d.

Compare Papageorgiou/Woźniakowski 2010.

Product Operators

Univariate Functions

Product Sequences

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Tensor product sequences

What about tensor products of different sequences?

- Results on the order of convergence by Mityagin and Nikol'skaya.
- The full asymptotic behavior is **not** determined by the asymptotic behavior of the factors.
- Preasymtotics?