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Abstract 
 
The increasing number of crash simulations and the growing complexity of the models require an efficiently designed evaluation of the 

simulation results. Nowadays a full vehicle model consists of approximately 10 million shell elements. Each of them contains various 

evaluation variables that describe the physical behavior of the element. Therefore, the simulation models are very high dimensional. 

During vehicle development, a large number of models is created that differ in geometry, wall thicknesses and other properties. These 

model changes lead to different physical behavior during a vehicle crash. This behavior is to be analyzed and evaluated automatically. 

In this article, potentials of several algorithms for dimensionality reduction are investigated. The linear Principal Component Analysis 

(PCA) is compared to the non-linear t-distributed stochastic neighbor embedding (t-SNE) algorithm. For those algorithms, it is 

necessary that the input data always has an identical feature space. Geometrical modifications of the model lead to changes of finite 

element meshes and therefore to different data representations. Therefore several 2D and 3D discretization approaches are considered 

and evaluated (sphere, voxel). In order to assess the quality of the results, a scale-independent quality criterion is used for the 

discretization and the subsequent dimensionality reduction. The simulations used in this paper are carried out with LS-DYNA. 

The aim of the presented study is to develop an efficient process for the investigation of different data transformation approaches, 

dimensionality reduction algorithms, and physical evaluation quantities. The resulting evaluation method should represent physically 

relevant effects in the existing simulations in a low-dimensional space without human interaction and thus support the engineer in the 

evaluation of the results. 

 

1. Introduction 

 
More challenging legal requirements, increasing capability of supercomputers, and more efficient development 

processes are driving a growth in the number of crash simulations. A manual evaluation of the results is thus 

reaching its limits and therefore requires an increased automation. This paper investigates to what extent methods 

of machine learning can support the engineer in evaluating multiple simulations. The focus is on the 

dimensionality reduction of high-dimensional crash simulation data. The goal is to enable the user to get a quick 

overview about the different crash behavior of individual components without having to look at each simulation 

in detail in a post-processor.  

 

The data used in this work are taken from a robustness analysis of a front-end vehicle section model [10]. The 

model collides at 64 km/h with an off-center positioned deformable barrier (ODB) according to the EURO NCAP 

[11]. The crash has a duration of 120ms, the result files contain the information of 62 states.  In 51 simulations, 

the wall thicknesses of selected components were scattered using the Advanced Latin Hypercube Method. These 

variations represent the production-related scattering of the wall thicknesses for each component and allow an 

evaluation of the robustness of the concept. In Figure 1, the two components, which are used exemplarily for the 

analysis in this work, are highlighted. The Crash Management System plays a major role in the low-speed crash, 

whereas the longitudinal member is important in high-speed crash scenarios.  
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Especially the longitudinal member shows an interesting behavior in the 51 simulations and three different 

deformation modes can be observed. The location where the deformation starts after exceeding a certain force 

varies in the 51 simulations. 

In some simulations, the beam starts to fold at the front, in others at the back, and in the remaining ones at the 

front and back simultaneously. In an automated analysis process, such different behaviors are to be detected by 

the algorithm and shall be visualized in a clear and understandable manner. The unrobust behavior of the 

component makes it an excellent candidate for further analysis in this work. 

 

 

  
 

 

 

Figure 1: Front-end vehicle section model: In this paper the longitudinal beam colored in red is investigated 

 

In [1,2,3,4] the Principle Component Analysis (PCA) [5] is used for the visualization of the high-dimensional 

crash simulation data in low dimensions. Due to the fact, that PCA is a linear dimensionality reduction method, 

but a car crash shows highly non-linear behavior, the non-linear t-distributed stochastic neighbor embedding (t-

SNE) algorithm shall be compared as a potential alternative. Chapter 2 analyses the performance of both 

algorithms. To objectively evaluate the quality of the dimensionality reduction, a quality criterion based on the 

calculation of a co-ranking matrix is used [7, 8]. For the evaluation, a distinction is made between the preservation 

of global and local properties in the low dimensional data. The investigations are performed on robustness data 

where no changes of the finite element (FE) mesh occur.  

 

Note that changes in geometry and thus modified FE-mesh occur regularly in vehicle development, but the 

dimensionality reduction methods and other machine learning methods require a uniform feature representation 

of the data. Therefore, it is necessary to ensure mesh independence for further data processing and different 

discretization methods are investigated in chapter 3. As a two-dimensional approach, a sphere projection is chosen 

[9]. Its operation is demonstrated exemplarily for the Crash Management System of the vehicle. Starting from the 

geometrical center of the component (Figure 2), each finite element is projected onto a spherical surface, which 

is then discretized along the two polar angles (Figure 3). The advantage of this approach is that the former three-

dimensional geometrical information is now represented in a reduced form in two dimensions. This might lead to 

better computational performance, when it comes to the application of machine learning algorithms.  

In order to make the two-dimensional data representation comparable, a three-dimensional approach is considered 

as well by using a discretization with voxels. A cuboid is placed around the component, which is then discretized 

in all three spatial directions. For both methods, different discretizations are calculated exemplarily for one 

component. Afterwards the dimension is reduced with PCA and the remaining information content is compared 

to the results of the original data. 

 

Crash Management 
System 

Longitudinal 
Member 

Crash Management 
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Figure 2: Calculation of geometrical center 

 

 
Figure 3: Projection of the finite elements onto the sphere 

 

 

 
Figure 4: Calculation of voxel grid 

 
Figure 5: Projection of the finite elements into voxel grid 

 

 

2. Results Dimensionality Reduction 

 
The purpose of reducing the dimensionality of the data is to represent the essential properties of a simulation by 

a reduced number of variables that contain most of the information about the existing data set. Those variables 

can then be used to visualize the simulation results in two or three-dimensional space and to quickly gain useful 

insights into similarities and differences of the simulations. There are several ways to reduce the dimension of the 

data. In this paper, the PCA as well as the t-SNE algorithm are reviewed for their applicability in the analysis of 

crash simulations.  

In the first step, the simulation results were extracted from the d3plot files by using an input-reader from LASSO 

[12]. For data analysis, the plastic strain of each element from the longitudinal member is used as the evaluation 

quantity. The longitudinal member consists of 2286 elements. Two data representations are investigated in this 

paper.  

In the first one, the 62 vectors from the individual states, each of length 2286 (plastic strains of each element), 

are concatenated and thus result in a single vector of dimension 141,732 per simulation. Consequently, the results 

of the 51 simulations form a matrix of the dimension 51x141,732, which is used for further calculations. In the 

following, this approach is called OPioS (One Point is one Simulation).  

In the second data representation method, the states of each simulation are no longer concatenated to one single 

vector. Each state contributes to the input matrix with one row, which contains the information of the e elements 

for that state. This results in an input matrix for the dimensionality reduction of the size 3162x2286. In the 

following, this approach is called OLioS (One Line is one Simulation). 
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2.1 Feature Representation Approach OPioS 

 

In this chapter, the PCA is examined for the first data representation approach OPioS. PCA is transforming the 

data in such way, that a smaller number of parameters describes most variance in the data. The components are 

sorted regarding their included information amount and consequently by their significance. The first components 

contain most of the information and therefore are used for the dimensionality reduction. Figure 6 shows the results 

by plotting the first two principal components against each other on the two axes. Three clusters can be identified, 

which contain the simulations of the three different deformation behaviors already mentioned (folding front, back, 

both ends). This reduced representation gives the engineer a quick overview of the different deformation behavior 

of a component over many simulations. 

 

 
Figure 6: Visualization of the first two principle components from PCA. Dimension of the Input-Matrix: 51x14173 

 

 

The information content of the principal components can be interpreted via the explained variance. This variable 

describes how much variance of the whole data is contained in the corresponding principal component. In Figure 

6, the curve with the circles shows the course of the explained variance of the first 51 principal components. The 

curve converges with the 51st principal component against one. Accordingly, 51 principal components describe 

the entire information content of the present data set. The first two principal components are used for the 

visualization, since they contain most information about the available data in relation to the other components. 

The explained variance with two principal components is 0.258. This value gives an indication of the information 

lost during dimensionality reduction. The maximum value, which can be achieved, is one. In this example, the 

value is low, which is an indicator of a large loss of information. Nevertheless, the information obtained from the 

2D plot (Figure 6) still groups the simulations into the observed three deformation behaviors. Therefore, it is 

useful for the engineer in order to get a quick overview over a bunch of simulations. 
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2.2 Feature Representation Approach OLioS 

 

The next step is to use the second data representation approach OLioS as the input for the PCA. Each simulation 

no longer contributes to the input matrix with one row, but with the number of existing states. This results in an 

input matrix for the dimensionality reduction of the size 3162x2286. The high-dimensional space is less complex 

in this approach compared to OPioS. Accordingly, the expectation is that less information is lost in this procedure 

and the explainedd variance of the first principal components has a higher value.  

Figure 7 confirms this assumption. Compared to the first method OPioS, the explained variance of the first two 

principal components is 0.82 and therefore significant higher than before.  

 

 
Figure 7: Explained Variance of the principle components from PCA over the number of considered components 

 

Figure 8 shows the results, when the first two principal components (PC1, PC2) are plotted against each other. 

The color scheme for each simulation is equivalent to Figure 6. The diagram displays 51 lines (number of 

simulations), each consisting of 62 points (number of states). The lines have a common origin at (𝑃𝐶1 =
−13, 𝑃𝐶2 = 0). About 22 points per line are located in these coordinates. Until state 22, no deformation takes 

place in the longitudinal member and therefore all simulations show the same behavior. From state 23 on, the 

deformations in the component start to scatter between the simulations. For this reason, the curves of the 51 

simulations start to diverge for the following states.  

As shown in the first data representation approach OPioS, similarities and differences between the simulations 

again are visualized clearly. Furthermore, the temporal differences between the simulations can be better resolved 

by using OLioS approach. The interpretability of the two axes depends on the data used for the analysis. A possible 

interpretation for the present data set assigns the quantity "strength of the deformation" to the PC1-axis, the PC2-

axis on the other hand describes the "location of the beginning of the deformation". The curves with the squares 

in particular show that there is a difference in two further behavioral patterns within these simulations starting at 

𝑃𝐶1 ≥ −11 (Figure 8, right). The curves with the circles can also be divided into further sub-clusters beginning 

with 𝑃𝐶2 ≥ −8.  
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Figure 8: Visualization of the first two principle components from PCA. Dimension of the Input-Matrix: 3162x2286 

 

In summary, both approaches are useful for the visualization of complex crash simulation data in low dimensions. 

When it comes to the resolution of local effects in the deformation behavior, OLioS outperforms OPioS, which is 

reflected in the values of the explained variance when two principle components are considered. On the other 

hand, OPioS provides a clearer overview about different deformation behaviors and enables the use of clustering 

algorithms, which can automatically group the simulations into clusters. Therefore, the consideration of both 

approaches provides a substantial benefit, for the visualization of the high-dimensional crash data in low 

dimensions. 

 

2.3 Comparison of dimensionality reduction methods PCA and t-SNE  

 

In this section, the results of PCA are compared with those of the t-SNE algorithm. The OPioS data representation 

is used exemplarily for further analysis. The idea behind t-SNE is to visualize high dimensional data in two or 

three dimensions. Similar objects in high-dimensional feature space are represented by nearby points in low-

dimensional space. It is a non-linear dimensionality reduction technique. In contrast to PCA, t-SNE has 

hyperparameters (seed and perplexity) that influence the results. The algorithm requires a seed for initialization. 

It can be either random or pre-defined. Depending on the choice of this parameter, the results differ significantly. 

This is due to an internal optimization loop, which provides different local minima depending on the seed and 

does not guarantee that the global optimum is always found. Figure 9 and Figure 10 show the results for two 

different selected seeds. The coloring of the points is equivalent to Figure 6. In Figure 9, a good local minimum 

seems to be found by the optimization. Similar to PCA, the simulations can be divided into three clusters. In 

Figure 10, no clusters are identified, which indicates an insufficient result of the optimization. 

 

 
Figure 9: Visualization of the dimension reduced data 

using t-SNE with perplexity=3, seed=22 

 

 
Figure 10: Visualization of the dimension reduced data 

using t-SNE with perplexity=3, seed=42 

 

state 1-

22 

state 23 state 62 



16th International LS-DYNA® Users Conference Table of Contents 

May 31-June 2020  7 

 

In Figure 11 the calculation of the dimensionality reduction with t-SNE was performed for 50 different seeds in 

order to visualize the strong dependence of the results quality on the choice of the seed. The quality-axis shows 

the corresponding quality values Qlocal and Qglobal. According to [8], Qlocal evaluates how local properties are 

preserved between simulations during dimensionality reduction. Qglobal evaluates the preservation of global 

properties between the simulations. It can be seen that t-SNE better preserves the local properties of the data than 

the global ones, which is the main idea behind the algorithm. This is due to the choice of the second 

hyperparameter perplexity (p=3). This value considers the extent to which the local and global properties should 

be retained after the dimension is reduced [5]. A high perplexity prefers the preservation of global properties, 

while a low perplexity prioritizes the preservation of local ones.  

 
Figure 12 to Figure 14 show these relationships by displaying the investigated perplexity on the perplexity-axis 

while showing the different quality criteria on the y-axis. For each of the 50 seeds Qlocal, Qglobal and the sum of 

both values Qsum was calculated. 

𝑄𝑠𝑢𝑚 = 𝑄𝑙𝑜𝑐𝑎𝑙 + 𝑄𝑔𝑙𝑜𝑏𝑎𝑙 

 

The best of 50 results was chosen for the further analysis in order to make the different evaluation criteria 

comparable and find the low dimensional representation with the highest possible quality preservation. The 

following analysis shall give a better understanding of the hyperparameters of t-SNE and the evaluation criteria 

Qlocal, Qglobal and Qsum. 

 

In Figure 12, Qlocal is plotted on the y-axis. The maximum of the 50 calculated values for Qlocal is represented by 

the circles, the maximum of Qglobal by the crosses and the maximum of their sum by the squares for each 

perplexity. Accordingly, the curve with the circles is always above the other two and the curve with the crosses 

is always below. All three curves show the same trend and their values only differ slightly. By maximizing the 

sum of Qlocal and Qglobal, the maximum values, which are represented by Qlocal are almost reached. At the same 

time local and global properties are considered in the evaluation of the dimensionality reduction. With increasing 

perplexity, a monotonically decreasing value of Qglobal is observed in all three curves. This reflects the fact that 

with small values of p, the local properties are better preserved than with high values. For PCA results, Qlocal is 

shown for the first two principal components with the triangles, while for three principal components it is shown 

with the pentagons.  

 

  
Figure 11: Curve progression of Qlocal and Qglobal for different seeds of t-SNE 

algorithm 
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With an increasing number of considered principle components, the amount of included information about the 

data increases as well. Therefore, the value of Qlocal is higher for the consideration of three principle components, 

as shown in the figure. Compared to the results of the t-SNE algorithm, a significantly lower quality is observed 

with regard to the preservation of local properties.  

Figure 13 shows the curve of Qglobal depending on the perplexity. A monotonically rising trend is observed for the 

crossed and squared curve. This explains that with increasing perplexity the quality of global properties increases 

as well. The circled curve does not rise monotonically, which may be due to the dependence of the optimization 

results on the selected seed. Again, the purple and red curve are results of the PCA and show that the PCA 

preserves the global properties better than the t-SNE algorithm.   

 
The goal of dimensionality reduction is to preserve both global and local properties as much as possible. For this 

reason, Qsum is plotted on the y-axis in Figure 14. This value gives similar results for 3<p<20. Only for p=30 the 

value of Qsum decreases which is due to the quality loss of Qlocal in Figure 12.  

Consequently, no clear suggestion for the value of the perplexity can be made. It is dependent on the aim of the 

analysis. If the engineer wants to focus on global structures in the data, he should use a larger value, if he is 

interested in local details of the data, he should use smaller values of p. In order to get a better understanding of 

how the perplexity affects the dimensionality reduction, the scatter plots are visualized in the next step. 

 

 

 
Figure 12: Curve progression of Qlocal for different 

perplexities and the results of PCA for two and three 

principle components  

 

 

 
Figure 13: Curve progression of Qglobal for different 

perplexities and the results of PCA for two and three 

principle components 

 

 
Figure 14: Curve progression of Qsum for different perplexities and the results of 

PCA for two and three principle components 
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Figure 15 shows the results of t-SNE for different perplexities compared to those of the PCA. The first and second 

principal component are plotted on both axes. The subclusters identified in Figure 8 with OLioS can now also be 

visualized by using OPioS in combination with t-SNE. This is possible up to p=20. For p=30 the subclusters of 

the red dots and blue squares can no longer be identified, as already explained in the previous section by a 

significant loss of quality of Qlocal and Qsum using p=30. The results of t-SNE approximate those of PCA (second 

row, third column of Figure 15) with larger values of p. However, according to the quality curve of Qsum in Figure 

14, the quality of t-SNE is higher, which is mainly due to the better preservation of local properties. Depending 

on the level of detail about the deformation behavior, in which the engineer is interested in, the value of p has to 

be chosen. If the engineer is interested in local effects of the deformation, he should choose smaller values. If his 

focus is on the general deformation behavior of the component, larger p should be considered.  

 

 
Figure 15: Scatter plots for different perplexities of t-SNE compared to PCA results 

 

3. Discretization approaches for comparability of different FE-Meshes 

 
In this chapter, the two discretization approaches are examined and compared. This is necessary to represent the 

data uniformly for machine learning models, even if the FE-mesh changes. The discretization of the geometry 

results in an error compared to the original data, whose influence is to be investigated and minimized. Besides 

the loss of quality, the required random access memory (RAM) demand of the discretized data plays an important 

role. Furthermore, the time needed to calculate the dimensionality reduction is included in the evaluation of both 

approaches. In the further analysis, the OPioS data representation approach is used exemplarily. For 

dimensionality reduction, PCA is used. This makes the comparison of the discretization approaches easier, 

because it is deterministic and not dependent on a seed like t-SNE. 

 

For further data processing, sufficient free RAM has to be reserved. Therefore 10% of the available RAM is set 

as the maximum upper limit for the memory requirement. The available computers have a memory of 256GB. 

Also for data sets with 1000 simulations the developed methodology should be feasible and performant. The 

discretizations (d) examined were therefore chosen in such a way that 1%, 5%, 10% and 20% of the RAM is used 

for the discretized data.  
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This approach makes the sphere and voxel approach comparable with the respective discretizations with respect 

to their memory requirements. The complexity of the sphere approach is proportional to d2, that of the voxel 

approach to d3. Table 1 shows the discretizations of the two methods examined in this thesis.  

In addition, the number of non-null columns is taken into account. Due to the OPioS data representation, there 

exist a lot of columns which only consist of zeros. This is due to the fact, that some elements of the component 

do not show any plastic deformation at all. With rough discretizations it is likely that several component elements 

end up in one discretized element. In this case, their plastic strains are averaged. This leads to a lower amount of 

non-null columns. With increasing discretization, the FE-mesh is better approximated, since less of these averages 

take place. Thus, the number of non-null columns increases with discretization and is an indicator for the 

information contained in the data. The original undiscretized data consists of 96,591 non-null columns.  

 

Furthermore, the time required for the dimensionality reduction is documented in the table. This number is highly 

correlated with the discretization. Finer discretizations lead to larger matrices whose dimension has to be reduced. 

When analyzing simulation data, different sets of simulations are used for different investigations. Whenever the 

investigated set of simulations changes, the dimensionality reduction has to be recalculated. The engineer cannot 

wait minutes for this process. Therefore, the calculations shall be possible in real time and 20s are defined as the 

maximum time allowed for dimensionality reduction. Both the data of the sphere and the voxel approach need a 

similar time for the calculations, as the corresponding dimensions are similar. For calculations, the PCA 

implementation of Scikit-learn was used. The algorithm was parallelized on 8 CPUs (Intel(R) Xeon(R) CPU E5-

2637 v4 @ 3.50GHz). 
 

Table 1: Overview of needed RAM, used discretization as well as time needed for calculations for both, the spherical and the 

voxel approach 

Usage of 

RAM [%] 

Diskretization  Non-null columns  Time for PCA [s]  

 sphere voxel sphere voxel sphere voxel 

1 103 22 49,499 31,440 1.47 1.47 

5 148 28 62,636 47,215 3.06 3.02 

10 333 48 85,337 78,811 16.13 16.55 

20 465 60 89,956 86,746 32.35 33.42 

 

The third criterion for the evaluation of the two approaches is the quality after dimensionality reduction. Again, 

the longitudinal member with a constant FE-mesh is used for the analysis. This method makes it possible to 

calculate a dimensionality reduction of the original data and to compare the results with those of the discretized 

dimension-reduced data. The resulting deviations are to be minimized.  

 

Figure 16 shows the results using PCA. The plots in the first row show the scatter plots of the sphere approach, 

the second row shows those of the voxel method. The individual columns from left to right correspond to the four 

discretizations from Table 1. The coloring of the points again corresponds to that from Figure 6.  
At first glance, all eight variants seem to be similar. As with the OPioS-PCA-approach on the undiscretized data, 
three clusters can be identified, corresponding to the three deformation modes observed in the 51 simulations. 
In both approaches (sphere, voxel) the circle- and square-clusters can be clearly separated by the PC1-axis. With 
increasing discretization (d) a small overlap between both clusters occurs. The separation of the triangle-cluster 
from the rest of the data is only possible for larger d (sphere: starting from 333, voxel: starting from 28). 
When the PC2-axis is analyzed, a contrary behavior is observed. With increasing d, the separation of the triangle-
cluster from the rest of the data gets more difficult. On the other hand, the circle- and square-clusters can be 
separated more easily with increasing d.  
From these observations, no recommendation can be delivered for the most appropriate discretization. Therefore, 
further analysis is needed. 
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Figure 16: Scatter plots of the dimension-reduced data with the PCA. The results are shown for different discretizations of the 

sphere and voxel approach 

 

In order to compare the results objectively, a quality criterion must be applied. For this purpose, a distance matrix 

𝑫 of 51 points is calculated for each scatterplot. The Euclidean distance is used. The matrix is symmetrical and 

the diag onal contains only zeros. For the original data as well as for the discretized data, that matrix is calculated 

and standardized by subtracting the mean and dividing by its variance.  

 

𝑫𝒔𝒕𝒅 =
𝑫 − 𝜇(𝑫)

𝜎2(𝑫)
 

 

This is necessary because the dimensionality reduction can yield differently scaled values, which is shown in 

Figure 16, when the results of the spherical discretization with 103 are compared to the discretization with 465. 

In the first case, the y-values range from -22 to 34, whereas in the second case their range is between -28 and 42. 

For each discretization, the error to the original data is calculated. The least-squares error is used for this task. 

The results of both discretization approaches are shown in Figure 17. Both curves fall monotonically. The voxel 

approach has a higher error than the spherical approach up to 10 percent RAM discretization. This is related to 

the number of non-zero columns present in the discretized data. Table 1 shows that the spherical approach always 

provides a higher value for this and thus contains more information of the original data set.  

 

Further increasing of the discretization using more than 10% of RAM, provides no significant reduction of the 

error compared to the original data. An absolute evaluation of the error measure is not possible. However, 

compared to the 2D scatterplots shown in Figure 16, it can be confirmed that the approximation to the original 

data improves up to a discretization of 10% of RAM.  
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4. Summary and Outlook 

 
The paper showed that both PCA and t-SNE are capable of presenting the high-dimensional data from crash 

simulations in a way that is meaningful for the engineer in low dimensions. The choice of the dimensionality 

reduction algorithm and its hyperparameters are problem-specific. The PCA can give a first estimation about the 

distribution of the data. Especially the combination of the two methods for the representation of the data (OPioS 

and OLioS) is very helpful. The t-SNE algorithm shows clear advantages over the PCA. Especially for small 

perplexities, the local properties in the existing data set can be resolved much better. A disadvantage, however, is 

that it is not deterministic due to the seeds and thus provides different, not necessarily optimal results. Therefore, 

the calculation is time-consuming because it has to be repeated for many seeds. Furthermore, it is necessary that 

the user has experience regarding the influence of perplexity. This is a disadvantage compared to PCA, which 

does not have any hyperparameters. 

During the investigation of the two discretization approaches, it was found that for smaller discretizations the 

sphere projection has advantages compared to the voxel approach regarding the information content. Both 

methods show an error close to zero compared to the original data for a discretization that takes up 10% of the 

RAM. The defined maximum time for the dimensionality reduction of 20s is not exceeded.  

The methods investigated in this research study enable the engineer to get a quick overview over the deformation 

behaviors of a set of simulations. The approach groups simulations by their similarities and differences and is 

computationally efficient, which makes real time analysis feasible. Furthermore, it is possible to compare 

components with different FE-meshes. In further analysis, the influence of the discretization has to be analyzed 

for components of different sizes. 

 

 

 

 

 

 

 

 
Figure 17: Curve progression of the error of both discretization 

methods compared to the original data 
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