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Abstract 

The rapid advancement of artificial intelligence (AI) presents significant 

opportunities for the field of computer-aided engineering (CAE), particularly in 

data management and engineering design processes. This research work explores 

AI-driven techniques for visualizing and analysing CAE model evolution, 

emphasizing methods for intelligent data retrieval and inference. We introduce 

enhancements to our Laplace-Beltrami Shape Feature Approach (LBSFA), 

enabling engineers to assess deformations and mesh function changes more 

efficiently. Additionally, we examine the application of Retrieval-Augmented 

Generation (RAG) with structured data representations to enhance exploration 

and preselection of key components. Finally, we discuss the potential of AI-

driven systems to learn measure-effect relationships, optimizing CAE data 

analysis and decision-making. 

1. Introduction  

The CAE field is facing enormous innovative opportunities offered by the rapid 

development of artificial intelligence (AI), particularly in text and image 

processing, if the unique challenges of complex CAE data are addressed. CAE 

engineers foresee AI as a potential tool not only for data management but also 

for enhancing complex engineering design processes across development stages. 

This work examines how AI could transform CAE with novel data representation 

and exploration techniques. We focus on AI-driven methods for visualizing and 

exploring model evolution and linking it to resulting effects, enabling inference 

and intelligent data retrieval. Implementing AI effectively in CAE requires 

transparent learning algorithms capable of handling limited but complex data, 

like mesh functions and geometries. Furthermore, effective product development 

relies on seamless integration between model changes and their effects in 

analysis and optimization. However, many tools used for design and simulation 

operate as standalone systems, limiting collaboration and efficiency [1,2,3]. 

While some analysis tools include built-in modeling capabilities, designers and 

engineers often rely on separate software for creating models and evaluating 

their performance [4,5]. Additionally, many modeling systems offer support for 

automated optimization, requiring iterative design-evaluate-redesign loops but 

are expensive and difficult to integrate in real product development workflows 



 

 

[6]. This adaptation is time-consuming, prone to errors, and becomes 

increasingly complex as the number of variables grows. Despite technological 

advancements, industries such as automotive, aerospace, and manufacturing still 

primarily depend on expert- and simulation-based product design and 

optimization methods, lacking fully integrated solutions that link model updates 

with performance analysis. 

Automated design optimization, where model changes are seamlessly connected 

to evaluation tools, is essential for improving product quality and accelerating 

development. While commercial design and simulation software have made 

progress in integration [6], most solutions remain constrained within proprietary 

ecosystems and require costly upgrades. An alternative is to link model changes 

with analysis and optimization tools using common scripting and programming 

languages, reducing time and costs. Some organizations have developed in-

house solutions for optimizing product designs, yet a standardized framework 

for integrating model changes into the optimization process remains 

underexplored. 

To address these challenges, an AI framework integrating model changes with 

evaluation and exploration of results is proposed. By leveraging dimension 

reduction in a RAG framework for model changes and simulations, this approach 

streamlines complex product development and optimization processes, making 

them more efficient and accessible for designers and engineers. 

The outline of this article is as follows. First, we present the latest extensions of 

our Laplace-Beltrami shape feature approach (LBSFA) [7] to investigate 

similarities or exceptions in deformations and mesh functions, called events, in 

many simulations. The combined representation of model changes in geometry 

and input parameters, and results allows to set the model changes into context 

with the insights from simulation results analysis. This provides a fundamental 

basis for further post processing of results, like sensitivity and correlation 

analysis, up to envisioned learning of relationships. Details on the exploration of 

model changes as well as the pairwise comparison results are given in Section 2. 

However, the engineer still needs to select mesh functions and components of 

interest out of a ranked list of components that are influenced by the model 

changes overviewed in Section 3.a. To address this, we have investigated some 

more sophisticated filter and grouping methods to ease the decision on which 

component to look first. On the one hand, a method that filters out all parts 

without deformations but just influenced due to rigid body motion has proven to 

be very effective is outlined in Section 3.b. On the other hand, focusing on jumps 

in a development tree identifies the measures with the highest impact which is 

presented in Section 4. In this sense, a jump means that the corresponding result 

jumps from one behavioral mode to another. 

Second, we explore how LLMs can be leveraged for CAE data. We present a 

proof of concept of using a Retrieval-Augmented Generation (RAG) method 



 

 

together with our structured data representation to enable easy exploration of 

relationships within the data of a development project in Section 5. The RAG 

approach uses a knowledge base outside the training database and thus offers an 

extension or specialization in domain-specific knowledge. With this approach 

we could reach an automatic knowledge driven preselection of important 

components. Further on, fast metamodels can be generated based on this 

selection which are an efficient alternative for data-intensive convolutional 

neural networks (CNNs).  

The use case on which we demonstrate our developed methodology is shortly 

presented in Section 6. Finally, we outline the different modules needed for an 

AI support system which learns measure-effect relationships in the conclusion 

in Section 7.  

This contribution illustrates how far our AI driven solutions specialized for CAE 

applications can already reach to support the complex simulation data analysis 

tasks giving the engineers more resources for interpretation of results and 

decision making. 

 

2. Comparing two simulation results and detection of model changes 

In virtual product development, engineers aim to improve the car behavior with 

respect to specific crash requirements. To achieve that, they apply design 

measures with respect to a predecessor design to obtain a successor 

configuration. The effects of those measures are analysed after the corresponding 

simulation is computed. For the entire development tree, that is all predecessor 

and successor simulation pairs within the development process, the full output 

data, namely displacements and functions on meshes, must be compared. Our 

approach analyses functions on meshes rather than scalar data or sensor / curve 

data. More precisely, the impact of design changes can be analysed in terms of 

data functions either on the nodes (such as displacements or nodal mass) or 

elements (such as plastic strains, stresses, or failed elements) depending on the 

analysis objective. For analyzing displacements, rigid body motion can be 

extracted by setting corresponding anchor points. Thereby, detailed insight in 

local influences can be evaluated with respect to a certain design change. Several 

distance measures are available to focus on global or local influences. As basic 

distance measures the maximum norm, the L2 norm as well as the L1 norm are 

implemented. To allow the comparison of the difference in a part in relation to 

all other parts, the metric values are normalized to [0,1]. The maximum norm 

detects events with emphasis on parts with very high deviations on single nodes 

/ elements between the two models. In contrast the L1 metric sums over the 

deviations (in elements or nodes) of a part. Thus, applying this metric, events are 

detected that show deviations on larger areas of the selected part, it puts more 

emphasis on the entirety of parts. The L2 metric is kind of mixture of both 



 

 

aspects, that is due to the sum of squared deviations single very high deviations 

are weighted stronger. All differences are stored node- / elementwise for later 

evaluation.  

The comparison results, that is the local events found, are stored partwise in 

structured JSON files that support further post processing. For each selected part, 

the part-ID, part-name, metric value, as well as minimum and maximum 

deviation in the part is stored. 

For interactive exploration, we extended the above methodology with some 

interactive functionality to visualize all node- and elementwise deviations on 

both models and highlight interesting parts [8]. This simplifies the detection of 

local hotspots. The whole vehicle or the relevant parts are shown to get an 

overview of design change impacts. 

Design measures include changes in geometry, in material parameters, or in 

welds. For example, a modification of the B-Pillar might include a geometrical 

change of a structural member, e.g., a cut or extension, which could require 

changes in the weld connections or of material thickness. To appropriately deal 

with all these changes we have developed and implemented a corresponding 

structured digital representation [9]. Each model can be compared with respect 

to the respective predecessor or a reference model. A special challenge is the 

parametrization of geometrical changes to be used with machine learning 

algorithms, which is one of our ongoing research topics. A simple way to 

parametrize geometrical changes is by using a mapping to the reference and 

comparing the differences as a mesh function. To provide an overview of model 

changes across several iterations, the results of the comparison of many models 

can be saved in a (graph) database keeping track of model information using 

parts and their connections [13,14]. Furthermore, the database can be queried 

easily to summarize changes or to search for specific measures applied. Ongoing 

work is to further extend the semantics of this representation, including 

components as groups of parts, and on making it available for filtering and 

searching (semantic) design measures. 

3. Advanced similarity analysis of many simulations results 

The Laplace-Beltrami shape feature approach (LBSFA) [7,10] has been used 

successfully for the compact representation of deformations in car crash 

simulations [10, 11]. In addition, this Fourier representation has been used as 

low dimensional features to compute a surrogate model in [12]. The considered 

geometry in this approach is a surface mesh, so that a Laplace operator can be 

computed on it with the property of being invariant to isometric deformations. 

From this operator, its eigenvectors can be computed to derive a basis 

representation. The mesh as well as all deformations on it can be projected onto 

the basis to obtain a Fourier decomposition. In addition, also functions on the 

mesh can be projected to the basis. Especially for functions computing the 



 

 

difference with respect to a reference mesh, a very compact representation can 

be achieved with only few coefficients [7]. This representation can be reverted 

to obtain the corresponding function with sufficient accuracy for many 

applications. 

The projection coefficients on the eigenvectors of such a “Fourier-

decomposition for geometries” allows a clustering of many simulations based on 

their different behavioral modes using these “geometry-aware Fourier-modes”. 

Formally, for any mesh function f of a simulation result corresponding projection 

coefficients αj into the spectral basis are computed. This allows to write f as a 

linear combination of eigenvectors 𝜑𝑗: 

𝑓 = ∑ 𝛼𝑗𝜑𝑗,   𝛼𝑗 = 〈𝑓, 𝜑𝑗〉 𝑁
𝑗=1   (1) 

where N is a chosen number of coefficients, up to the number of grid nodes. Note 

that usually only a few coefficients in this surface-aware decomposition are 

needed to represent relevant variations, resulting in a dimensionality reduction. 

In the case presented, we use 100 coefficients. The first coefficients with respect 

to the order of the variance can be used for a 3D representation which captures 

similarity of many simulations. For details see [7].  

This allows an interactive exploration of the results that can be combined with 

the results of the input model changes. The described approach is implemented 

in our exploration tool SimExplore. 

a. Interactive exploration of model and results 

 

Figure 1: Demonstration of a web-based user interface which visualizes the results of the analysis by 

interactively highlighting important parts and time steps. 

Figures 1 and 2 show the developed web-based user interface for interactively 

exploring multiple simulation results. For each analysis, the interface guides the 

user through the selection of interesting components and time steps in order to 

investigate events in the overall dataset. The function to be analysed can be 

chosen, which enables the selection of components, sorted by the component 

score, see Figure 1 (top). The component score ranks each component based on 



 

 

the difference in function values seen between simulations. With this help, the 

user can select a meaningful component for further investigation. Plots of the 

cluster score and outlier score are displayed for the selected function and 

component, see Figure 1. The user can select a time step for further exploration 

based on the cluster score plot. To guide the selection of a meaningful time step, 

the cluster score evaluates how clear the simulations are split into clusters and 

outliers, see Figure 1 (left). To get an overview of how the simulation behaves 

over all time steps the outlier score plot can be used, Figure 1 (right). It ranks 

each simulation based on how different the simulation is compared to the 

simulations which behave similar.  

 

Figure 2: After selecting a part and time step, see Figure 1, an overview of the behavior of the 

simulations is given by grouping similar simulations into clusters and identifying outliers which behave 

very differently. Interactively, the corresponding deformation for each part can be visualized by clicking 

on the embedding point of the simulation. In addition, the corresponding detected model changes can 

directly be visualized to link the model changes with the resulting effects. 

Figure 2 shows a three-dimensional plot where each point reflects a simulation 

result. If points are closely together, they show similar behavior, while points 

that are far apart behave differently. By clicking on the points, the user can get a 

3D view of the component clicked and can compare it interactively to the other 

simulation. In addition, the predecessor and successor simulations of the 

development tree are highlighted and a report of the detected model changes 

between these two simulations is shown. To see a direct correlation between the 

position of the simulation in the latent space and the corresponding input changes 

the user can change the coloring from clusters to any of the input parameters that 

are varied in the model, such as thickness. 

b. Filtering of components   

The part identification still faces the issue of classifying real deformations with 

respect to almost rigid body motions. For that effect some filter capabilities have 

been investigated. The issues here are parts that do not deform, but which are 

affected by the rigid body motion.  In this case, if follower points are used to 

subtract this motion, the corresponding parts are highlighted as being changed 

by our LBSFA algorithms described above. If the user does not filter out such 

parts beforehand, they will disturb the ranking of the parts. Therefore, a method 

to detect parts without deformation to filter out such parts has been developed. 



 

 

The resulting filtering of such parts for our use case example is shown in Figure 

3. 

 

Figure 3: Filtering of components that identify parts not having deformations. It shows parts that mainly 

have rigid body motion and little to no deformations. Left image is at time step 0 and the right image is at 

time step 26 (last time step). 

An overview of the data analysis pipeline of SimExplore is given in Figure 4. 

 

Figure 4: The modules of the analysis pipeline, consisting of data processing and filtering steps. 

4. Jump score  

In product development, engineers need to apply design measures to obtain a 

particular outcome respecting safety requirements and constraints. The 

comparison between a predecessor and successor design pair is effectively 

achieved e.g. with the methods from [8] but comparing over all simulations in 

the development tree is still an appealing objective. With this goal in mind, we 

have developed an innovative Jump score to identify the measures with the 

highest impact regarding a behavioral change. In this sense, a jump means that 

the corresponding result jumps from one behavioral mode to another. 



 

 

 The Jump score computation comprises two main steps:  

1. Evaluation of a score to get important predecessor–successor pairs 

2. Per identified pair computation of PID grouping using clustering 

An example visualization of the first computing step is shown in the upper part 

of Figure 3, the x-axis in this plot represents the predecessor–successor pairs and 

the y-axis is the score. Selecting one pair from it, allows step 2 as represented in 

the middle part of Figure 3. For this pair several time dependent curves are 

shown, that is one for each PID of the car structure with colors representing 

clusters grouping those parts. Selecting a specific cluster of curves allows the 

visualization of all the PIDs in the cluster at the maximum time step of the curves 

which is shown in the lower part of Figure 5.   

 

Figure 5:Overview of the web-based UI for the analysis of the Jump score. The first part of the image 

shows the ranking of simulation pairs due to the computed Jump score, the middle part shows the 

corresponding curves for the components of a selected simulation pair, while the bottom part gives a 

detailed overview of the mesh and functions on the selected component. 

The workflow for computing and evaluating the Jump score still requires a series 

of evaluations that requires an adequate complex workflow and a graphical user 



 

 

interface. In this work we benchmark the flexibility of a RAG system to achieve 

this evaluation process.  

The system contains a backend that interfaces with a graph database, but it can 

also use a file-based storage. A React based web frontend is extended in a 

modular way that has been developed for the data analysis evaluation of CAE 

data in [14] so that different ui components can be added as needed. The backend 

is python based and it uses a Django interface that communicates with the 

frontend via a server.  

The chat system will call specific functions of the system based on the required 

task. In essence a user interaction is mimicked to interface with the already 

available results from the Jump score computation (see Figure 6). 

 

Figure 6:Example use of the web-based chat interface for the Jump score analysis.  

5. RAG Approach to link model input (measures, sources) and effects 

The emergence of Large Language Models (LLMs) has given further boost in 

developing AI based support assistant system for the design exploration and 

analysis in the virtual product development workflow in engineering. LLM’s 

such as OpenAI’s GPT-4o can be used in linking and automating different 

downstream analysis procedures, with the aim to provide relevant responses to 

the engineer’s query. Moreover, the process becomes generalized, which means 

that independent on how the engineer frames the query, the support assistant can 

respond to the query by “reading in between the lines” so to say. 

To effectively utilize the LLM in an engineering support assistant system, we 

consider two primary requirements: 

1. There should be a way in which we are able to define and regulate LLM 

responses. 



 

 

2. The proprietary data should be protected, and the data security 

regulations should be fulfilled. 

 

 

Figure 7:Overview of RAG approach utilizing LLM as agent to call specific tools to answer user’s 

question (Fig 5.1 from [13]). 

Considering above requirements, we propose an approach of designing a support 

assistant system in which the LLM is placed between the engineer (user) and our 

Fraunhofer CAE analysis tools [13]. One of the example designs adopting this 

approach is shown in Figure 7. With structured parametric prompt designs, we 

define the role LLM plays in different scenarios considering the product 

development stage at hand. Next, by utilizing function calling capabilities of 

LLM and with specialized python-based code structure, we have developed a 

custom toolkit with which analysis procedures using Fraunhofer CAE analysis 

tools can easily be automated after getting a LLM function call. 

For the design scenario mentioned in Figure 7, the engineer is interested in 

analyzing multiple design iterations. Prior to the operation of the support 

assistant, in the considered design above, the simulations are analyzed with the 

LBSFA to extract meaningful low dimensional features. These features are 

stored in a structured format in a graph database with a vision to create a 

knowledge graph. During the operation of the support assistant, for a particular 

analysis procedure when called by the LLM based on the engineer’s query, the 

analysis is performed at the backend automatically by the custom tool kit. The 

selected tool is utilized to retrieve essential proprietary data and relevant features 

stored in the graph database and conduct a detailed analysis. The analysis result 

is filtered and made more specific to answer the engineer’s query and provided 

back to the LLM which receives further analyzes based on previous conversation 



 

 

and summarizes to the engineer in a suitable format. Moreover, the graph 

database can be updated with each conversation to facilitate fast retrieval of 

already performed analysis.  Our specialized parametric prompt designs and 

python based “custom tool kit” has proven to show an effective approach to 

control LLM responses and define analysis procedures for different scenarios 

thereby reducing “hallucinations”. Consequently, the data used for analysis is 

not transmitted to the LLM, ensuring that all computations are performed locally 

by python functions. Moreover, the LLM has no direct control over data retrieval 

systems beyond invoking a python function within the custom toolkit 

responsible for data acquisition, thereby fully complying with the data security 

requirements outlined in the second point above.  

This approach, where the LLM acts as a mediator—understanding and reasoning 

about the engineer’s query while determining the necessity of a specific tool—

is inspired by the Retrieval-Augmented Generation (RAG) methodology. The 

parametric prompt design incorporates additional relevant information specific 

to the engineering analysis task, enabling the LLM to generate a more detailed 

and contextually accurate response. 

6. Experimental Results for a Toyota Yaris frontal crash analysis 

We demonstrate our developed RAG approach to identify jumps between 

behavioral modes in many simulation results on a frontal crash scenario. Our 

study is based on the Toyota Yaris study for a Euro NCAP front crash with a 

velocity of 56 km/h against a rigid wall which was set up and presented in [15, 

16] and already investigated with our explorative ML-based approach in [10]. 

The study is restricted to the body in white parts of the vehicle, changes are 

applied to main structural beams adding beads as well as changing the position 

of them, whereas weight reduction is obtained by reducing the thickness of 4 

main structural members, see [15]. Results of our explorative analysis, the web 

user interface and the RAG approach are shown in Figures 1-4 embedded in the 

algorithmic description above for better readability. 

7. Conclusion  

In this work we have presented an AI-driven methodology for the analysis and 

visualization of many CAE models which includes identification of design 

measures and the simulation outcomes. Concentrating on the standard evaluation 

of simulations in a development tree, the Jump score computes the most affected 

pair of simulations in a development tree and given it, groups the components as 

per similarity of time dependent outcomes. 

A RAG system based on a LLM with implemented agents interacts with 

developed modules to enable the evaluation of the results of the Jump score. A 

modular software infrastructure with a backend and web frontend is used to 

demonstrate the approach. The RAG based system can access the information 



 

 

about design changes and simulation outcomes in a graph database and this in 

turn can be used to save input-outcome relationship providing the basis for a 

learning and inference framework for assisting engineers in the development 

process. Saving and learning this relationship is challenging but we think that 

the provided framework will enable us to further investigate this task in a more 

systematic and flexible way.   
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