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Abstract

The rapid advancement of artificial intelligence (AI) presents significant
opportunities for the field of computer-aided engineering (CAE), particularly in
data management and engineering design processes. This research work explores
Al-driven techniques for visualizing and analysing CAE model evolution,
emphasizing methods for intelligent data retrieval and inference. We introduce
enhancements to our Laplace-Beltrami Shape Feature Approach (LBSFA),
enabling engineers to assess deformations and mesh function changes more
efficiently. Additionally, we examine the application of Retrieval-Augmented
Generation (RAG) with structured data representations to enhance exploration
and preselection of key components. Finally, we discuss the potential of Al-
driven systems to learn measure-effect relationships, optimizing CAE data
analysis and decision-making.

1. Introduction

The CAE field is facing enormous innovative opportunities offered by the rapid
development of artificial intelligence (AI), particularly in text and image
processing, if the unique challenges of complex CAE data are addressed. CAE
engineers foresee Al as a potential tool not only for data management but also
for enhancing complex engineering design processes across development stages.
This work examines how Al could transform CAE with novel data representation
and exploration techniques. We focus on Al-driven methods for visualizing and
exploring model evolution and linking it to resulting effects, enabling inference
and intelligent data retrieval. Implementing Al effectively in CAE requires
transparent learning algorithms capable of handling limited but complex data,
like mesh functions and geometries. Furthermore, effective product development
relies on seamless integration between model changes and their effects in
analysis and optimization. However, many tools used for design and simulation
operate as standalone systems, limiting collaboration and efficiency [1,2,3].
While some analysis tools include built-in modeling capabilities, designers and
engineers often rely on separate software for creating models and evaluating
their performance [4,5]. Additionally, many modeling systems offer support for
automated optimization, requiring iterative design-evaluate-redesign loops but
are expensive and difficult to integrate in real product development workflows



[6]. This adaptation is time-consuming, prone to errors, and becomes
increasingly complex as the number of variables grows. Despite technological
advancements, industries such as automotive, acrospace, and manufacturing still
primarily depend on expert- and simulation-based product design and
optimization methods, lacking fully integrated solutions that link model updates
with performance analysis.

Automated design optimization, where model changes are seamlessly connected
to evaluation tools, is essential for improving product quality and accelerating
development. While commercial design and simulation software have made
progress in integration [6], most solutions remain constrained within proprietary
ecosystems and require costly upgrades. An alternative is to link model changes
with analysis and optimization tools using common scripting and programming
languages, reducing time and costs. Some organizations have developed in-
house solutions for optimizing product designs, yet a standardized framework
for integrating model changes into the optimization process remains
underexplored.

To address these challenges, an Al framework integrating model changes with
evaluation and exploration of results is proposed. By leveraging dimension
reduction in a RAG framework for model changes and simulations, this approach
streamlines complex product development and optimization processes, making
them more efficient and accessible for designers and engineers.

The outline of this article is as follows. First, we present the latest extensions of
our Laplace-Beltrami shape feature approach (LBSFA) [7] to investigate
similarities or exceptions in deformations and mesh functions, called events, in
many simulations. The combined representation of model changes in geometry
and input parameters, and results allows to set the model changes into context
with the insights from simulation results analysis. This provides a fundamental
basis for further post processing of results, like sensitivity and correlation
analysis, up to envisioned learning of relationships. Details on the exploration of
model changes as well as the pairwise comparison results are given in Section 2.
However, the engineer still needs to select mesh functions and components of
interest out of a ranked list of components that are influenced by the model
changes overviewed in Section 3.a. To address this, we have investigated some
more sophisticated filter and grouping methods to ease the decision on which
component to look first. On the one hand, a method that filters out all parts
without deformations but just influenced due to rigid body motion has proven to
be very effective is outlined in Section 3.b. On the other hand, focusing on jumps
in a development tree identifies the measures with the highest impact which is
presented in Section 4. In this sense, a jump means that the corresponding result
jumps from one behavioral mode to another.

Second, we explore how LLMs can be leveraged for CAE data. We present a
proof of concept of using a Retrieval-Augmented Generation (RAG) method



together with our structured data representation to enable easy exploration of
relationships within the data of a development project in Section 5. The RAG
approach uses a knowledge base outside the training database and thus offers an
extension or specialization in domain-specific knowledge. With this approach
we could reach an automatic knowledge driven preselection of important
components. Further on, fast metamodels can be generated based on this
selection which are an efficient alternative for data-intensive convolutional
neural networks (CNNs).

The use case on which we demonstrate our developed methodology is shortly
presented in Section 6. Finally, we outline the different modules needed for an
Al support system which learns measure-effect relationships in the conclusion
in Section 7.

This contribution illustrates how far our Al driven solutions specialized for CAE
applications can already reach to support the complex simulation data analysis
tasks giving the engineers more resources for interpretation of results and
decision making.

2.  Comparing two simulation results and detection of model changes

In virtual product development, engineers aim to improve the car behavior with
respect to specific crash requirements. To achieve that, they apply design
measures with respect to a predecessor design to obtain a successor
configuration. The effects of those measures are analysed after the corresponding
simulation is computed. For the entire development tree, that is all predecessor
and successor simulation pairs within the development process, the full output
data, namely displacements and functions on meshes, must be compared. Our
approach analyses functions on meshes rather than scalar data or sensor / curve
data. More precisely, the impact of design changes can be analysed in terms of
data functions either on the nodes (such as displacements or nodal mass) or
elements (such as plastic strains, stresses, or failed elements) depending on the
analysis objective. For analyzing displacements, rigid body motion can be
extracted by setting corresponding anchor points. Thereby, detailed insight in
local influences can be evaluated with respect to a certain design change. Several
distance measures are available to focus on global or local influences. As basic
distance measures the maximum norm, the L2 norm as well as the L1 norm are
implemented. To allow the comparison of the difference in a part in relation to
all other parts, the metric values are normalized to [0,1]. The maximum norm
detects events with emphasis on parts with very high deviations on single nodes
/ elements between the two models. In contrast the L1 metric sums over the
deviations (in elements or nodes) of a part. Thus, applying this metric, events are
detected that show deviations on larger areas of the selected part, it puts more
emphasis on the entirety of parts. The L2 metric is kind of mixture of both



aspects, that is due to the sum of squared deviations single very high deviations
are weighted stronger. All differences are stored node- / elementwise for later
evaluation.

The comparison results, that is the local events found, are stored partwise in
structured JSON files that support further post processing. For each selected part,
the part-ID, part-name, metric value, as well as minimum and maximum
deviation in the part is stored.

For interactive exploration, we extended the above methodology with some
interactive functionality to visualize all node- and elementwise deviations on
both models and highlight interesting parts [8]. This simplifies the detection of
local hotspots. The whole vehicle or the relevant parts are shown to get an
overview of design change impacts.

Design measures include changes in geometry, in material parameters, or in
welds. For example, a modification of the B-Pillar might include a geometrical
change of a structural member, e.g., a cut or extension, which could require
changes in the weld connections or of material thickness. To appropriately deal
with all these changes we have developed and implemented a corresponding
structured digital representation [9]. Each model can be compared with respect
to the respective predecessor or a reference model. A special challenge is the
parametrization of geometrical changes to be used with machine learning
algorithms, which is one of our ongoing research topics. A simple way to
parametrize geometrical changes is by using a mapping to the reference and
comparing the differences as a mesh function. To provide an overview of model
changes across several iterations, the results of the comparison of many models
can be saved in a (graph) database keeping track of model information using
parts and their connections [13,14]. Furthermore, the database can be queried
easily to summarize changes or to search for specific measures applied. Ongoing
work is to further extend the semantics of this representation, including
components as groups of parts, and on making it available for filtering and
searching (semantic) design measures.

3.  Advanced similarity analysis of many simulations results

The Laplace-Beltrami shape feature approach (LBSFA) [7,10] has been used
successfully for the compact representation of deformations in car crash
simulations [10, 11]. In addition, this Fourier representation has been used as
low dimensional features to compute a surrogate model in [12]. The considered
geometry in this approach is a surface mesh, so that a Laplace operator can be
computed on it with the property of being invariant to isometric deformations.
From this operator, its eigenvectors can be computed to derive a basis
representation. The mesh as well as all deformations on it can be projected onto
the basis to obtain a Fourier decomposition. In addition, also functions on the
mesh can be projected to the basis. Especially for functions computing the



difference with respect to a reference mesh, a very compact representation can
be achieved with only few coefficients [7]. This representation can be reverted
to obtain the corresponding function with sufficient accuracy for many
applications.

The projection coefficients on the eigenvectors of such a “Fourier-
decomposition for geometries” allows a clustering of many simulations based on
their different behavioral modes using these “geometry-aware Fourier-modes”.
Formally, for any mesh function f of a simulation result corresponding projection
coefficients o; into the spectral basis are computed. This allows to write f as a
linear combination of eigenvectors ¢;:

f =210 ap=(f0)) (1

where N is a chosen number of coefficients, up to the number of grid nodes. Note
that usually only a few coefficients in this surface-aware decomposition are
needed to represent relevant variations, resulting in a dimensionality reduction.
In the case presented, we use 100 coefficients. The first coefficients with respect
to the order of the variance can be used for a 3D representation which captures
similarity of many simulations. For details see [7].

This allows an interactive exploration of the results that can be combined with
the results of the input model changes. The described approach is implemented
in our exploration tool SimExplore.

a. Interactive exploration of model and results

SimExplore®

Figure 1: Demonstration of a web-based user interface which visualizes the results of the analysis by
interactively highlighting important parts and time steps.

Figures 1 and 2 show the developed web-based user interface for interactively
exploring multiple simulation results. For each analysis, the interface guides the
user through the selection of interesting components and time steps in order to
investigate events in the overall dataset. The function to be analysed can be
chosen, which enables the selection of components, sorted by the component
score, see Figure 1 (top). The component score ranks each component based on



the difference in function values seen between simulations. With this help, the
user can select a meaningful component for further investigation. Plots of the
cluster score and outlier score are displayed for the selected function and
component, see Figure 1. The user can select a time step for further exploration
based on the cluster score plot. To guide the selection of a meaningful time step,
the cluster score evaluates how clear the simulations are split into clusters and
outliers, see Figure 1 (left). To get an overview of how the simulation behaves
over all time steps the outlier score plot can be used, Figure 1 (right). It ranks
each simulation based on how different the simulation is compared to the
simulations which behave similar.

Flot of the mast significant three coefficlents
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Figure 2: After selecting a part and time step, see Figure 1, an overview of the behavior of the
simulations is given by grouping similar simulations into clusters and identifying outliers which behave
very differently. Interactively, the corresponding deformation for each part can be visualized by clicking
on the embedding point of the simulation. In addition, the corresponding detected model changes can
directly be visualized to link the model changes with the resulting effects.

Figure 2 shows a three-dimensional plot where each point reflects a simulation
result. If points are closely together, they show similar behavior, while points
that are far apart behave differently. By clicking on the points, the user can get a
3D view of the component clicked and can compare it interactively to the other
simulation. In addition, the predecessor and successor simulations of the
development tree are highlighted and a report of the detected model changes
between these two simulations is shown. To see a direct correlation between the
position of the simulation in the latent space and the corresponding input changes
the user can change the coloring from clusters to any of the input parameters that
are varied in the model, such as thickness.

b. Filtering of components

The part identification still faces the issue of classifying real deformations with
respect to almost rigid body motions. For that effect some filter capabilities have
been investigated. The issues here are parts that do not deform, but which are
affected by the rigid body motion. In this case, if follower points are used to
subtract this motion, the corresponding parts are highlighted as being changed
by our LBSFA algorithms described above. If the user does not filter out such
parts beforehand, they will disturb the ranking of the parts. Therefore, a method
to detect parts without deformation to filter out such parts has been developed.



The resulting filtering of such parts for our use case example is shown in Figure
3.
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Figure 3: Filtering of components that identify parts not having deformations. It shows parts that mainly
have rigid body motion and little to no deformations. Left image is at time step 0 and the right image is at
time step 26 (last time step).

An overview of the data analysis pipeline of SimExplore is given in Figure 4.
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Figure 4: The modules of the analysis pipeline, consisting of data processing and filtering steps.

4.  Jump score

In product development, engineers need to apply design measures to obtain a
particular outcome respecting safety requirements and constraints. The
comparison between a predecessor and successor design pair is effectively
achieved e.g. with the methods from [8] but comparing over all simulations in
the development tree is still an appealing objective. With this goal in mind, we
have developed an innovative Jump score to identify the measures with the
highest impact regarding a behavioral change. In this sense, a jump means that
the corresponding result jumps from one behavioral mode to another.



The Jump score computation comprises two main steps:
1. Evaluation of a score to get important predecessor—successor pairs
2.Per identified pair computation of PID grouping using clustering

An example visualization of the first computing step is shown in the upper part
of Figure 3, the x-axis in this plot represents the predecessor—successor pairs and
the y-axis is the score. Selecting one pair from it, allows step 2 as represented in
the middle part of Figure 3. For this pair several time dependent curves are
shown, that is one for each PID of the car structure with colors representing
clusters grouping those parts. Selecting a specific cluster of curves allows the
visualization of all the PIDs in the cluster at the maximum time step of the curves
which is shown in the lower part of Figure 5.
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Figure 5:Overview of the web-based Ul for the analysis of the Jump score. The first part of the image
shows the ranking of simulation pairs due to the computed Jump score, the middle part shows the
corresponding curves for the components of a selected simulation pair, while the bottom part gives a
detailed overview of the mesh and functions on the selected component.

The workflow for computing and evaluating the Jump score still requires a series
of evaluations that requires an adequate complex workflow and a graphical user



interface. In this work we benchmark the flexibility of a RAG system to achieve
this evaluation process.

The system contains a backend that interfaces with a graph database, but it can
also use a file-based storage. A React based web frontend is extended in a
modular way that has been developed for the data analysis evaluation of CAE
data in [14] so that different ui components can be added as needed. The backend
is python based and it uses a Django interface that communicates with the
frontend via a server.

The chat system will call specific functions of the system based on the required
task. In essence a user interaction is mimicked to interface with the already
available results from the Jump score computation (see Figure 6).
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Figure 6:Example use of the web-based chat interface for the Jump score analysis.
5.  RAG Approach to link model input (measures, sources) and effects

The emergence of Large Language Models (LLMs) has given further boost in
developing Al based support assistant system for the design exploration and
analysis in the virtual product development workflow in engineering. LLM’s
such as OpenAl’s GPT-40 can be used in linking and automating different
downstream analysis procedures, with the aim to provide relevant responses to
the engineer’s query. Moreover, the process becomes generalized, which means
that independent on how the engineer frames the query, the support assistant can
respond to the query by “reading in between the lines” so to say.

To effectively utilize the LLM in an engineering support assistant system, we
consider two primary requirements:

1. There should be a way in which we are able to define and regulate LLM
responses.



2.The proprietary data should be protected, and the data security
regulations should be fulfilled.
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Figure 7:Overview of RAG approach utilizing LLM as agent to call specific tools to answer user’s
question (Fig 5.1 from [13]).

Considering above requirements, we propose an approach of designing a support
assistant system in which the LLM is placed between the engineer (user) and our
Fraunhofer CAE analysis tools [13]. One of the example designs adopting this
approach is shown in Figure 7. With structured parametric prompt designs, we
define the role LLM plays in different scenarios considering the product
development stage at hand. Next, by utilizing function calling capabilities of
LLM and with specialized python-based code structure, we have developed a
custom toolkit with which analysis procedures using Fraunhofer CAE analysis
tools can easily be automated after getting a LLM function call.

For the design scenario mentioned in Figure 7, the engineer is interested in
analyzing multiple design iterations. Prior to the operation of the support
assistant, in the considered design above, the simulations are analyzed with the
LBSFA to extract meaningful low dimensional features. These features are
stored in a structured format in a graph database with a vision to create a
knowledge graph. During the operation of the support assistant, for a particular
analysis procedure when called by the LLM based on the engineer’s query, the
analysis is performed at the backend automatically by the custom tool kit. The
selected tool is utilized to retrieve essential proprietary data and relevant features
stored in the graph database and conduct a detailed analysis. The analysis result
is filtered and made more specific to answer the engineer’s query and provided
back to the LLM which receives further analyzes based on previous conversation



and summarizes to the engineer in a suitable format. Moreover, the graph
database can be updated with each conversation to facilitate fast retrieval of
already performed analysis. Our specialized parametric prompt designs and
python based “custom tool kit” has proven to show an effective approach to
control LLM responses and define analysis procedures for different scenarios
thereby reducing “hallucinations”. Consequently, the data used for analysis is
not transmitted to the LLM, ensuring that all computations are performed locally
by python functions. Moreover, the LLM has no direct control over data retrieval
systems beyond invoking a python function within the custom toolkit
responsible for data acquisition, thereby fully complying with the data security
requirements outlined in the second point above.

This approach, where the LLM acts as a mediator—understanding and reasoning
about the engineer’s query while determining the necessity of a specific tool—
is inspired by the Retrieval-Augmented Generation (RAG) methodology. The
parametric prompt design incorporates additional relevant information specific
to the engineering analysis task, enabling the LLM to generate a more detailed
and contextually accurate response.

6. Experimental Results for a Toyota Yaris frontal crash analysis

We demonstrate our developed RAG approach to identify jumps between
behavioral modes in many simulation results on a frontal crash scenario. Our
study is based on the Toyota Yaris study for a Euro NCAP front crash with a
velocity of 56 km/h against a rigid wall which was set up and presented in [15,
16] and already investigated with our explorative ML-based approach in [10].
The study is restricted to the body in white parts of the vehicle, changes are
applied to main structural beams adding beads as well as changing the position
of them, whereas weight reduction is obtained by reducing the thickness of 4
main structural members, see [15]. Results of our explorative analysis, the web
user interface and the RAG approach are shown in Figures 1-4 embedded in the
algorithmic description above for better readability.

7. Conclusion

In this work we have presented an Al-driven methodology for the analysis and
visualization of many CAE models which includes identification of design
measures and the simulation outcomes. Concentrating on the standard evaluation
of simulations in a development tree, the Jump score computes the most affected
pair of simulations in a development tree and given it, groups the components as
per similarity of time dependent outcomes.

A RAG system based on a LLM with implemented agents interacts with
developed modules to enable the evaluation of the results of the Jump score. A
modular software infrastructure with a backend and web frontend is used to
demonstrate the approach. The RAG based system can access the information



about design changes and simulation outcomes in a graph database and this in
turn can be used to save input-outcome relationship providing the basis for a
learning and inference framework for assisting engineers in the development
process. Saving and learning this relationship is challenging but we think that
the provided framework will enable us to further investigate this task in a more
systematic and flexible way.
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