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Operator learning, the approximation of mappings between infinite-dimensional function
spaces using machine learning, has gained increasing research attention in recent years.
Approximate operators, learned from data, can serve as efficient surrogate models for
problems in computational science and engineering, complementing traditional methods.
However, despite their empirical success, our understanding of the underlying mathematical
theory is in large part still incomplete. In this paper, we study the approximation of
Lipschitz operators with respect to Gaussian measures. We prove higher Gaussian Sobolev
regularity of Lipschitz operators and establish lower and upper bounds on the Hermite
polynomial approximation error. We then study general reconstruction strategies of Lipschitz
operators from m arbitrary (potentially adaptive) linear samples. As a key finding, we tightly
characterize the corresponding sample complexity, that is, the smallest achievable worst-
case error among all possible choices of (adaptive) sampling and reconstruction strategies
in terms of m. As a consequence, we identify an inherent curse of sample complexity: No
method to approximate Lipschitz operators based on m linear samples can achieve algebraic
convergence rates in m. On the positive side, we prove that a sufficiently fast spectral decay
of the covariance operator of the underlying Gaussian measure guarantees convergence rates
which are arbitrarily close to any algebraic rate. Overall, by tightly characterizing the sample
complexity, our work confirms the intrinsic difficulty of learning Lipschitz operators, regardless
of the data or learning technique.

Keywords: Operator learning; Sample complexity; Lipschitz operators; Gaussian measures.

1. Introduction

We study the approximation of generic Lipschitz operators which map between (infinite-)
dimensional Hilbert spaces. The approximation error is measured in expectation in L2 with
input samples drawn from a Gaussian probability distribution. We commence with a detailed
literature review in Section 1.1, where we put our work in the context of operator learning
and motivate the Gaussian setting as a natural framework for analyzing Lipschitz operators.
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We subsequently summarize our main contributions in Section 1.2 and give an overview of the
organization of the remainder of the paper.

1.1. Motivation and literature review
With the rise of machine learning, in particular deep learning, in computational science and
engineering (CSE), operator learning has recently emerged as a new paradigm for the data-
driven approximation of mappings between infinite-dimensional function spaces. Multiple deep
learning architectures, typically referred to as neural operators, such as DeepONet (Lu et al.,
2021), FNO (Li et al., 2021), non-local neural operators (Kovachki et al., 2023), and PCA-
Net (Bhattacharya et al., 2021), have been proposed and their efficiency has been demonstrated
in various practical applications. We refer to the recent reviews Kovachki et al. (2024b)
and Boullé and Townsend (2024) and references therein. However, the empirical success of these
neural operators has to large extent not yet been supported so far by a general mathematical
theory. A thorough understanding of theoretical approximation guarantees is important though
for a reliable deployment of operator learning methods in CSE applications.

1.1.1. Theory of operator learning
A typical starting point in the theoretical analysis of operator learning are universal
approximation results. They guarantee the existence of a neural operator of certain type which
approximates a target operator up to some arbitrarily small error (Chen and Chen, 1995;
Lanthaler et al., 2022; Kovachki et al., 2021; Lanthaler et al., 2024; Lanthaler, 2023). Albeit
being necessary for assessing the basic utility of a neural operator, mere existence results are of
limited use in practical applications, where instead questions about quantitative approximation
guarantees and explicit convergence rates are of greater importance.

To address the latter, two quantities are of key interest. On the one hand, the parametric
complexity quantifies the convergence of the approximation error in terms of the number of
tunable parameters employed by the approximation method. In the context of (deep) neural
network (NN) approximations, this is often referred to as expression rates. On the other hand,
the sample complexity quantifies the convergence of the approximation error in terms of the
number of samples used for fitting the parameters to data. Previous research efforts mainly
focused on deriving expression rates for NN approximations of specific (classes of) operators,
whereas there has been comparably little work on sample complexity estimates.

Holomorphic operators have been widely-studied in operator learning. They arise, for
example, as parameter-to-solution mappings for parametric partial differential equations
(PDEs), see, e.g., Cohen and DeVore (2015) and Adcock et al. (2022, Chpt. 4) and references
therein. Such operators can be learned with algebraic or (on finite-dimensional domains)
even exponential parametric complexity with NNs (Opschoor et al., 2022; Herrmann et al.,
2024; Schwab and Zech, 2023). Moreover, they can be approximated with near-optimal sample
complexity with least-squares and compressed sensing methods (Adcock et al., 2024a; Bartel
and Dũng, 2024; Adcock et al., 2024c, 2025b) as well as with NNs (Adcock et al., 2024d,b,
2025a). We mention in passing that algebraic NN expression rates and exponential sample
complexity estimates (in probability) have also been derived for classes of (non-holomorphic)
solution operators of certain PDEs (De Ryck and Mishra, 2022; Boullé et al., 2023). Moreover,
algebraic complexity estimates are also available for infinite-dimensional functionals (with
one-dimensional codomain) with mixed regularity (Dũng and Griebel, 2016).
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1.1.2. Analysis of Lipschitz operators
However, many operators fail to be holomorphic. Amongst families of non-holomorphic
operators, Lipschitz operators—which arise, for example, as parameter-to-solution mappings for
parametric elliptic variational inequalities—are an important class. Applications are numerous
and include, inter alia, obstacle problems in mechanics and control problems, as well as
uncertainty quantification in equilibrium models. The respective operators in these contexts
do generically not exhibit any regularity beyond Lipschitz continuity. We refer to Schwab et al.
(2023) and Gwinner et al. (2021, Chpt. 6) and references therein for further details.

The study of approximating Lipschitz operators has recently attracted increased research
attention as they exhibit fundamentally different properties to holomorphic operators in
terms of learnability. It was shown in Lanthaler (2023) that bounded Lipschitz (and Ck-
Fréchet differentiable) operators cannot be approximated with algebraic parametric complexity
using PCA-Net. More specifically, the number of real-valued PCA-Net parameters scales
exponentially with the inverse of the approximation error. This result, termed the curse of
parametric complexity, can be interpreted as the infinite-dimensional analogue to the classical
curse of dimensionality in finite dimensions, see also Lanthaler and Stuart (2024). It can be
seemingly overcome by neural operators which use hyper-expressive activation functions or non-
standard NN architectures (Schwab et al., 2023). In practical implementations, however, each
real-valued parameter can only be represented by a sequence of bits of finite length. In Lanthaler
(2024), the cost model of counting real-valued parameters was therefore replaced by instead
counting the number of bits that are necessary to digitally encode each parameter to some finite
accuracy. The resulting cost-accuracy scaling law reveals a curse of parametric complexity that
is independent of the activation functions used in any NN approximation. It states that the
number of bits required to encode each NN parameter, in fact, still scales exponentially with
the inverse of the approximation error.

Based on the theory of widths, it was shown in Kovachki et al. (2024a) that bounded
Lipschitz and Ck-operators also exhibit a curse of data complexity. That is, the error in
expectation with respect to a Gaussian measure with at most algebraically decaying PCA
eigenvalues converges at most logarithmically in the number of samples for any learning
algorithm which is based on i.i.d. pointwise samples. However, Lipschitz operators that arise
in practical applications as mentioned above are usually not bounded and the just reviewed
results are thus not directly applicable.

1.1.3. Analysis of Gaussian measures
In the present paper, we prove a curse of sample complexity which generalizes the result
of Kovachki et al. (2024a) to unbounded Lipschitz operators and arbitrary (centered,
nondegenerate) Gaussian measures. Unlike in previous studies, we tightly characterize the
sample complexity of learning such operators in terms of the PCA eigenvalues. We then show
that algebraic convergence cannot be achieved, regardless of the decay of these eigenvalues.
Nevertheless, we show that with sufficiently fast spectral decay, error decay rates which are
arbitrarily close to any algebraic rate can be achieved. We mention the recent work Liu et al.
(2024) for further results in the statistical theory of deep nonparametric estimation of Lipschitz
operators. Therein, however, the authors work with probability measures with compact support.
Consequently, their results are not directly applicable to Gaussian measures.

Our work focuses on Gaussian measures as they are the typical choice of input measures.
They also allow us to draw on results from infinite-dimensional analysis (Bogachev, 1998;
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Da Prato, 2006, 2014; Lunardi et al., 2015/2016). The theory of Gaussian Sobolev spaces is key
in our analysis as it is well-known that Lipschitz functionals are Gaussian Sobolev functionals.
This connection yields explicit control over error bounds in terms of the spectral properties of
the covariance operator of the Gaussian measure. The Gaussian setting has been considered
previously to prove expression rates for NN approximations of operators, see, e.g., Schwab and
Zech (2023); Dũng et al. (2023). It can also be studied within the abstract framework developed
in Griebel and Oswald (2017), see Example 1 therein, to derive dimension-independent results
for the approximation of high- and infinite-dimensional function(al)s. Its connection to Lipschitz
regularity, however, has, to the best of our knowledge, not yet been exploited to derive sample
complexity estimates for Lipschitz operators.

1.2. Contributions
Let X ,Y be separable Hilbert spaces with dim(X ) = ∞ and µ be a Gaussian measure on X .
Detailed notation and further preliminaries are introduced in Section 2. Additional notions and
technical results from operator theory and infinite-dimensional analysis are discussed in the
appendix. We now give an (informal) overview of our three main contributions

1. In Section 3, we extend standard results from infinite-dimensional analysis and define the
(weighted) Gaussian Sobolev space W 1,2

µ,b(X ;Y) by means of a sequence of positive real-valued
weights b = (bi)i∈N with 0 < bi ≤ 1. As our first main contribution, we show that this space
contains the set Lip(X ,Y) of Lipschitz operators which map from X to Y:

Result 1 (Lipschitz operators are Gaussian Sobolev operators, cf. Thm. 3.10). If Y is finite-
dimensional, then Lip(X ,Y) ⊂W 1,2

µ,b(X ;Y). If Y is infinite-dimensional and if b ∈ ℓ2(N), then
Lip(X ,Y) ⊂W 1,2

µ,b(X ;Y). In both cases, the space of bounded Lipschitz operators is continuously
embedded in W 1,2

µ,b(X ;Y).

The sequence b is essential to treat the case dim(Y) = ∞ and it can be interpreted
as a sequence of parameters which control the degree of (weak) differentiability of the
Sobolev operators. Result 1 is crucial in our subsequent analysis. Elements in W 1,2

µ,b(X ;Y)
are characterized as operators whose polynomial expansion coefficients with respect to the
(infinite-dimensional) Hermite polynomials {Hγ}γ∈Γ, with countable index set Γ, are weighted
ℓ2-summable. The corresponding weights u = (uγ)γ∈Γ are given in terms of the (b-weighted)
PCA eigenvalues λb,i (of the covariance operator) of µ. As a result, we can study the
approximation of a given Lipschitz operator by considering its Hermite polynomial expansions.

2. In Section 4, we give upper and lower bounds for the convergence of these expansions in terms
of the PCA eigenvalues. In particular, we show the following curse of parametric complexity:
No s-term Hermite polynomial expansion can converge with an algebraic rate uniformly for all
Lipschitz operators as s→ ∞. This holds regardless of the decay rate of the PCA eigenvalues.
More specifically, let S ⊂ Γ be a finite index set with at most s elements and let FS denote
the polynomial approximation of an operator F ∈ W 1,2

µ,b(X ;Y) by Hermite polynomials Hγ

with γ ∈ S. Moreover, let π : N → Γ be a bijection such that (uπ(i))i∈N is a nonincreasing
rearrangement of u. Our second main contribution is the following result:
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Result 2 (Curse of parametric complexity, cf. Thms. 4.1, 4.6, 4.7). For every s ∈ N, we have

inf
S⊂Γ,|S|≤s

sup
F

∥F −FS∥L2
µ(X ;Y) = sup

F

∥∥F −F{π(1),...,π(s)}
∥∥

L2
µ(X ;Y) = uπ(s+1),

where the suprema are taken either over the class of all Lipschitz operators or all W 1,2
µ,b-

operators with ∥F∥
W

1,2
µ,b

(X ;Y) ≤ 1. Moreover, uπ(s+1) cannot decay with algebraic order as
s → ∞, regardless of the spectral properties of µ. On the positive side, the decay of uπ(s+1)
can become arbitrarily close to any algebraic rate if the PCA eigenvalues λb,i decay sufficiently
fast (e.g., double exponentially).

As we will discuss in Section 4.4, this curse of parametric complexity is consistent with the
one from Lanthaler (2023), which we mentioned in Section 1.1.

3. Up to this point, we study best polynomial approximation of Lipschitz operators. In Section 5,
we adopt a more general view and consider learning Lipschitz and W 1,2

µ,b-operators from finitely
many arbitrary linear samples. Using tools from information-based complexity (Novak and
Woźniakowski, 2008), we define the adaptive m-width Θm(K) of a set K of operators. It
quantifies the best worst-case error that can be achieved by learning operators in K from
m measurements L(F ) ∈ Ym which are generated by an adaptive sampling operator L and
used as inputs for an arbitrary (generally nonlinear) reconstruction map T : Ym → L2

µ(X ;Y).
Specifically

Θm(K) := inf
{

sup
F ∈K

∥F −T (L(F ))∥L2
µ(X ;Y) : L,T as above

}
.

Our key result is the characterization of Θm(K) in terms of the weights uγ :

Result 3 (Characterization of the adaptive m-width, cf. Thms. 5.4, 4.6, 4.7). For any number
of samples m ∈ N, we have

Θm(K) = uπ(m+1),

where K is either the set of all Lipschitz or all W 1,2
µ,b-operators of at most unit W 1,2

µ,b-norm.
Again, uπ(m+1) cannot decay with algebraic order as m → ∞, regardless of the spectral
properties of µ. But its decay can become arbitrarily close to any algebraic rate if the PCA
eigenvalues λb,i of µ decay sufficiently fast (e.g., double exponentially).

This result tightly characterizes the sample complexity of learning Lipschitz operators and
gives rise to the following curse of sample complexity: No procedure (e.g., NNs, polynomial
approximation, random features, kernel methods, etc.) for learning Lipschitz operators can
achieve algebraic convergence rates for the worst-case L2

µ-approximation error. This holds
for general (centered, nondegenerate) Gaussian measures µ. In light of Result 3, note that
Result 2 shows that Hermite polynomial approximation is optimal among all possible (adaptive)
sampling and reconstruction operators for approximating Lipschitz and W 1,2

µ,b-operators.
Finally, we emphasize that Result 3 implies that from an information-based complexity point
of view, there is no difference between the space Lip(X ,Y), equipped with the W 1,2

µ,b-norm, and
the whole space W 1,2

µ,b(X ;Y) as the adaptive m-widths of the unit balls in both spaces coincide.
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1.3. Limitations and future work
In this work, we do not consider reconstruction strategies based on i.i.d. pointwise samples
but based on general linear information. In practice, however, recovery from pointwise samples
is most relevant as it is non-intrusive. While the inherent curse of sample complexity cannot
be overcome (see also below), it is of key interest to design algorithms with (near-)optimal
sample complexity which achieve an optimal approximation error with the minimum amount
of operator evaluations. Moreover, in practice, only finite-dimensional data is available,
which is usually corrupted by noise. Hence, encoding and decoding errors and errors due
to noisy observations arise. We aim to address this problem in future work by studying the
approximation of Lipschitz operators from noisy pointwise samples with methods from machine
learning, e.g., in terms of practical existence theorems, as studied in Adcock et al. (2024b,d,
2025a); Franco and Brugiapaglia (2025), or with techniques from statistical learning theory
(see, e.g., Schmidt-Hieber (2020); Liu et al. (2024)).

On the other hand, by tightly characterizing the curse of sample complexity, our results
suggest that learning Lipschitz operators with arbitrary Gaussian measures may be practically
challenging. For instance, if the PCA eigenvalues decay algebraically, our characterization
implies at best polylogarithmic decay of the error in m of any learning algorithm—a rate
that may be too slow in practice. Extending and corroborating previous studies (e.g., Kovachki
et al. (2024a); Lanthaler and Stuart (2024)), our results suggest that the class of Lipschitz
operators may simply be too large. By contrast, the class of holomorphic operators is known
to be too small since operators found in various applications are non-holomorphic. Hence, our
results highlight another important problem for future work, namely, the search for spaces that
better describe classes of operators found in applications.

2. Preliminaries

We recall some standard notions and fix the notation which we use throughout the text. Further
notation will be introduced in the text as needed.

2.1. Basic notation
As usual, N denotes the set of all positive integers, N0 the set of all nonnegative integers, and
R the real numbers. We denote by (X ,⟨·, ·⟩X ) and (Y,⟨·, ·⟩Y) two separable Hilbert spaces with
corresponding inner products. For simplicity, we focus on real Hilbert spaces, but all results can
be readily generalized to the complex case as well. We use capital letters X ∈ X and Y ∈ Y (at
times also H,K,Z) for elements of the respective Hilbert spaces. Operators which map from
X to Y are typically denoted by the capital letters F or G. For functionals, i.e., in the case
Y = R, we also use lower case letters at times. The space of all continuous operators from X
to Y is denoted by C(X ,Y) and we write C(X ) := C(X ,R). The space of all Hilbert-Schmidt
operators from X to Y is denoted by (HS(X ,Y),⟨·, ·⟩HS(X ,Y)). It is again a separable Hilbert
space with induced norm ∥F∥HS(X ,Y) := ⟨F,F ⟩1/2

HS(X ,Y).
We equip X with a centered, nondegenerate Gaussian measure µ with covariance operator

Q :=
∫

X X⊗Xdµ(X). We recall that Q : X → X is positive definite, self-adjoint and trace
class (Da Prato, 2006, Prop. 1.8). As such, there exists an orthonormal eigenbasis (PCA basis)
{ϕi}i∈N of X and a sequence of corresponding PCA eigenvalues λ = (λi)i∈N. To be explicit, we
have Qϕi = λiϕi with λi > 0 for every i∈N and

∑∞
i=1λi <∞. We denote the standard Gaussian
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measure on R by µ1 := N (0,1), the standard Gaussian measure on Rn, n∈N, by µn :=
⊗n

i=1µ1,
and the standard Gaussian measure on the space of sequences RN by µ∞ :=

⊗∞
i=1µ1.

For a positive integer N , we use the shorthand notation [N ] for the set {1,2, . . . ,N} and also
write [∞] :=N. Sequences of real numbers with (possibly finite) index set I are denoted by lower
case bold letters x = (xi)i∈I ∈RI . Sequences with elements in a Hilbert space Z are denoted by
bold capital letters Z = (Zi)i∈I ∈ ZI . We write 0 and 1 for the constant zero and constant one
sequence, respectively. Algebraic operations on a sequence x ∈ RI are defined componentwise:
We write

√
x := (√xi)i∈I and 1/x := (1/xi)i∈I , whenever these expressions make sense. Given

a scalar c ∈ R, we write cx := (cxi)i∈I for the scaled sequence. In a similar vein, inequalities of
the form x ≤ y between sequences x,y ∈ RI are understood componentwise, that is, xi ≤ yi for
every i ∈ I. The expressions x ≥ y, x< y, and x> y are understood in a similar sense. Given
J ⊂ I, we write xJ for the subsequence (xi)i∈J . We write δi,j for the Dirac delta function (i.e.
δi,j = 1 if i= j and δi,j = 0 otherwise), and for two sequences γ,γ′ ∈ NN

0 , we set

δγ,γ′ :=
∞∏

i=1
δγi,γ′

i
.

We denote the Euclidean norm and inner product on Rn by ∥·∥Rn and ⟨·, ·⟩Rn , respectively, and
the standard basis vectors by ei := (δi,j)j∈[n] for i ∈ [n]. The symbol Ln denotes the Lebesgue
measure on Rn. Finally, we use the notation x≲ y for x,y ∈ R if there exists a global constant
C > 0, independent of any parameters, such that x≤ Cy. We write x≳ y if y ≲ x, and x∼ y if
both x≲ y and x≳ y.

2.2. Sequence spaces
Let 1 ≤ p ≤ ∞. Given an index set I, positive weights w = (wi)i∈I > 0, and a Hilbert space
Z, we define the space ℓpw(I;Z) as the set of all Z-valued sequences Z = (Zi)i∈I whose norm
∥Z∥ℓ

p
w(I;Z) is finite, where

∥Z∥ℓ
p
w(I;Z) :=


(∑

i∈I w
−p
i ∥Zi∥p

Z

)1/p
if 1 ≤ p <∞,

supi∈I

{
w−1

i ∥Zi∥Z
}

if p= ∞.

We denote the closed unit ball in ℓpw(I;Z) by

Bp
w(I;Z) :=

{
x ∈ ℓpw(I;Z) : ∥x∥ℓ

p
w(I;Z) ≤ 1

}
.

If Z = R, we write (ℓpw(I),∥·∥ℓ
p
w(I)) and Bp

w(I), and if w = 1, we write (ℓp(I;Z),∥·∥ℓp(I;Z))
and Bp(I;Z).

2.3. The weighted space Xb

Let b = (bi)i∈N be a sequence of positive weights with 0 < b ≤ 1. By means of the PCA basis
{ϕi}i∈N of X we define the space

Xb :=
{
X ∈ X :

∞∑
i=1

b−2
i |⟨X,ϕi⟩X |2 <∞

}
.
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Note that Xb is a Hilbert subspace of X with inner product

⟨X,Z⟩Xb
:=

∞∑
i=1

b−2
i ⟨X,ϕi⟩X ⟨Z,ϕi⟩X , X,Z ∈ Xb,

which induces the norm
∥X∥Xb

:=
√

⟨X,X⟩Xb
, X ∈ Xb.

Moreover, it is easy to see that Xb has an orthonormal basis {ηi}i∈N, given by

ηi := biϕi, i ∈ N. (2.1)

Remark 2.1. We highlight two important cases. If b = 1, we recover the full space X1 = X . If
b =

√
λ, we obtain the Cameron-Martin space X√

λ = H of µ, see (C.1).

2.4. Lebesgue-Bochner spaces and Hermite polynomials
We write L2

µ(X ;Y) for the Lebesgue-Bochner space of (equivalence classes of) strongly
measurable operators F : X → Y with finite Bochner norm

∥F∥L2
µ(X ;Y) :=

(∫
X

∥F (X)∥2
Ydµ(X)

)1/2
.

If Y = R, the Lebesgue-Bochner space L2
µ(X ;R) coincides with the usual Lebesgue space and

we write L2
µ(X ) := L2

µ(X ;R). See, e.g., Hytönen et al. (2016, Chpt. 1), for more information.
Next, we introduce the (infinite-dimensional) Hermite polynomials. For n ∈ N0, we first

define the nth normalized (probabilist’s) Hermite polynomial on R by

Hn : R → R, Hn(x) := (−1)n

√
n!

exp
(
x2

2

)
dn

dxn
exp

(
−x2

2

)
.

The family {Hn}n∈N is an orthonormal basis of L2
µ1(R) (Da Prato, 2006, Prop. 9.4). We now

define the higher-dimensional Hermite polynomials as products of the one-dimensional ones.
To this end, we introduce the set of all sequences of nonnegative integers with finite support,

Γ :=
{

γ ∈ NN
0 : supp(γ)<∞

}
,

with the support of γ defined as supp(γ) := {i∈N : γi ̸= 0}. It is easy to see that Γ is countable.
For γ ∈ Γ and d ∈ N, we set

Hγ,d : Rd → R, Hγ,d(x) :=
d∏

i=1
Hγi(xi). (2.2)

Remark 2.2. Since γ ∈ Γ has finite support and H0 = 1, each Hermite polynomial Hγ,d can
also be seen as a function Hγ,∞ with infinite-dimensional input x ∈ RN (simply by ignoring all
xi with i ̸∈ supp(γ)).
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Finally, we define Hermite polynomials on the infinite-dimensional space X by means of the
PCA basis {ϕi}i∈N and the PCA eigenvalues λ = (λi)i∈N:

Hγ,λ : X → R, Hγ,λ(X) :=
∞∏

i=1
Hγi

(
⟨X,ϕi⟩X√

λi

)
. (2.3)

As only finitely many factors in (2.3) are different from 1, each Hγ,λ is a smooth function on
X with polynomial growth at infinity. Fernique’s theorem (Theorem C.1) then implies that
Hγ,λ ∈ L2

µ(X ) for every γ ∈ Γ. Similarly as in finite dimensions, the family {Hγ,λ}γ∈Γ of
infinite-dimensional Hermite polynomials is an orthonormal basis of L2

µ(X ) (Da Prato, 2006,
Thm. 9.7). Recalling that L2

µ(X ;Y) = L2
µ(X ) ⊗ Y with Hilbertian tensor product, any F ∈

L2
µ(X ;Y) can thus be written as an unconditionally L2

µ(X ;Y)-convergent expansion in Hermite
polynomials, also called the Wiener-Hermite Polynomial Chaos (PC) expansion,

F =
∑
γ∈Γ

YγHγ,λ with Yγ :=
∫

X
F (X)Hγ,λ(X)dµ(X) ∈ Y. (2.4)

The Yγ are called the Wiener-Hermite PC coefficients of F . Moreover, Parseval’s identity
holds, that is,

∥F∥2
L2

µ(X ;Y) =
∑
γ∈Γ

∥Yγ∥2
Y . (2.5)

3. Gaussian Sobolev and Lipschitz operators

Let b be a sequence of weights and Xb the corresponding weighted space as introduced in
Section 2.3. We first sketch the definition of the weighted Gaussian Sobolev space W 1,2

µ,b(X ;Y)
and state its characterization as a weighted ℓ2-sequence space. Details are provided in
Appendix C.2. We then prove that all Lipschitz operators from X to Y lie in W 1,2

µ,b(X ;Y) under
some sufficient conditions on b. The results in this section are the basis for the approximation
theoretical analysis carried out in the remainder of this paper.

3.1. The space W 1,2
µ,b(X ;Y)

The definition of the space W 1,2
µ,b(X ;Y) is based on the operator DXb

which denotes the
Fréchet differential operator along the space Xb (see Appendix A). We first define DXb

as an
operator which maps from a set FC1

b (X ,Y) of cylindrical boundedly differentiable operators
to L2

µ(X ;HS(Xb,Y)). The theory of the Cameron-Martin space H of µ allows us to show that
DXb

is closable in L2
µ(X ;Y), see Proposition C.5. Details about the closability and closure of

operators are recalled in Appendix B.

Definition 3.1 (The Sobolev space W 1,2
µ,b(X ;Y)). We define the space W 1,2

µ,b(X ;Y) as the
domain of the closure of the operator DXb

: FC1
b (X ,Y) → L2

µ(X ;HS(Xb,Y)) in L2
µ(X ;Y) (still

denoted by DXb
).
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The space W 1,2
µ,b(X ;Y) is a Hilbert space with the graph norm

∥F∥
W

1,2
µ,b

(X ;Y) :=
(∫

X
∥F (X)∥2

Ydµ(X)+
∫

X

∥∥DXb
F (X)

∥∥2
HS(Xb,Y)dµ(X)

)1/2
,

which is induced by the inner product

⟨F,G⟩
W

1,2
µ,b

(X ;Y) :=
∫

X
⟨F (X),G(X)⟩Y dµ(X)+

∫
X

〈
DXb

F (X),DXb
G(X)

〉
HS(Xb,Y) dµ(X).

As usual, we write W 1,2
µ,b(X ) :=W 1,2

µ,b(X ;R) for the space of Sobolev functionals.

Remark 3.2. Defining Gaussian Sobolev spaces as the domain of the closure of a suitable
differential operator is standard. See, e.g., in Chojnowska-Michalik and Goldys (2001);
Da Prato (2006, 2014); Lunardi et al. (2015/2016). For an equivalent definition via the
completion of FC1

b (X ,Y) under an appropriate Sobolev norm, see Bogachev (1998, Chpt. 5).

Remark 3.3. Weighted Gaussian Sobolev spaces have been considered in the literature in
the study of continuous and compact Sobolev embeddings (Shigekawa, 1992; Da Prato and
Zabczyk, 1995; Chojnowska-Michalik and Goldys, 2001) by composing the differential operator
with an additional self-adjoint nonnegative operator. Recently, in Luo et al. (2023), the authors
defined weighted Gaussian Sobolev spaces of functionals on ℓr(N), r≥ 1, by weighting the partial
derivatives with elements of a weight sequence b ∈ ℓ∞(N) and remarked that their construction
unifies various definitions of Gaussian Sobolev spaces via different choices of b. Our definition
of W 1,2

µ,b(X ) is equivalent to this construction in the Hilbert space case r = 2. However, our
approach via the differential operator along the space Xb highlights the role of the latter as the
underlying differential structure of W 1,2

µ,b(X ). For b =
√

λ, we obtain the same space as defined
in Bogachev (1998); Lunardi et al. (2015/2016); Da Prato (2014). For b = 1, we obtain a space
as defined in Da Prato (2006), which is smaller.

Next, we use the Wiener-Hermite PC expansion (2.4) of L2
µ(X ;Y)-operators to characterize

the space W 1,2
µ,b(X ;Y) by a weighted ℓ2-space.

Definition 3.4 (Weighted PCA eigenvalues). The b-weighted PCA eigenvalues are given by

λb = (λb,i)i∈N, λb,i := λi/b
2
i . (3.1)

The following theorem is an immediate consequence of Proposition C.7.

Theorem 3.5 (ℓ2-characterization of W 1,2
µ,b(X ;Y)). The map

ℓ2u(Γ;Y) →W 1,2
µ,b(X ;Y), Y = (Yγ)γ∈Γ 7→

∑
γ∈Γ

YγHγ,λ

with the family of weights

u = (uγ)γ∈Γ, uγ = uγ(λb) :=
(

1+
∞∑

i=1

γi

λb,i

)−1/2

, (3.2)
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is an isometric isomorphism. In particular, using the representation (2.4), we have

∥F∥2
W

1,2
µ,b

(X ;Y) =
∑
γ∈Γ

u−2
γ

∥∥∥∥∫
X
FHγ,λdµ

∥∥∥∥2

Y
, ∀F ∈W 1,2

µ,b(X ;Y).

Assumption 3.6 (Properties of b). The sequence b = (bi)i∈N is a sequence of positive real
numbers with 0 < b ≤ 1 such that the sequence of weighted PCA eigenvalues λb = (λb,i)i∈N,
defined in (3.1), is nonincreasing. If dim(Y) = ∞, we assume in addition that b ∈ ℓ2(N).

The weights uγ in (3.2) are key to our analysis. By Assumption 3.6, we can them in a
nonincreasing way, that is, there exists a nonincreasing rearrangement π : N → Γ of u such that

uπ(1) ≥ uπ(2) ≥ ·· ·> 0. (3.3)

The map π is unique up to permutations of weights of the same value. The additional
requirement of ℓ2-summability of b in Assumption 3.6 in the case dim(Y) = ∞ will become
clear by Theorem 3.10. It states that the set of Lipschitz operators is a subset of W 1,2

µ,b(X ;Y).

Remark 3.7. If Y is finite-dimensional, we can choose b = 1, which gives λb = λ. This is not
possible if Y is infinite-dimensional. However, since λ ∈ ℓ1(N), a valid choice for b in any case
is b =

√
λ, which leads to λb = 1 and thus to no decay of the λb,i at all.

Remark 3.8. Assumption 3.6 implies that limsupi→∞λb,i < ∞. Interestingly, this condition
is equivalent to the continuous embedding of W 1,2

µ,b(X ) in the Orlicz space Lp log
p
2 L(X ,µ) for

p ∈ [1,∞) (Luo et al., 2023, Thm. 4.2). The stronger condition limi→∞λb,i = 0 is equivalent
to the compact embedding of W 1,2

µ,b(X ) in L2
µ(X ) (Da Prato and Zabczyk, 1995, Prop. 2.2), and,

more generally, in the Orlicz space L2 logqL(X ,µ) for q ∈ [0,1) (Luo et al., 2023, Thm. 5.2).

3.2. Lipschitz operators
We now turn to Lipschitz continuous operators and recall their definition.

Definition 3.9 (Lipschitz operators). An operator F : X → Y is called (L-)Lipschitz
(continuous) if there exists a constant L > 0 such that

∥F (X)−F (Z)∥Y ≤ L∥X−Z∥X , ∀X,Z ∈ X .

The number L is a Lipschitz constant of F . The smallest Lipschitz constant of F is given by

[F ]Lip(X ,Y) := sup
X,Z∈X

X ̸=Z

∥F (X)−F (Z)∥Y
∥X−Z∥X

.

We denote the space of all Lipschitz operators from X to Y by Lip(X ,Y) and write Lip(X ) :=
Lip(X ;R). We further define the space of all bounded Lipschitz operators C0,1(X ;Y) as the set
of all Lipschitz operators F ∈ Lip(X ,Y) with finite norm

∥F∥C0,1(X ,Y) := sup
X∈X

∥F (X)∥Y +[F ]Lip(X ,Y).
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Note that C0,1(X ,Y) is a strict subset of Lip(X ,Y) as operators in Lip(X ,Y) are not
necessarily bounded. The next result, which is the main result of this section, motivates
Gaussian Sobolev spaces as a natural setting for the study of Lipschitz operators. We present
a sketch of the proof, highlighting the main ideas. A detailed proof is given in Appendix D.

Theorem 3.10 (Lipschitz operators are Gaussian Sobolev operators). Let b = (bi)i∈N be a
sequence of positive numbers with 0< b ≤ 1.

(i) If Y is finite-dimensional, then Lip(X ,Y) ⊂W 1,2
µ,b(X ;Y) and∥∥DXb

F
∥∥

L2
µ(Xb;HS(Xb,Y)) ≤

√
dim(Y) · [F ]Lip, ∀F ∈ Lip(X ,Y).

In particular, the embedding C0,1(X ,Y) ↪→W 1,2
µ,b(X ;Y) is continuous with

∥F∥
W

1,2
µ,b

(X ;Y) ≤
√

dim(Y) · ∥F∥C0,1(X ,Y), ∀F ∈ C0,1(X ,Y).

(ii) If Y is infinite-dimensional and if b ∈ ℓ2(N), then Lip(X ,Y) ⊂W 1,2
µ,b(X ;Y) and∥∥DXb

F
∥∥

L2
µ(Xb;HS(Xb,Y)) ≤ ∥b∥ℓ2(N) · [F ]Lip, ∀F ∈ Lip(X ,Y).

In particular, the embedding C0,1(X ,Y) ↪→W 1,2
µ,b(X ;Y) is continuous with

∥F∥
W

1,2
µ,b

(X ;Y) ≤ max
{

1,∥b∥ℓ2(N)

}
· ∥F∥C0,1(X ,Y), ∀F ∈ C0,1(X ,Y).

Proof (Sketch) Let F ∈ Lip(X ,Y). In order to show that F lies in W 1,2
µ,b(X ;Y), it suffices to find

a sequence (Fn)n∈N of operators which converge to F in L2
µ(X ;Y) and which are uniformly

bounded in W 1,2
µ,b(X ;Y) (see Lemma C.6). To this end, we construct a specific sequence of

operators of the form Fn = Vn ◦Tn with Vn : Rn → Y and Tn : X → Rn which converge to F in
L2

µ(X ;Y) and, in fact, in W 1,2
µ,b(X ;Y). It can be shown that the operator Vn inherits Lipschitz

continuity of F . Hence, by Rademacher’s theorem, Vn is differentiable Ln-almost everywhere.
We are now left with showing that Fn is differentiable µ-almost everywhere and that there
exists a constant C > 0 such that∥∥DXb

Fn(X)
∥∥

HS(Xb,Y) ≤ C (3.4)

for all n ∈ N and µ-almost every X ∈ X .
In case (i), let m := dim(Y). We fix an orthonormal basis {ψj}j∈[m] of Y and consider the

(Lipschitz continuous) coordinate functions V (j)
n := ⟨Vn,ψj⟩Y : Rn → R. Unwinding definitions,

a straight-forward calculation then leads to (3.4) for any weight sequence 0 < b ≤ 1. The
resulting constant C is given by

√
dim(Y) · [F ]Lip. The same argument does not work in case

(ii) where Y has infinite dimension. At this point, we additionally require that b ∈ ℓ2(N). A
slight modification of the argument in (i) then yields (3.4) with C given by ∥b∥ℓ2(N) · [F ]Lip.



SAMPLE COMPLEXITY OF LEARNING LIPSCHITZ OPERATORS W.R.T. GAUSS. MEASURES 13

The continuous embedding of C0,1(X ,Y) in W 1,2
µ,b(X ;Y) follows in both cases from (3.4) and

the fact that Fn → F in W 1,2
µ,b(X ;Y). □

In light of Theorem 3.10, note that Assumption 3.6 implies that Lip(X ,Y) ⊂ W 1,2
µ,b(X ;Y)

regardless of whether Y is finite- or infinite-dimensional.

Remark 3.11. For functionals, i.e., in the case Y = R, it is well-known that Lipschitz
continuity implies Gaussian Sobolev regularity. We refer to Da Prato (2006, Prop. 10.11)
and Da Prato (2014, Prop. 3.18), where it is shown that Lip(X ) ⊂ W 1,2

µ,1(X ) and Lip(X ) ⊂
W 1,2

µ,
√

λ
(X ), respectively.

Remark 3.12. One can define Gaussian Sobolev spaces W 1,p
µ,b(X ;Y) for any order 1 ≤ p <∞

and a proof analogous to the one of Theorem 3.10 shows that they contain Lip(X ,Y) as a subset.
For the case Y =R, we mention Bogachev (1998, Ex. 5.4.10(i)) and Lunardi et al. (2015/2016,
Prop. 10.1.4). However, only in the Hilbert space case p= 2 there is a simple characterization
of W 1,p

µ,b(X ;Y) in terms of a weighted ℓ2-space as given by Theorem 3.5.

Finally, we introduce the following notation:

Definition 3.13 (Sobolev unit (Lipschitz) ball). We define the Sobolev unit ball and the
Sobolev unit Lipschitz ball as, respectively,

Bµ,b(X ;Y) :=
{
F ∈W 1,2

µ,b(X ;Y) : ∥F∥
W

1,2
µ,b

(X ;Y) ≤ 1
}
,

BLip
µ,b (X ;Y) :=

{
F ∈ Lip(X ,Y) : ∥F∥

W
1,2
µ,b

(X ;Y) ≤ 1
}
.

4. Polynomial s-term approximation

The ℓ2-characterization of W 1,2
µ,b(X ;Y) via Wiener-Hermite PC expansions (see Theorem 3.5)

motivates studying polynomial s-term approximations of W 1,2
µ,b-operators and quantifying the

smallest achievable worst-case s-term error. To this end, for any index set S ⊂ Γ, we define the
space of Y-valued polynomials

PS;Y :=

∑
γ∈S

YγHγ,λ : Yγ ∈ Y


and the corresponding orthogonal L2

µ-projection

(·)S : L2
µ(X ;Y) → PS;Y , F 7→ FS :=

∑
γ∈S

(∫
X
FHγ,λdµ

)
Hγ,λ.
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Next, let F ∈ W 1,2
µ,b(X ;Y) and let S ⊂ Γ be finite with |S| ≤ s. Setting Yγ :=

∫
X FHγ,λdµ, it

follows from Parseval’s identity (2.5) and Theorem 3.5 that

∥F −FS∥2
L2

µ(X ;Y) =
∑

γ∈Γ\S

∥Yγ∥2
Y ≤

(
max

γ∈Γ\S
u2

γ

)∑
γ∈Γ

u−2
γ ∥Yγ∥2

Y =
(

max
γ∈Γ\S

u2
γ

)
∥F∥2

W
1,2
µ,b

(X ;Y).

Let us recall from (3.3) the nonincreasing rearrangement π : N → Γ of u = (uγ)γ∈Γ. For s ∈ N,
we set S = π([s]) = {π(1), . . . ,π(s)} and conclude for K ∈ {Bµ,b(X ;Y),BLip

µ,b (X ;Y)} that

inf
S⊂Γ,|S|≤s

sup
F ∈K

∥F −FS∥L2
µ(X ;Y) ≤ sup

F ∈K
∥F −Fπ([s])∥L2

µ(X ;Y) ≤ max
γ∈Γ\π([s])

uγ = uπ(s+1). (4.1)

Our first main result in this section shows that this chain of inequalities can, in fact, be improved
to equality and hence gives a tight characterization of the best polynomial s-term error. The
proof is an immediate consequence of Theorem 5.4 in the special case V = L2

µ(X ;Y).

Theorem 4.1 (Best polynomial s-term error). For K ∈ {Bµ,b(X ;Y),BLip
µ,b (X ;Y)} and every

s ∈ N, we have

inf
S⊂Γ,|S|≤s

sup
F ∈K

∥F −FS∥L2
µ(X ;Y) = sup

F ∈K
∥F −Fπ([s])∥L2

µ(X ;Y) = uπ(s+1).

Motivated by Theorem 4.1, we study in the rest of this section the decay of uπ(s+1) as
s → ∞. The proofs are based on the relation of the set π([s]) to an anisotropic total degree
index set, which we discuss in Section 4.1. Subsequently, we prove lower and upper bounds for
uπ(s+1) in Sections 4.2 and 4.3.

4.1. Relation to anisotropic total degree index sets
We first recall the notion of anisotropic total degree (TD) index sets and provide lower and
upper size bounds. We then identify a specific such set to which we can relate π([s]).

Definition 4.2 (Anisotropic TD index set). For d ∈ N and a = (a1, . . . ,ad) ∈ Rd, a > 0, we
define the anisotropic TD index set in d dimensions with weight a by

ΛTD
d,a :=

{
ν ∈ Nd

0 :
d∑

i=1
aiνi ≤ 1

}
.

Lemma 4.3 (Lower and upper size bounds for anisotropic TD index sets). Let d ∈ N and
a = (a1, . . . ,ad) ∈ Rd with 0< a1 ≤ ·· · ≤ ad. We have

d∏
i=1

1
aii

≤ |ΛTD
d,a| ≤

d∏
i=1

(
1
aii

+1
)
. (4.2)

Proof The upper bound is Lemma 5.3 in Haji-Ali et al. (2018). The lower bound is proved
in Beged-dov (1972). See Griebel and Oettershagen (2016) for further discussion. □
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For any ε > 0, we now define the set

S(ε) :=
{

γ ∈ Γ : u−2
γ ≤ 1+ 1

ε2

}
=
{

γ ∈ Γ :
∞∑

i=1

γi

λb,i
≤ 1
ε2

}
(4.3)

as well as the quantity

d(ε) := min
{
l ∈ N : λb,l+1 < ε2} ∈ N∪{∞} (4.4)

with the convention min(∅) = ∞. By definition, we have S(ε) = π([|S(ε)|]). If d(ε) is finite, then
S(ε) is isomorphic to an anisotropic TD index set,

S(ε) ∼= ΛTD
d(ε),a, (4.5)

with weights ai := ε2/λb,i, i ∈ [d(ε)], under the isomorphism

{γ ∈ Γ : supp(γ) ⊂ [d(ε)]} → Nd(ε)
0 , γ 7→ (γ1, . . . ,γd(ε)).

Observe that by Assumption 3.6 we have 0< a1 ≤ a2 ≤ ·· · ≤ ad(ε).

Remark 4.4 (Effective dimension). The number d(ε), defined in (4.4), can be interpreted
as the effective dimension of the approximation problem in the following sense: For i > d(ε),
we have λb,i < ε2, that is, the variance of µ in the ith coordinate direction (w.r.t. the PCA
basis {ϕi}i∈N) essentially vanishes for very small values of ε. Consequently, N (0,λb,i) ≈ δ0 for
i > d(ε), where N (0,λb,i) denotes the one-dimensional Gaussian measure on R with mean 0
and variance λb,i and δ0 is the Dirac delta measure centered at 0. Measuring an operator F on
X with respect to µ thus essentially reduces to measuring F in its first d(ε) coordinates with
respect to the Gaussian product measure

⊗d(ε)
i=1 N (0,λb,i).

Remark 4.5 (Finiteness of d(ε)). Note that requiring d(ε) to be finite for every ε > 0
together with Assumption 3.6 implies limi→∞λb,i = 0. On the other hand, the limit condition
limi→∞λb,i = 0 implies Assumption 3.6 after a suitable reordering of the λb,i as well as
finiteness of d(ε) for every ε > 0. In this context, we also recall Remark 3.8.

4.2. Lower bound
We now prove the second main result of this section which is a lower bound for uπ(s+1). It
states that, regardless of the (unweighted) PCA eigenvalues λ and choice of b, one cannot
achieve an algebraic decay of uπ(s+1) as s→ ∞. In light of Remark 4.5, we emphasize that we
do not assume that limi→∞λb,i = 0, but only that the λb,i are nonincreasing (Assumption 3.6).
In particular, the effective dimension d(ε) in (4.4) may be infinite for a given ε.

Theorem 4.6 (Impossibility of algebraic decay of uπ(s+1)). For any p∈ N, there exists s̄∈ N,
depending on λb,1, . . . ,λb,p, and p, such that

uπ(s+1) ≥ Cs− 1
2p , ∀s≥ s̄,

with constant C = C(λb,1, . . . ,λb,p,p) := 1
2

(∏p
i=1

λb,i

i

) 1
2p
.
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Proof Fix ε > 0, whose exact value will be chosen later, and define for n ∈ N the set

S(ε,n) :=
{

γ ∈ NN
0 :

∞∑
i=1

γi

λb,i
≤ 1
ε2 , supp(γ) ⊂ [n]

}
.

We make a couple of simple but important observations. First note that S(ε) =S(ε,d(ε)), where
S(ε) and d(ε) are defined in (4.3) and (4.4), respectively. Second, we have S(ε,n′) ⊂ S(ε,n) for
every 1 ≤ n′ ≤ n. Third, S(ε,n) is isomorphic to the anisotropic TD index set ΛTD

a,n with weight
a = (a1, . . . ,an), ai := ε2/λb,i, under the isomorphism

{γ ∈ NN
0 : supp(γ) ⊂ [n]} → Nn

0 , γ 7→ (γ1, . . . ,γn).

We combine the preceding observations with the lower size bound (4.2) to conclude

|S(ε)| = |S(ε,d(ε))| ≥
∣∣S(ε,d′)

∣∣≥
d′∏

i=1

λb,i

ε2i
, ∀1 ≤ d′ ≤ d(ε). (4.6)

Analogous to the definition of d(ε) in (4.4), we set

d̃(ε) := min
{
l ∈ N :

λb,l+1
l+1 < ε2

}
∈ N.

Note that d̃(ε) is well-defined because λb,i is bounded from above by λb,1 for every i ∈ N.
Moreover, we have d̃(ε) ≤ d(ε) as well as d̃(ε) → ∞ as ε→ 0.

Next, let p∈N be arbitrary. We fix some 0< ε̄= ε̄(λb,p,p) ≤ min{
√
λb,p/p,1}. By definition

of d̃(ε), we have d̃(ε) ≥ p for every 0< ε≤ ε̄. Since λb,i/(ε2i) ≥ 1 for every 1 ≤ i≤ d̃(ε), it follows
from (4.6) that

|S(ε)| ≥
d̃(ε)∏
i=1

λb,i

ε2i
≥

p∏
i=1

λb,i

ε2i
= C̃ε−2p, ∀0< ε≤ ε̄,

with constant C̃ = C̃(λb,1, . . . ,λb,p,p) :=
∏p

i=1
λb,i

i . We choose s̄ = s̄(λb,1, . . . ,λb,p,p) ∈ N
sufficiently large such that s+ 1 ≥ ⌈C̃ε̄−2p⌉ for every s ≥ s̄. We then fix some arbitrary s ≥ s̄

and pick 0< ε̃≤ ε̄ such that C̃ε̃−2p = s+1. Solving for ε̃2 yields

ε̃2 = ε̃2(λb,1, . . . ,λb,p,p,s) = C̃1/p(s+1)−1/p.

By our choice of ε̃, we have |S(ε̃)| ≥ s+1. Since S(ε̃) = π([|S(ε̃)|]), we conclude π(s+1) ∈ S(ε̃)
and therefore

u2
π(s+1) ≥

(
1
ε̃2 +1

)−1
≥ 1

2 ε̃
2 = 1

2 C̃
1/p(s+1)−1/p ≥ 1

4 C̃
1/ps−1/p, ∀s≥ s̄,

where the second inequality holds because ε̃≤ ε̄≤ 1. This completes the proof. □
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4.3. Upper bounds
We have now seen that uπ(s+1) cannot decay algebraically as s→ ∞, regardless of the decay
of the b-weighted PCA eigenvalues λb,i. We now study the decay of uπ(s+1) for three different
decays of these eigenvalues: Algebraic and exponential decays, which are typically considered
in the context of (functional) PCA (see, e.g., Reiß and Wahl (2020); Milbradt and Wahl
(2020) and references therein), as well as double exponential decays. In all three cases we have
limi→∞λb,i = 0 so that the effective dimension d(ε) is finite for every ε > 0, see Remark 4.5.
In principle, the proof of the following result can be adapted to any other spectral decay rate,
as long as this vanishing limit condition is satisfied so that a suitable choice of ε is possible.

Theorem 4.7 (Typical decays of uπ(s+1)). Let α,β > 0.

(a) Algebraic spectral decay: Let λb,i = i−α for every i∈N. Then, for every δ,η > 0, there exists
s̄= s̄(α,δ,η) ∈ N such that for every s≥ s̄,

uπ(s+1) ≤ η log(s)− 1
2(1/α+δ) . (4.7)

(b) Exponential spectral decay: Let λb,i = e−αiβ for every i ∈ N. Then, for every δ > 0, there
exists s̄= s̄(α,β,δ) ∈ N such that for every s≥ s̄,

uπ(s+1) ≤ e
− 1

2 α
1

β+1
(

β+1
β+δ

) 1
1+1/β log(s)

1
1+1/β

. (4.8)

(c) Double exponential spectral decay: Let λb,i = e−eαi for every i∈N. Then, for every δ,η > 0,
there exists s̄= s̄(α,δ,η) ∈ N such that for every s≥ s̄,

uπ(s+1) ≤ e−η log(s)
1

1+δ
. (4.9)

Proof All rates can be derived by suitably choosing the parameter ε in the set S(ε), defined
in (4.3). By the relation (4.5), we may use the the upper size bound (4.2) to compute

|S(ε)| ≤
d(ε)∏
i=1

(
λb,i

iε2 +1
)

≤
d(ε)∏
i=1

λb,i

ε2

(
1
i

+1
)

≤ (2ε−2)d(ε)
d(ε)∏
i=1

λb,i. (4.10)

In the second step we used the fact that λb,i ≥ ε2 for i ∈ [d(ε)] by definition of d(ε) (see (4.4)).
For brevity, we write in the following d= d(ε).

Case (a). Using (4.10) as well as the Stirling type estimate dd ≤ edd!, we obtain

|S(ε)| ≤ (2ε−2)d
d∏

i=1
i−α = (2ε−2)d(d!)−α ≤ (2ε−2)deαdd−αd. (4.11)
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Let 0 < ε ≤ 2−α/2. By definition, we have d ≤ ε−2/α < d+ 1 ≤ 2d. We take the logarithm on
both sides in (4.11) and compute

log(|S(ε)|) ≤ d log(2ε−2)+αd−αd log(d)

≤ ε−2/α log(2ε−2)+αε−2/α − 1
2αε

−2/α log
(

1
2ε

−2/α

)
= 1

2ε
−2/α log(2ε−2)+

(
α+ 1

2 log(2α+1)
)
ε−2/α.

Next, let δ,η > 0 be arbitrary. There exists 0< ε̄= ε̄(α,δ,η) ≤ 2−α/2 such that for every 0<ε≤ ε̄,
we have log(2ε−2) ≤ η2(1/α+δ)ε−2δ as well as α+ 1

2 log(2α+1) ≤ η2(1/α+δ)

2 ε−2δ. It follows that

log(|S(ε)|) ≤ η2(1/α+δ)ε−2/α−2δ, ∀ε≤ ε̄. (4.12)

We set the right hand-side equal to log(s) and solve for ε2, which gives

ε2 = ε(s)2 = η2 log(s)− 1
1/α+δ . (4.13)

We can now choose s̄= s̄(α,δ,η) ∈ N sufficiently large such that the right-hand side in (4.13) is
smaller than ε̄ for every s≥ s̄. Then, (4.12) holds with ε= ε(s) and we conclude |S(ε(s))| ≤ s
for every s≥ s̄. Since S(ε) = π([|S(ε)|]), it follows that uπ(s+1) ̸∈ S(ε) and consequently,

u2
π(s+1) ≤ (ε(s)−2 +1)−1 ≤ ε(s)2 ≤ η2 log(s)− 1

1/α+δ , ∀s≥ s̄.

Case (b). By (4.10), we find

|S(ε)| ≤ (2ε−2)d
d∏

i=1
e−αiβ

= (2ε−2)de−α
∑d

i=1 iβ

. (4.14)

Let 0< ε≤ 1. By definition, we have d≤ α−1/β log(ε−2)1/β < d+1. We take the logarithm on
both sides of (4.14) and compute

log(|S(ε)|) ≤ d log(2ε−2)−α
d∑

i=1
iβ ≤ d log(2ε−2)−α

∫ d

0
tβdt

≤ α−1/β log(ε−2)1+1/β +α−1/β log(2) log(ε−2)1/β

− α

β+1(α−1/β log(ε−2)1/β −1)β+1.

Next, let δ̃ > 0 and 0< η < 1 be arbitrary. There exists ε̄= ε̄(α,β, δ̃,η)> 0 such that log(2) ≤
δ̃ log(ε−2) and α−1/β log(ε−2)1/β −1 ≥ η

1
β+1α−1/β log(ε−2)1/β for every 0< ε≤ ε̄. Hence

log(|S(ε)|) ≤ α−1/β

(
1+ δ̃− η

β+1

)
log(ε−2)1+1/β , ∀ε≤ ε̄.

We now set δ = 1+ δ̃(β+1)−η and conclude similarly as in case (a).
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Case (c). By (4.10), we find that

|S(ε)| ≤ (2ε−2)d
d∏

i=1
e−eαi

= (2ε−2)de−
∑d

i=1 eαi

. (4.15)

Let 0 < ε ≤
√

1/e. Then, by definition, we have d ≤ log(log(ε−2))/α < d+ 1. We take the
logarithm on both sides in (4.15) and compute

log(|S(ε)|) ≤ d log(2ε−2)−
d∑

i=1
eαi ≤ 1

α
log(log(ε−2)) log(2ε−2)− log(ε−2)−1

eα −1 +1. (4.16)

Next, let δ,η > 0 be arbitrary. There exists 0< ε̄= ε̄(α,δ,η) ≤
√

1/e such that for every 0<ε≤ ε̄,
the rightmost hand-side in (4.16) is dominated by (2η)−(1+δ) log(ε−2)1+δ. We can now conclude
similarly as in case (a). □

Similar computations (which we omit for brevity) based on the lower size bound (4.2) show
that the bounds in Theorem 4.7 are asymptotically sharp in the limit s→ ∞—at least in the
exponential and double exponential case. Indeed, in case (b), for every 0< δ < β, there exists
s̄= s̄(α,β,δ) ∈ N such that

uπ(s+1) ≳ e
− 1

2 α
1

β+1
(

β+1
β−δ

) 1
1+1/β log(s+1)

1
1+1/β

, ∀s≥ s̄. (4.17)

In case (c), for every η > 0, there exists s̄= s̄(α,η) ∈ N such that

uπ(s+1) ≳ (s+1)−η, ∀s≥ s̄.

In case (a) with algebraic spectral decay, the lower size bound (4.2) is too weak and leads to
inconclusive results which do not asymptotically match the upper bound (4.7).

4.4. Discussion
Theorem 4.6 shows that uπ(s+1) decays subalgebraically as s→ ∞. In particular, as p ∈ N can
be chosen arbitrarily large, we conclude that the decay is slower than any algebraic decay rate
for all sufficiently large s. In combination with Theorem 4.1, we deduce the following curse
of parametric complexity: No s-term Wiener-Hermite PC expansion can converge with an
algebraic rate uniformly for all operators in the Sobolev unit (Lipschitz) ball as s → ∞. This
holds regardless of the decay rate of the PCA eigenvalues.

We have now seen that the approximation of Lipschitz operators by Wiener-Hermite PC
expansions cannot be done efficiently with algebraic convergence rates. On the other hand,
Theorem 4.7 shows the connection between the decay of the eigenvalues λb,i in i and the decay
of uπ(s+1) in s. It illustrates the obvious qualitative fact that a faster eigenvalue decay implies
a faster decay of the polynomial s-term error. But it also provides quantitative decay rates
and shows that the curse of parametric complexity can be overcome at least asymptotically
in the sense that decay rates arbitrarily close to any algebraic rate can be attained, provided
the λb,i decay sufficiently fast. Since the lower bound (4.17) asymptotically matches the upper
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bound (4.8), we see, however, that to this end, the eigenvalue decay has to be faster than
exponential. Equation (4.9) shows that a double exponential decay is sufficient.

In the context of the above stated parametric curse of complexity, the parameters, that is,
the polynomial coefficients in the truncated Wiener-Hermite PC expansion, are elements of Y.
In Lanthaler (2023), a related curse of parametric complexity for learning bounded Lipschitz
operators with PCA-Net was proved, which for distinction we call curse of parametric PCA-Net
complexity. It relates the learnability of Lipschitz operators by PCA-Nets to the size, i.e., the
number of neural network parameters, of the latter. For succinctness, we refer to Lanthaler
(2023) for more details and definitions. The following result follows from Theorem 9 therein.

Theorem 4.8 (Curse of parametric PCA-Net complexity). For any α > 0, there exists a
bounded Lipschitz operator F ∈ C0,1(X ,Y) and a constant cα > 0 such that

∥F −Ψ∥2
L2

µ(X ;Y) ≥ cα (size(ψ))−α

for every PCA-Net Ψ = DY ◦ψ ◦ EX . Here, ψ : RdX → RdY is a (ReLU) neural network and
EX : X → RdX and DY : RdY → Y are encoder and decoder mappings, respectively, which are
defined in terms of the empirical PCA eigenvalues based on finitely many fixed sample points.

Remark 4.9. Inspection of the proof of Lanthaler (2023, Thm. 9) shows that the empirical
PCA eigenvalues used in the definition of EX ,DY can be replaced by the exact PCA eigenvalues,
which puts Theorem 4.8 in the setting of the present paper.

We now argue that the curse of parametric complexity described by Theorems 4.1 and 4.6
is consistent with the curse of parametric PCA-Net complexity described by Theorem 4.8. To
this end, suppose that Hermite polynomial s-term approximations of Lipschitz operators in the
Sobolev unit Lipschitz ball were possible with some algebraic rate of order β > 0.

Assumption 4.10 (Algebraic s-term convergence for Lipschitz operators). There exists β > 0
such that for every F ∈BLip

µ,b (X ;Y), there are constants c(F )> 0 and s̄(F ) ∈ N such that∥∥F −Fπ([s])
∥∥

L2
µ(X ;Y) ≤ c(F )s−β , ∀s≥ s̄(F ). (4.18)

Proposition 4.11. Grant Assumption 4.10. Then there exists α> 0 with the following property:
For all F ∈ C0,1(X ,Y), there exist constants C = C(F )> 0 and ϵ̄= ϵ̄(F )> 0 such that for all
0< ϵ≤ ϵ̄, there is a PCA-Net Ψ = D̃Y ◦ψ ◦ ẼX such that

∥F −Ψ∥L2
µ(X ;Y) ≤ ϵ and size(ψ) ≤ Cϵ−1/α.

With the notion introduced in Lanthaler (2023), Proposition 4.11 asserts that α is an
algebraic convergence rate for the class of C0,1(X ,Y)-operators. It is easy to see that this leads
to a contradiction to Theorem 4.8, hence implying Assumption 4.10 to be false. The proof of
Proposition 4.11 is based on Schwab and Zech (2023, Thm. 3.9), which provides expression rate
bounds for the approximation of multivariate Hermite polynomials by ReLU neural networks.
As a preliminary step, we make the following straightforward observation: Let S be a downward
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closed subset of NN
0 , that is, γ ∈ S implies γ′ ∈ S for every γ′ ≤ γ. Then

max
γ∈S

∥γ∥ℓ1(N) ≤ |S|−1 and max
γ∈S

|supp(γ)| ≤ |S|−1. (4.19)

Proof of Proposition 4.11 Suppose that Assumption 4.10 is true. Let F ∈C0,1(X ,Y) with F ̸= 0
(otherwise there is nothing to show). We define the rescaled operator F̃ := r−1∥F∥−1

C0,1(X ,Y)F ,
where r :=

√
dim(Y) if Y is finite-dimensional and r := max{1,∥b∥ℓ2(N)} if Y is infinite-

dimensional. This implies F̃ ∈BLip
µ,b (X ;Y) by Theorem 3.10. Next, let s̄= s̄(F ) be the constant

in Assumption 4.10 and set ϵ̄ := min{s̄−β/2,e−β/(β+1)} so that ϵ̄(β+1)/β = min{s̄−(β+1)/2,e−1}.
Let 0< ϵ≤ ϵ̄ be arbitrary and choose s≥ s̄ with s−β/2 ∼ ϵ.

We proceed with several observations: First, recall from (2.2) that the truncated Wiener-
Hermite PC expansion F̃π([s]) is defined via the Hermite polynomials Hπ(1),d1 , . . . ,Hπ(s),ds

with di := max{j : j ∈ supp(π(i))}. By Remark 2.2, we can interpret each Hπ(i),di
as a function

Hπ(i),∞ on RN. Second, observe that the set π([s]) is a downward closed subset of NN
0 of size

s. Hence, by (4.19), we have

max
γ∈π([s])

∥γ∥ℓ1(N) ≤ s−1 and max
γ∈π([s])

|supp(γ)| ≤ s−1, ∀s ∈ N.

With these facts in hand, we can now directly apply Schwab and Zech (2023, Thm. 3.9)
to conclude that there exists a ReLU neural network ψ = (ψ1, . . . ,ψs) : Rd → Rs with d :=
max{d1, . . . ,ds} and with each ψi depending solely on the variables (xi)i∈[d] such that

max
i∈[s]

∥∥Hπ(i),∞ −ψi

∥∥
L2

µ∞ (RN) ≤ ϵ(β+1)/β . (4.20)

Here, we interpret the ψi as functionals on RN by ignoring all variables xi with i > d. Moreover,

size(ψ) ≲ s6 log(s) log(ϵ−(β+1)/β) ≤
(

1+ 1
β

)
ϵ−14/β−1. (4.21)

We now define the encoder and decoder mappings

ẼX : X → Rd, ẼX (X) :=
(

⟨X,ϕ1⟩X√
λ1

, . . . ,
⟨X,ϕd⟩X√

λd

)
,

D̃Y : Rs → Y, D̃Y(x) :=
s∑

i=1

(∫
X
F̃Hπ(i),λdµ

)
xi.

The corresponding (rescaled) PCA-Net Ψ := r∥F∥C0,1(X ,Y)

(
D̃Y ◦ψ ◦ ẼX

)
satisfies

∥F −Ψ∥L2
µ(X ;Y) ≤ r∥F∥C0,1(X ,Y)

(∥∥∥F̃ − F̃π([s])

∥∥∥
L2

µ(X ;Y)︸ ︷︷ ︸
=:T1(F )

+
∥∥∥F̃π([s]) −D̃Y ◦ψ ◦ ẼX

∥∥∥
L2

µ(X ;Y)︸ ︷︷ ︸
=:T2(F )

)
.

By Assumption 4.10, we can bound T1(F ) by T1(F ) ≤ c(F )s−β ∼ c(F )ϵ2 ≤ c(F )ϵ, where c(F )
is the constant in (4.18). For T2(F ), we find by an application of (4.20), the Cauchy-Schwarz
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inequality, and Parseval’s identity that

T2(F ) ≤
s∑

i=1

∥∥∥∥∫
X
F̃Hπ(i),λdµ

∥∥∥∥
Y

∥∥Hπ(i),∞ −ψi

∥∥
L2

µ∞ (RN)

≤ ϵ(β+1)/βs1/2

(
s∑

i=1

∥∥∥∥∫
X
F̃Hπ(i),λdµ

∥∥∥∥2

Y

)1/2

≲ ϵ∥F̃∥L2
µ(X ;Y) ≤ ϵ.

Altogether, we conclude that ∥F −Ψ∥L2
µ(X ;Y) ≤ C′r∥F∥C0,1(X ,Y)(C(F ) + 1)ϵ for some global

constant C′ > 0. Upon rescaling ϵ and ϵ̄ by the factor C′r∥F∥C0,1(X ,Y)(c(F ) + 1), the claim
follows in light of (4.21) with α= β/(14+β). □

5. Optimal sampling and (adaptive) m-widths

Up to this point, we have studied the best approximation of W 1,2
µ,b- and Lipschitz operators by

Hermite polynomials. This is a certain type of what in the field of information-based complexity
is referred to as linear information (Novak and Woźniakowski, 2008, Chpt. 4.1.1). In this
section, we consider more general sampling and reconstruction schemes based on adaptive
information, that is, (nonlinear) reconstruction from m adaptively chosen samples. We define
adaptive sampling operators and the adaptive m-width and characterize the latter in terms of
the weights uγ . We follow in parts ideas from Adcock et al. (2024c), which studied holomorphic
operators. It is known that adaptive methods can be better than nonadaptive methods only
by a factor of at most 2 and there are examples where adaptive methods perform slightly
better than nonadaptive ones. We refer to Theorem 2 in Novak (1996) as well as to Krieg et al.
(2024) and references therein. For this reason, we consider adaptive sampling operators instead
of nonadaptive ones. However, we will prove that for W 1,2

µ,b- and Lipschitz operators, linear
approximation based on nonadaptive information is, in fact, optimal, see Theorem 5.4.

5.1. Adaptive sampling operators
We first introduce in scalar- and Hilbert-valued adaptive sampling operators.

Definition 5.1 (Adaptive sampling operator; scalar-valued case). Let (V,∥·∥V) be a normed
vector space and m∈ N. A (scalar-valued) adaptive sampling operator is a mapping of the form

L : V → Rm, L(F ) =


L1(F )

L2(F ;L1(F ))
...

Lm(F ;L1(F ), . . . ,Lm−1(F ))

 ,
where L1 : V → R is a bounded linear functional and Li : V ×Ri−1 → R is bounded and linear
in its first component for i= 2, . . . ,m.

Trivially, any bounded linear mapping L : V →Rm is an adaptive sampling operator (which,
in fact, generates nonadaptive information). Different choices for V lead to important special
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cases. If V = L2
µ(X ) and γ(1), . . . ,γ(m) ∈ Γ, we can define a sampling operator, generating

(nonadaptive) linear information, by

L(F ) :=
(∫

X
FHγ(i),λdµ

)
i∈[m]

∈ Rm, ∀F ∈ L2
µ(X ). (5.1)

If V = C(X ) and X1, . . . ,Xm ∈ V, we can define a pointwise sampling operator, generating
(nonadaptive) standard information (Novak and Woźniakowski, 2008, Chpt. 4.1.1), by

L(F ) := (F (Xi))i∈[m] ∈ Rm, ∀F ∈ C(X ). (5.2)

In both cases, the γ(i) and the Xi can, in principle, also be chosen adaptively based on previous
measurements

∫
X FHγ(j)dµ and F (Xj), respectively, for j ∈ [i−1].

Next, we consider the Hilbert-valued case. For any Y ∈ Y, v = (vi)i∈[m] ∈ Rm, and F ∈
L2

µ(X ), we write Y v for the vector (Y vi)i∈[m] ∈ Ym and Y F for the mapping X 7→ Y F (X).

Definition 5.2 (Adaptive sampling operator; Hilbert-valued case). Let V ⊂ L2
µ(X ;Y) be a

vector subspace with norm ∥·∥V and consider a mapping

L : V → Ym, L(F ) =


L1(F )

L2(F ;L1(F ))
...

Lm(F ;L1(F ), . . . ,Lm−1(F ))

 ,
where L1 : V → Y is a bounded linear operator and Li : V × Yi−1 → Y is bounded and linear
in its first component for i = 2, . . . ,m. Then L is a Hilbert-valued adaptive sampling operator
if the following condition holds: There exist Y, Ỹ ∈ Y \{0}, a normed vector space Ṽ ⊂ L2

µ(X ),
and a scalar-valued adaptive sampling operator L̃ : Ṽ → Rm such that, if Y F ∈ V for some
F ∈ L2

µ(X ), then F ∈ Ṽ and L(Y F ) = Ỹ L̃(F ).

This definition involves a technical assumption which links the Hilbert-valued case to the
scalar-valued case and which we will use to establish a lower bound for the adaptive m-width.
However, this condition is not too strong. It holds, for example, in the case of adaptive pointwise
sampling. Here, we choose V =C(X ,Y) (seen as a subspace of L2

µ(X ;Y) and equipped with the
L∞-norm) and define

L(F ) := (F (Xi))i∈[m] ∈ Ym, ∀F ∈ V,

where the ith sample point Xi is potentially chosen based on the previous measurements
F (X1), . . . ,F (Xi−1). We then have

L(Y F ) = Y L̃(F ), ∀F ∈ Ṽ := C(X ),∀Y ∈ Y,

where L̃ : Ṽ → Rm is the adaptive pointwise sampling operator in (5.2). As another example,
we will see in the proof of the upper bound of the adaptive m-width that the Hilbert-valued
version of linear sampling, as defined in (5.1), is a Hilbert-valued sampling operator in the sense
of Definition 5.2 (under a mild condition on V), see Section 5.3.3.



24 ADCOCK ET AL.

5.2. Adaptive m-widths and main result
We now formally define the adaptive m-width and state our main result.

Definition 5.3 (Adaptive m-width). Let (V,∥·∥V) be a normed vector subspace of L2
µ(X ;Y)

and let K ⊂ V be a subset. The adaptive m-width of K in V is given by

Θm(K;V,L2
µ(X ;Y))

:= inf
{

sup
F ∈K

∥F −T (L(F ))∥L2
µ(X ;Y) : L : V → Ym adaptive,T : Ym → L2

µ(X ;Y)
}
.

(5.3)

The adaptive m-width describes the smallest worst-case error that can be achieved when
we reconstruct all operators in a set K by a reconstruction mapping T from m samples that
have been generated by an adaptive Hilbert-valued sampling operator L. It thus quantifies
the largest error that can occur with optimally chosen sampling and reconstruction mappings.
Note that in (5.3) we allow for any (possibly nonlinear) reconstruction mappings. The choice
of V, however, determines which sampling operators are allowed. If V = C(X ,Y), we can use
pointwise sampling, whereas, if V = L2

µ(X ;Y), we can not.
We consider two choices for K, namely K = Bµ,b(X ;Y) and K = BLip

µ,b (X ;Y), see
Definition 3.13. The lower bound for the adaptive m-width pertains to arbitrary V. For
the upper bound, we require the additional assumption that V is continuously embedded in
L2

µ(X ;Y). Our main result in this section is the tight characterization of the adaptive m-width
of the Sobolev unit (Lipschitz) ball in terms of the weights uγ .

Theorem 5.4 (Tight characterization of adapt. m-width). Let K ∈ {Bµ,b(X ;Y),BLip
µ,b (X ;Y)}.

For every m ∈ N, we have the lower bound

Θm(K;V,L2
µ(X ;Y)) ≥ uπ(m+1),

where π : N → Γ is a nonincreasing rearrangement of u = (uγ)γ∈Γ, see (3.3). If, in addition, V
is continuously embedded in L2

µ(X ;Y), we have for every m ∈ N the matching upper bound

Θm(K;V,L2
µ(X ;Y)) ≤ inf

S⊂Γ,|S|≤m
sup
F ∈K

∥F −FS∥L2
µ(X ;Y)

≤ sup
F ∈K

∥∥F −F{π(1),...,π(m)}
∥∥

L2
µ(X ;Y) ≤ uπ(m+1).

5.3. Proof of Theorem 5.4
The proof of the lower bound is based on the theory of Gelfand and Kolmogorov m-widths.
We recall relevant results in Section 5.3.1. Further information can be found in Foucart and
Rauhut (2013, Chpt. 10). Proofs of the lower and upper bound are then given in Sections 5.3.2
and 5.3.3, respectively.
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5.3.1. Results about widths
Let K be a subset of a normed vector space (Z,∥·∥Z) and let m ∈ N. The Gelfand m-width of
K is defined by

dm(K,Z) := inf
{

sup
Z∈K∩Lm

∥Z∥Z : Lm subspace of X with codim(Lm) ≤m

}
.

An equivalent characterization is given by

dm(K,Z) = inf
{

sup
Z∈K∩ker(A)

∥Z∥Z :A : Z → Rm linear
}
.

We also recall the adaptive compressive m-width of K,

Em
ada(K,Z) := inf

{
sup
Z∈K

∥Z−∆(Γ(Z))∥Z : Γ : Z → Rm adaptive, ∆ : Rm → Z
}
,

and the Kolmogorov m-width of K,

dm(K,Z) := inf
{

sup
K∈K

inf
Z∈Zm

∥Z−K∥Z : Zm subspace of Z with dim(Zm) ≤m

}
.

Next, we state some standard results which relate these various notions of m-width.

Theorem 5.5 (Foucart and Rauhut (2013, Thm. 10.4)). If K is symmetric with respect to the
origin, i.e., −K = K, then dm(K,Z) ≤ Em

ada(K,Z).

Pietsch (Pietsch, 1974, Thm. 7.2) and Stesin (Stesin, 1975, Thm. 3) found explicit
characterizations of the Kolmogorov m-width in finite sequence spaces. For this, let us recall
from Section 2.2 the notation Bp

w(I) to denote the unit ball in ℓpw(I).

Theorem 5.6 (Characterization of Kolmogorov width). Let N ∈N with N >m, 1 ≤ q < p≤ ∞,
and w ∈ RN be a vector of positive weights. Then,

dm(Bp
w([N ]), ℓq([N ])) =

 max
i1,...,iN−m∈[N ]

ik ̸=ij

N−m∑
j=1

w
pq

p−q

ij

 1
p − 1

q


−1

.

Pietsch showed that the Kolmogorov width and the Gelfand width are dual to each
other (Pietsch, 1974, Thm. 6.2). For a direct proof of this fact in our setting we also refer
to Adcock et al. (2024c, Thm. B.3). Recall that for a (possibly finite) sequence w = (wi)i∈I of
nonvanishing real numbers, we write 1/w := (1/wi)i∈I for the sequence of reciprocals.

Theorem 5.7 (Duality of Kolmogorov width and Gelfand width). For 1 ≤ p,q ≤ ∞, let w ∈
RN be a vector of positive weights and let 1 ≤ p∗, q∗ ≤ ∞ be such that 1/p+ 1/p∗ = 1 and
1/q+1/q∗ = 1. Then dm(Bp([N ]), ℓqw([N ])) = dm(Bq∗

1/w([N ]), ℓp∗([N ])).
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Finally, we need one more technical lemma which states that suitably changing weights in
sequence spaces does not change the Kolmogorov width.

Lemma 5.8 (Adcock et al. (2024c, Lem. B.4)). Let w ∈ RN be a vector of positive weights
and 1 ≤ p,q ≤ ∞. Then dm(Bp([N ]), ℓqw([N ])) = dm(Bp

1/w
([N ]), ℓq([N ])).

5.3.2. Lower bound
Since BLip

µ,b (X ;Y) is a subset of Bµ,b(X ;Y), it suffices to prove the lower bound for the adaptive
m-width in the case K =BLip

µ,b (X ;Y), that is,

Θm(BLip
µ,b (X ;Y);V,L2

µ(X ;Y)) ≥ uπ(m+1), ∀m ∈ N. (5.4)

This implies the same lower bound in the case K =Bµ,b(X ;Y). The proof consists of two main
steps. We first reduce the problem to a discrete one which involves the adaptive compressive
m-width of the unit ball in a space of suitably weighted finite sequences, see Lemma 5.9. In the
discrete setting, we can then use Theorems 5.5 and 5.7, and Lemma 5.8 to relate the adaptive
compressive m-width to the Kolmogorov m-width. We then apply Theorem 5.6 in combination
with a limiting argument to conclude the claim.

For the next result, let us recall the notation (cu)I with u = (uγ)γ∈Γ, c ∈ R, and I ⊂ Γ to
denote the scaled subsequence (cuγ)γ∈I .

Lemma 5.9 (Reduction to discrete problem). Let I ⊂ Γ be a finite index set. Then, for every
constant c ∈ (0,1), we have

Θm(BLip
µ,b (X ;Y);V,L2

µ(X ;Y)) ≥ dm(B2
(cu)I

(I), ℓ2(I)).

The proof of this lemma is based on the construction of a suitable Lipschitz operator. To
this end, let R> 0 and n ∈ N, and consider the capped one-dimensional Hermite polynomials

H̃n,R(x) :=


Hn(x) if −R≤ x≤R,

Hn(R) if x > R,

Hn(−R) if x <−R.
(5.5)

For γ ∈ Γ and d ∈ N, we define

H̃γ,R,d : Rd → R, H̃γ,R,d(x) :=
d∏

i=1
H̃γi,R(xi), (5.6)

as well as

H̃γ,R,λ : X → R, H̃γ,R,λ(X) :=
∞∏

i=1
H̃γi,R

(
⟨X,ϕi⟩X√

λi

)
. (5.7)

Before proving Lemma 5.9, we need a couple of preliminary results.

Lemma 5.10 (Lipschitz continuity). For every R> 0 and every γ ∈ Γ, the functional H̃γ,R,λ :
X → R, defined in (5.7), is Lipschitz continuous.
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Proof Fix R> 0 and γ ∈ Γ with supp(γ) ⊂ [d] for some d ∈ N. We define the scaling functional

Sλ,d : X → Rd, Sλ,d(X) :=
(

⟨X,ϕi⟩X√
λi

)
i∈[d]

,

and note that H̃γ,R,λ = H̃γ,R,d ◦ Sλ,d, with H̃γ,R,d given by (5.6). As Sλ,d is Lipschitz
continuous, it suffices to show that H̃γ,R,d is Lipschitz continuous. This, in turn, follows by a
simple induction argument on d. □

By Lemma 5.10 and Theorem 3.10, we have H̃γ,R,λ ∈ W 1,2
µ,b(X ;Y) for every R > 0. The

next result establishes the connection between H̃γ,R,λ and Hγ,λ in the limit R → ∞. For
its proof, we introduce the following notation: For x ∈ Rd, d ∈ N, and 1 ≤ k ≤ d, we write
x[k] := (x1, . . . ,xk) ∈ Rk. We also recall the complementary error function erfc : R → R,x 7→

2√
π

∫∞
x e−t2

dt, which satisfies

lim
t→∞

tmerfc(t) = 0, ∀m ∈ N. (5.8)

Lemma 5.11 (Convergence in W 1,2
µ,b(X )). For every γ ∈ Γ, we have

lim
R→∞

H̃γ,R,λ =Hγ,λ in W 1,2
µ,b(X ).

Proof Let γ ∈ Γ with supp(γ) ⊂ [d] for some d ∈ N. We first consider convergence in L2
µ(X ). By

Fubini’s theorem and a change of variables, one has∥∥∥H̃γ,R,λ −Hγ,λ

∥∥∥2

L2
µ(X )

=
∫
Rd

∣∣∣H̃γ,R,d(x)−Hγ,d(x)
∣∣∣2 dµd(x).

It thus suffices to show that

lim
R→∞

H̃γ,R,d =Hγ,d in L2
µd

(Rd), ∀d ∈ N. (5.9)

For this, we use induction on d and start with d= 1. For n ∈ N0, we compute∫
R

∣∣∣H̃n,R(x)−Hn(x)
∣∣∣2 dµ1(x)

=
∫ −R

−∞
|Hn(−R)−Hn(x)|2 dµ1(x)+

∫ ∞

R
|Hn(R)−Hn(x)|2 dµ1(x)

≤
(
Hn(−R)2 +Hn(R)2)erfc

(
R√
2

)
+2
∫

[−R,R]c
Hn(x)2dµ1(x)

=: T1(R)+T2(R),

where we used the notation [−R,R]c := R \ [−R,R]. By (5.8), we have limR→∞T1(R) = 0.
Since Hn ∈ L2

µ1(R), the second term T2(R) converges to zero as R → ∞ by the dominated
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convergence theorem. Next let d > 1 and suppose that (5.9) holds for any 1 ≤ d′ < d. Without
loss of generality we may assume R≥ 1. Then, by Fubini’s theorem, we have∫

Rd

∣∣∣H̃γ,R,d(x)−Hγ,d(x)
∣∣∣2 dµd(x)

≤ 2
∫
R

∫
Rd−1

∣∣∣H̃γ,d−1,R(x[d−1])H̃γd,R(xd)− H̃γ,d−1,R(x[d−1])Hγd
(xd)

∣∣∣2 dµd−1(x[d−1])dµ1(xd)

+2
∫
R

∫
Rd−1

∣∣∣H̃γ,d−1,R(x[d−1])Hγd
(xd)−Hγ[d−1](x[d−1])Hγd

(xd)
∣∣∣2 dµd−1(x[d−1])dµ1(xd)

=: t1(R)+ t2(R).

The term t1(R) can be bounded from above as

t1(R) ≤ 2 sup
R≥1

∫
Rd−1

∣∣∣H̃γ,d−1,R(x[d−1])
∣∣∣2 dµd−1(x[d−1])

∫
R

∣∣∣H̃γd,R(xd)−Hγd
(xd)

∣∣∣2 dµ1(xd).

By induction hypothesis for d′ = d−1, the term H̃γ,d−1,R converges in L2
µd−1(Rd−1) as R→ ∞.

Hence, the supremum over R≥ 1 of the first integral is finite. Applying the induction hypotheses
for d′ = 1, we conclude that the second integral over R converges to 0 as R → ∞. A similar
argument shows that limR→∞ t2(R) = 0. This completes the proof of (5.9).

Next, we consider convergence of ∇Xb
H̃γ,R,λ in L2

µ(X ;Xb). For this, we recall the basis
{ηi}i∈N of Xb, defined in (2.1), and the d-dimensional Hermite polynomials Hγ,d, defined
in (2.2). Note that the capped Hermite polynomials H̃n,R, as defined in (5.5), lie in the Sobolev
space W 1,1

loc (Rn) of weakly differentiable functions which are up to their first derivatives locally
integrable. We write xi := ⟨X,ϕi⟩X for X ∈ X and i ∈ [d]. From Lemma C.11, it follows that
H̃n,R ∈W 1,2

µ,b(X ;Y) and for µ-a.e. X ∈ X the partial derivatives are given by

∂

∂ηi
H̃γ,R,λ(X) = biλ

−1/2
i ∂iH̃γ,R,d(λ−1/2

1 x1, . . . ,λ
−1/2
d xd)

=
{
biλ

−1/2
i ∂iHγ,d(λ−1/2

1 x1, . . . ,λ
−1/2
d xd) if xi ∈ [−R,R],

0 if xi ∈ [−R,R]c.

Moreover, ∂
∂ηi

H̃γ,R,λ = ∂
∂ηi

Hγ,λ = 0 for i > d. Consequently,

∥∥∥∇Xb
H̃γ,R,λ −∇Xb

Hγ,λ

∥∥∥2

L2
µ(X ;Xb)

=
∫

X

d∑
i=1

∣∣∣∣ ∂∂ηi
H̃γ,R,λ(X)− ∂

∂ηi
Hγ,λ(X)

∣∣∣∣2 dµ(X)

=
d∑

i=1

∫
Ri−1×[−R,R]c×Rd−i

∣∣∣biλ
−1/2
i ∂iHγ,d(x1, . . . ,xd)

∣∣∣2 dµd(x).

Since ∂iHγ,d ∈ L2
µd

(Rd), the right-hand side converges to zero as R → ∞ by the dominated
convergence theorem. The proof is now complete. □
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The next lemma shows that an approximate version of Parseval’s identity also holds for
systems of finitely many of the capped infinite-dimensional Hermite polynomials H̃γ,R,λ:

Lemma 5.12 (Riesz basis). Let I ⊂ Γ be finite. Then, for every ε > 0, there exists R̄ > 0 such
that for every R≥ R̄, we have

(1−ε)∥x∥2
ℓ2(I) ≤

∥∥∥∥∥∥
∑
γ∈I

xγH̃γ,R,λ

∥∥∥∥∥∥
2

L2
µ(X )

≤ (1+ε)∥x∥2
ℓ2(I), ∀x = (xγ)γ∈I ∈ RI . (5.10)

In particular, {H̃γ,R,λ}γ∈I is a Riesz basis of span{H̃γ,R,λ : γ ∈ I} for every R≥ R̄ with Riesz
constants at worst 1±ε.

Proof We first work in d= 1 dimension and compute for n,m ∈ N0,

〈
H̃n,R, H̃m,R

〉
L2

µ1 (R)
=
∫
R
H̃n,R(x)H̃m,R(x)dµ1(x)

=
∫ R

−R
Hn(x)Hm(x)dµ1(x)+

∫ −R

−∞
Hn(−R)Hm(−R)dµ1(x)+

∫ ∞

R
Hn(R)Hm(R)dµ1(x)

=
∫ R

−R
Hn(x)Hm(x)dµ1(x)+ 1

2Hn(−R)Hm(−R)erfc
(
R√
2

)
+ 1

2Hn(R)Hm(R)erfc
(
R√
2

)
=: T1(R)+T2(R)+T3(R).

Note that HnHm is a polynomial of order n+m. Hence, by (5.8), we deduce limR→∞T2(R) = 0
and limR→∞T3(R) = 0. Moreover, the dominated convergence theorem and orthonormality of
the Hermite polynomials imply that

lim
R→∞

T1(R) =
∫ ∞

−∞
Hn(x)Hm(x)dµ1(x) = δn,m.

Altogether,

lim
R→∞

〈
H̃n,R, H̃m,R

〉
L2

µ1 (R)
= δn,m. (5.11)

Now, let γ,γ′ ∈ Γ with supp(γ),supp(γ′) ⊂ [d] for some d ∈ N. Since

〈
H̃γ,R,λ, H̃γ′,R,λ

〉
L2

µ(X )
=
∫
Rd
H̃γ,R,d(x)H̃γ′,d,R(x)dµd(x)

=
d∏

i=1

∫
R
H̃γi,R(xi)H̃γ′

i
,R(xi)dµ1(xi),
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we conclude by (5.11) that

lim
R→∞

〈
H̃γ,R,λ, H̃γ′,R,λ

〉
L2

µ(X )
= δγ,γ′ .

Next, fix some arbitrary ε > 0. Then there exists R̄ > 0 such that for every R≥ R̄, we have∣∣∣∣〈H̃γ,R,λ, H̃γ′,R,λ

〉
L2

µ(X )
− δγ,γ′

∣∣∣∣≤ ε.

Since I ⊂ Γ is finite, we obtain for any x = (xγ)γ∈I ∈ RI ,∥∥∥∥∥∥
∑
γ∈I

xγH̃γ,R,λ

∥∥∥∥∥∥
2

L2
µ(X )

=
∑
γ∈I

∑
γ′∈Iγ′ ̸=γ

xγxγ′

〈
H̃γ,R,λ, H̃γ′,R,λ

〉
L2

µ(X )︸ ︷︷ ︸
≤ε

+
∑
γ∈Γ

x2
γ

〈
H̃γ,R,λ, H̃γ,R,λ

〉
L2

µ(X )︸ ︷︷ ︸
≤1+ε

≤ ε∥x∥2
ℓ1(I) +(1+ε)∥x∥2

ℓ2(I) ≤ (ε |I|+1+ε)∥x∥2
ℓ2(I).

Similarly, we have∥∥∥∥∥∥
∑
γ∈I

xγH̃γ,R,λ

∥∥∥∥∥∥
2

L2
µ(X )

≥ −ε∥x∥2
ℓ1(I) +(1−ε)∥x∥2

ℓ2(I) ≥ (−ε |I|+1−ε)∥x∥2
ℓ2(I).

As ε > 0 was arbitrary, the claim follows. □

We are now ready to reduce the adaptive m-width to a suitable Gelfand m-width:

Proof of Lemma 5.9 Let L : V → Ym be an adaptive sampling operator as in Definition 5.2.
Then there exist Y, Ỹ ∈ Y \ {0} and a normed vector space Ṽ ⊂ L2

µ(X ) such that, if Y F ∈ V
for some F ∈ L2

µ(X ), then F ∈ Ṽ and L(Y F ) = Ỹ L̃(F ), where L̃ : Ṽ → Rm is a scalar-valued
adaptive sampling operator as in Definition 5.1. Next, let I ⊂ Γ be a finite subset and let us
fix c ∈ (0,1) and ε > 0. By Lemma 5.11 and Lemma 5.12, there exists R > 0 sufficiently large
such that (5.10) holds and∥∥∥H̃γ,R,λ −Hγ,λ

∥∥∥
W

1,2
µ,b

(X )
≤ 1− c

c
|I|−1/2 , ∀γ ∈ I. (5.12)

We fix some arbitrary sequence x = (xγ)γ∈I ∈ RI with ∥x∥ℓ2
uI

(I) ≤ c and define FR,F ∈

W 1,2
µ,b(X ;Y) by

FR := Y

∥Y ∥Y

∑
γ∈I

xγH̃γ,R,λ and F := Y

∥Y ∥Y

∑
γ∈I

xγHγ,λ.
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Note that ∥F∥
W

1,2
µ,b

(X ;Y) = ∥x∥ℓ2
uI

(I) ≤ c by Theorem 3.5, and therefore, by the triangle
inequality and (5.12),

∥FR −F∥
W

1,2
µ,b

(X ;Y) ≤
∑
γ∈I

|xγ |
∥∥∥H̃γ,R,λ −Hγ,λ

∥∥∥
W

1,2
µ,b

(X )
≤ 1− c

c
|I|−1/2∑

γ∈I

|xγ | ≤ 1− c.

Thus, by the triangle inequality, we have ∥FR∥
W

1,2
µ,b

(X ;Y) ≤ 1. By Lemma 5.10 and since I is

finite, the operator FR is Lipschitz continuous and we conclude FR ∈BLip
µ,b (X ;Y).

By Lemma 5.12, the family of functionals {H̃γ,R,λ}γ∈I is a Riesz basis of F :=
span{H̃γ,R,λ : γ ∈ I}. Hence, there exists a unique biorthogonal dual basis {Ĥγ,R,λ}γ∈I such
that ⟨H̃γ,R,λ, Ĥγ′,R,λ⟩ = δγ,γ′ for every γ,γ′ ∈ I. The orthogonal projection onto F is given
by

PF : L2
µ(X ) → F , PFg :=

∑
γ∈I

〈
g,Ĥγ,R,λ

〉
L2

µ(X )
H̃γ,R,λ.

Let {ψj}j∈N be an orthonormal basis of Y. For G ∈L2
µ(X ;Y), we write gj := ⟨G,ψj⟩Y ∈L2

µ(X )
and find by (5.10) that

∥G∥2
L2

µ(X ;Y) =
∞∑

j=1
∥gj∥2

L2
µ(X ) ≥

∞∑
j=1

∥PFgj∥2
L2

µ(X ) ≥
∞∑

j=1
(1−ε)

∑
γ∈I

∣∣∣∣〈gj , Ĥγ,R,λ

〉
L2

µ(X )

∣∣∣∣2

= (1−ε)
∑
γ∈I

∥∥∥∥∫
X
GĤγ,R,λdµ

∥∥∥∥2

Y
.

(5.13)

We now define the scalar-valued adaptive sampling operator

ΞR : RI → Rm, ΞR(z) := L̃

 1
∥Y ∥Y

∑
γ∈I

zγH̃γ,R,λ

 .
We need to show that it is well-defined, that is, ∥Y ∥−1

Y
∑

γ∈I zγH̃γ,R,λ ∈ Ṽ for every z ∈
RI . Since BLip

µ,b (X ;Y) ⊂ V, it suffices to observe that Y ∥Y ∥−1
Y
∑

γ∈I zγH̃γ,R,λ is Lipschitz
continuous as an operator from X to Y and it therefore lies in V. Next, let T : Ym → L2

µ(X ;Y)
be an arbitrary reconstruction map. We define T̃ : Rm → L2

µ(X ;Y) by

T̃ : Rm → L2
µ(X ;Y), T̃ (z) := T (Ỹ z),

and observe that T (L(FR)) = T (Ỹ ΞR(x)) = T̃ (ΞR(x)). We now set G := FR − T (L(FR))
in (5.13). We use the estimate ∥Z∥Y ≥ ∥Y ∥−1

Y |⟨Z,Y ⟩Y |, which holds for every Z ∈ Y by the
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Cauchy-Schwarz inequality, and compute

∥FR −T (L(FR))∥2
L2

µ(X ;Y) ≥ (1−ε)
∑
γ∈I

∥∥∥∥∫
X

(FR −T (L(FR)))Ĥγ,R,λdµ

∥∥∥∥2

Y

= (1−ε)
∑
γ∈I

∥∥∥∥xγ
Y

∥Y ∥Y
−
∫

X
T̃ (ΞR(x))Ĥγ,R,λdµ

∥∥∥∥2

Y

≥ (1−ε)
∑
γ∈I

∥Y ∥−2
Y

∣∣∣∣∣
〈
xγ

Y

∥Y ∥Y
−
∫

X
T̃ (ΞR(x))Ĥγ,R,λdµ,Y

〉
Y

∣∣∣∣∣
2

≥ (1−ε)
∑
γ∈I

∣∣∣∣xγ − 1
∥Y ∥Y

∫
X

〈
T̃ (ΞR(x)),Y

〉
Y
Ĥγ,R,λdµ

∣∣∣∣2 .
Finally, we define the (scalar-valued) reconstruction map

∆R : Rm → RI , ∆R(z) :=
(

1
∥Y ∥Y

∫
X

〈
T̃ (z),Y

〉
Y
Ĥγ,R,λdµ

)
γ∈I

,

and conclude that

∥FR −T (L(FR))∥2
L2

µ(X ;Y) ≥ (1−ε)∥x−∆R(ΞR(x))∥2
ℓ2(I).

We have thus shown that for any pair (L,T ) of a Hilbert-valued adaptive sampling operator
and a reconstruction map, the error ∥FR −T (L(FR))∥L2

µ(X ;Y) can be bounded from below
by (1 − ε)∥x−∆R(ΞR(x))∥ℓ2(I) for some pair (ΞR,∆R) of a scalar-valued adaptive sampling
operator and reconstruction map. Recall that FR ∈BLip

µ,b (X ;Y) and x ∈ RI with ∥x∥ℓ2
uI

(I) ≤ c

was arbitrary. Consequently,

Θm(BLip
µ,b (X ;Y);V,L2

µ(X ;Y))

= inf

 sup
F ∈B

Lip
µ,b

(X ;Y)
∥F −T (L(F ))∥L2

µ(X ;Y) : L : V → Ym adaptive, T : Ym → L2
µ(X ;Y)


≥ (1−ε)1/2 inf

 sup
x∈RI

∥x∥
ℓ2
uI

(I)≤c

∥x−∆(Ξ(x))∥ℓ2(I) : Ξ : RI → Rm adaptive, ∆ : Rm → RI


= (1−ε)1/2Em

ada(cB2
uI

(I), ℓ2(I)) = (1−ε)1/2Em
ada(B2

(cu)I
(I), ℓ2(I)),

where in the last step we used that cB2
uI

(I) = B2
(cu)I

(I). As ε > 0 was arbitrary, we can take
the limit ε→ 0+. The claim now follows by Theorem 5.5. □
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We can now finally prove the desired lower bound for the adaptive m-width.

Proof of (5.4) Let N ∈ N with N >m, I = π([N ]) = {π(1), . . . ,π(N)} ⊂ Γ be the index set of
the N largest entries of u, and fix c ∈ (0,1). By Theorem 5.7 and Lemma 5.8, we have

dm(B2
(cu)I

(I), ℓ2(I)) = dm(B2(I), ℓ21/(cu)I
(I))

= dm(B2
(cu)I

(I), ℓ2(I)) = c ·dm(B2
uI

(I), ℓ2(I)),
(5.14)

where the last equality again follows from B2
(cu)I

(I) = cB2
uI

(I). For every p > 2 and r= r(p) :=
1/2−1/p, Hölder’s inequality implies N−rBp

uI (I) ⊂B2
uI

(I). Consequently,

dm(B2
uI

(I), ℓ2(I)) ≥ dm(N−rBp
uI

(I), ℓ2(I)) =N−rdm(Bp
uI

(I), ℓ2(I)). (5.15)

Applying Theorem 5.6 with q = 2 yields

dm(Bp
uI

(I), ℓ2(I)) =

 max
i1,...,iN−m∈I

ik ̸=ij

N−m∑
j=1

u
2p

p−2
ij

 1
p − 1

2


−1

.

Since (uπ(i))i∈N is nonincreasing, it follows with q = q(p) := 2p
p−2 ∈ (2,∞) that

dm(Bp
uI

(I), ℓ2(I)) = min
i1,...,iN−m∈Iik ̸=ij

N−m∑
j=1

u
2p

p−2
ij

 1
2 − 1

p

=

 N∑
j=m+1

uq
π(j)

1/q

≥ uπ(m+1).

We combine this estimate with (5.14), (5.15), and Lemma 5.9, and conclude

uπ(m+1) ≤ c−1NrΘm(BLip
µ,b (X ;Y);V,L2

µ(X ;Y)).

Taking the limit p→ 2+ yields r → 0+ and therefore

uπ(m+1) ≤ c−1Θm(BLip
µ,b (X ;Y);V,L2

µ(X ;Y)).

As c ∈ (0,1) was arbitrary, we can take the limit c→ 1−, and the claim finally follows. □

5.3.3. Upper bound
Let K ∈ {Bµ,b(X ;Y),BLip

µ,b (X ;Y)}. We now assume that V is continuously embedded in
L2

µ(X ;Y) and prove the upper bound for the adaptive m-width, namely,

Θm(K;V,L2
µ(X ;Y)) ≤ inf

S⊂Γ,|S|≤m
sup
F ∈K

∥F −FS∥L2
µ(X ;Y)

≤ sup
F ∈K

∥∥F −F{π(1),...,π(m)}
∥∥

L2
µ(X ;Y) ≤ uπ(m+1).

(5.16)
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Proof of (5.16) The second and third inequality hold by (4.1), so we only need to prove the first
inequality. We fix m∈N and S = {γ(1), . . . ,γ(n)} ⊂ Γ with n≤m. We define the Hilbert-valued
adaptive sampling operator

L : V → Ym, Li(F ) :=
{ ∫

X FHγ(i),λdµ if 1 ≤ i≤ n,

0 if n+1 ≤ i≤m,

and the reconstruction mapping

T : Ym → L2
µ(X ;Y), T (Y ) :=

m∑
i=1

YiHπ(i),λ.

Since V is continuously embedded in L2
µ(X ;Y), it is easy to see that L is a well-defined bounded

linear operator. We need to show that it satisfies the conditions in Definition 5.2. It suffices
to show that there exists Y ∈ Y \ {0}, a normed vector space Ṽ ⊂ L2

µ(X ), and a scalar-valued
adaptive sampling operator L̃ : Ṽ → Rm such that, if Y F ∈ V for some F ∈ L2

µ(X ), then F ∈ Ṽ
and L(Y F ) = Y L̃(F ). To this end, we choose some Y ∈ Y with ∥Y ∥Y = 1 and define the space
Ṽ :=

{
F ∈ L2

µ(X ) : Y F ∈ V
}
. It can be readily checked that this defines a normed vector space

with norm given by ∥F∥Ṽ := ∥Y F∥V for any F ∈ Ṽ. Moreover, as V is continuously embedded
in L2

µ(X ;Y), there exists a constant C > 0 such that

∥F∥L2
µ(X ) = ∥Y F∥L2

µ(X ;Y) ≤ C∥Y F∥V = C∥F∥Ṽ , ∀F ∈ Ṽ,

where in the first step we used the fact that ∥Y ∥Y = 1. This shows that Ṽ is continuously
embedded in L2

µ(X ). We now define the operator

L̃ : Ṽ → Rm, L̃i(F ) :=
{ ∫

X FHγ(i),λdµ if 1 ≤ i≤ n,

0 if n+1 ≤ i≤m.

Note that L̃ is linear and by the continuous embedding of Ṽ in L2
µ(X ), it is also bounded.

Hence, L̃ is a scalar-valued adaptive sampling operator. Moreover, by construction, if Y F ∈ V,
then F ∈ Ṽ and L(Y F ) = Y L̃(F ). We conclude that L is indeed an adaptive Hilbert-valued
sampling operator as in Definition 5.2. Consequently,

Θm(K;V,L2
µ(X ;Y)) ≤ sup

F ∈K
∥F −T (L(F ))∥L2

µ(X ;Y) = sup
F ∈K

∥F −FS∥L2
µ(X ;Y).

As S was arbitrary, we now take the infimum over all subsets S ⊂ Γ with |S| ≤m. □

5.4. Discussion
Theorem 5.4 shows that linear Hermite polynomial approximation based on the index set S =
{π(1), . . . ,π(m)} is optimal for the uniform approximation of W 1,2

µ,b- and Lipschitz operators
with Sobolev norm at most one among all possible recovery strategies which are based on
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(adaptive) linear information. Moreover, Theorem 5.4 in combination with Theorem 4.6 yields
the following curse of sample complexity: No strategy based on finitely many (potentially
adaptively chosen) linear samples for the uniform recovery of all operators in the Sobolev unit
(Lipschitz) ball can achieve algebraic convergence rates. This holds regardless of the decay rate
of the PCA eigenvalues of the covariance operator of the underlying Gaussian measure.

As already mentioned in the Section 1.1, a related result was previously shown in Kovachki
et al. (2024a) by means of the so-called sampling nonlinear m-width sm(K)L2

µ(X ) of a set
K ⊂ L2

µ(X ), which is based on standard information. More specifically, the sampling operator
δX : K → Ym with fixed X = (X1, . . . ,Xm) ∈ X m is given by point evaluation, δX(F ) =
(F (X1), . . . ,F (Xm)) ∈ Ym for every F ∈ K, and one defines

sm(K)L2
µ(X ) := inf

{
sup
F ∈K

∥F −T (δX(F ))∥L2
µ(X ) : X ∈ X m,T : Ym → L2

µ(X )
}
.

Theorem 2.12 in Kovachki et al. (2024a) implies the following result (for p = 2, k = 1), which
was termed the curse of data complexity.

Theorem 5.13 (Curse of data complexity). Let µ be a centered Gaussian measure with at
most algebraically decreasing (unweighted) PCA eigenvalues λi ≳ i−α for some α > 0. Then
there exists a constant C = C(α)> 0 such that

sm(Lip(X ))L2
µ(X ) ≥ C log(m+1)−(α+3), ∀m ∈ N.

Our findings in the present section generalize this result in several directions. First, recall
that the adaptive m-width covers recovery strategies based on standard information by choosing
V = C(X ,Y). This implies

sm(Lip(X ))L2
µ(X ) ≥ Θm(Lip(X );C(X ,Y),L2

µ(X ;Y)) = uπ(m+1).

This bound pertains to general centered, nondegenerate Gaussian measures and together with
Theorem 4.6 we conclude that algebraic decays of the sampling m-width can never be achieved
for any decay of the PCA eigenvalues. On the other hand, Theorem 4.7 provides upper bounds
for the adaptive m-width of the Sobolev unit (Lipschitz) ball in terms of the decay of the PCA
eigenvalues λb,i. In particular, it implies that the curse of sample complexity described above
can be overcome asymptotically in the sense that the adaptive m-width can decay with rates
which are arbitrarily close to any algebraic rate, provided the decay of the λb,i is sufficiently
fast, e.g., double exponential.

6. Conclusions

In this article, we analyzed the approximation of Hilbert-valued Lipschitz operators from finite
data. We first extended results from infinite-dimensional analysis and showed that all Lipschitz
operators lie in a (weighted) Gaussian Sobolev space W 1,2

µ,b(X ;Y). We then studied Hermite
polynomial s-term approximations and proved that they cannot achieve algebraic convergence
rates. This curse of parametric complexity is independent of the decay of the (weighted) PCA
eigenvalues λb,i of the covariance operator of the Gaussian measure µ. Next, we analyzed



36 ADCOCK ET AL.

the smallest worst-case error in reconstructing Lipschitz and W 1,2
µ,b-operators from m arbitrary

(potentially adaptively chosen) linear samples in terms of the corresponding adaptive m-width.
We showed that from the point of view of information-based complexity there is no difference
between the space of all Lipschitz operators, equipped with the W 1,2

µ,b-norm, and the space of all
W 1,2

µ,b-operators—the adaptive m-widths in both cases coincide. We tightly characterized the
dependence of the adaptive m-width on the λb,i and identified a curse of sample complexity: No
recovery strategy based on finite (adaptive) linear information can achieve algebraic convergence
rates uniformly for all Lipschitz and W 1,2

µ,b-operators (of norm at most one). This holds for any
(centered, nondegenerate) Gaussian measure independently of its spectral properties. It is an
active area of research to identify classes of operators for which efficient learning in the sense
of achieving algebraic (or faster) convergence rates is possible. As discussed in Section 1.1,
examples include holomorphic operators and solution operators of certain PDEs. On the positive
side, we proved that W 1,2

µ,b-regularity, and Lipschitz regularity in particular, suffices to achieve
approximation rates which are arbitrarily close to any algebraic rate, provided that the PCA
eigenvalues λb,i decay sufficiently fast. As discussed in Section 1.3, there are several avenues
for future work, including the construction of practical algorithms that achieve these rates and
the investigation into classes to better describe operators of interest in applications.
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A. Notions of differentiability

We recall several notions of differentiability which we use throughout the paper, loosely
following Bogachev (1998, Chpt. 5.1). The constructions in this section hold for general Banach
spaces X and Y. As usual, we denote by L(X ,Y) the space of all bounded linear operators F
from X to Y with finite operator norm ∥F∥L(X ,Y) := supX∈X ,X ̸=0 ∥F (X)∥Y/∥X∥X . We write
L(X ) := L(X ,R).

Definition A.1 (Differentiability). Let M be a collection of non-empty subsets of X , X ∈ X ,
and Ω be an open neighborhood of X. A mapping F : Ω → Y is said to be differentiable with
respect to M at the point X if there exists a continuous linear mapping ℓ ∈ L(X ,Y) such that
for every fixed set M ∈ M, we have

lim
t→0

sup
Z∈M

∥∥∥∥F (X+ tZ)−F (X)
t

− ℓ(Z)
∥∥∥∥

Y
= 0.

In this case, ℓ is unique and we write DMF (X) := ℓ for the derivative of F at X.

If M is the class of all finite, compact, or bounded subsets of X , then we say that F is
Gâteaux, Hadamard, or Fréchet differentiable at X, respectively. In the latter case, we also
often just call F differentiable at X. If X is finite-dimensional, it is easy to see that Hadamard
and Fréchet differentiability at X are equivalent and the corresponding derivatives of F at
X coincide. This will become important in the proof of Theorem 3.10 in Appendix D. We
henceforth drop the superscript M in the notation of the derivative and write DF (X) instead
of DMF (X). In the following, we will focus on Fréchet differentiability, unless stated otherwise.
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We call F Fréchet differentiable (or just differentiable) if it is Fréchet differentiable at every
point X ∈ X . The resulting derivative DF is a mapping from X to L(X ,Y).

If E is a linear subspace of X (possibly with a stronger norm), then we say that F is
differentiable along E at the point X if the mapping Z 7→ F (X +Z) is differentiable from E
to Y at Z = 0. We call F differentiable along E if it is differentiable along E at every point
X ∈ X . The resulting derivative DEF is a mapping from X to L(E ,Y). Moreover, the differential
operator DE , mapping F to its derivative DEF , is linear in F .

Example A.2. If E = X , then DEF = DF . If F is Fréchet differentiable and we choose E to
be the Cameron-Martin space H of a Gaussian measure on X (see Appendix C.1), then DEF
is the H-derivative of F which is commonly used in infinite-dimensional analysis (see Lunardi
et al., 2015/2016, Sect. 9).

If E = span{Z}, Z ∈ X \{0}, is one-dimensional, we obtain the usual directional derivative

∂

∂Z
F (X) :=Dspan{Z}F (X)(Z) = lim

t→0

F (X+ tZ)−F (X)
t

∈ Y.

In this case, the Gâteaux, Hadamard, and Fréchet derivatives along E at X coincide. For any
subspaces E ′ ⊂ E ⊂ X , it can be readily seen that if F : X → Y is differentiable along E at a point
X ∈ X , then F is also differentiable along E ′ at X and DEF (X)|E′ =DE′F (X). In particular,
if F is differentiable along E at X, then, for any Z ∈ E \{0}, the directional derivative ∂

∂ZF (X)
at X exists and

∂

∂Z
F (X) =DEF (X)(Z).

If X = Rn and Z = ei is the ith standard unit vector, we use the standard notation
∂iF (x) := ∂

∂ei
F (x) for x = (x1, . . . ,xn) ∈ Rn. If E is a Hilbert subspace of X and if F : X → R

is differentiable along E at X, then, by the Riesz representation theorem, there exists a unique
Z ∈ E such that DEF (X)(X ′) = ⟨Z,X ′⟩E for every X ′ ∈ E . In this case, we call Z the E-gradient
of F at X and write ∇EF (X) := Z.

Definition A.3 (The space C1
b (X )). We denote by C1

b (X ) the space of all boundedly (Fréchet)
differentiable functionals on X , that is, the set of all Fréchet differentiable mappings F : X → R
which are bounded on X and whose derivative DF is bounded in L(X ). The corresponding
norm is given by

∥F∥C1
b

(X ) := sup
X∈X

|F (X)|+∥DF∥L(X ).

B. Closability and closure of operators

We define closability and the closure of operators between Hilbert spaces and state standard
properties. For further details we refer to Berezanskij et al. (1996, Chpt. 12). Let H1,H2 be
two Hilbert spaces. A linear H2-valued operator (not necessarily bounded) acting on H1 is a
linear mapping A : dom(A) → H2 from a linear subspace dom(A) ⊂ H1 to H2. The set dom(A)
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is called the domain of A. The graph of A is defined as the set

ΓA := {(H,AH) ∈ H1 ⊕H2 :H ∈ dom(A)} .

Considered as a subspace of the direct sum H1 ⊕H2 and equipped with the graph inner product,

⟨H,K⟩ΓA
:= ⟨H,K⟩H1

+ ⟨AH,AK⟩H2
, H,K ∈ dom(A),

this becomes a Hilbert space with graph norm

∥(H,AH)∥ΓA
:=
√

⟨H,H⟩ΓA
=
(

∥H∥2
H1

+∥AH∥2
H2

)1/2
.

Definition B.1 (Closability and closure). A linear operator A : dom(A) → H2 is called closable
(in H1) if the closure of its graph ΓA in H1 ⊕ H2 is the graph of some (necessarily unique)
linear operator, that is, there exists a linear operator A : dom(A) → H2 such that ΓA = ΓA. In
this case, we call A the closure of A.

If A is closable, then the domain of its closure is given by

dom(A) =
{
H ∈ H1 : ∃(Hn)n∈N ⊂ dom(A) : lim

n→∞
Hn =H, (AHn)n∈N converges in H2

}
.

For H ∈ dom(A), we have AHn →AH in H2 for every sequence (Hn)n∈N ⊂ dom(A) with Hn →
H in H1, and the limit limn→∞AHn is independent of the sequence (Hn)n∈N (cf. Berezanskij
et al. (1996, Thm. 2.1)). If A is closable, we equip dom(A) with the graph inner product, which
turns (dom(A),⟨·, ·⟩Γ

A
) into a Hilbert space.

C. Results from infinite-dimensional analysis

We recall some well-known results from infinite-dimensional analysis which are used to define
the Gaussian Sobolev space W 1,2

µ,b(X ;Y) (see Definition 3.1) and to prove Theorem 3.10 in
Appendix D. We first define the Cameron-Martin space H of µ in X in Appendix C.1 and
then discuss the construction of W 1,2

µ,b(X ;Y) as well as some of its important properties in
Appendix C.2. We mainly follow Lunardi et al. (2015/2016) and Da Prato (2006), which
consider Y = R and the cases b =

√
λ and b = 1, respectively, and generalize the proofs therein

to general Hilbert-valued operators in the case 0< b ≤ 1. More information can also be found
in Bogachev (1998). Throughout this section, we use notation as introduced in Sections 2 and 3.

C.1. The Cameron-Martin space
Theorem C.1 (Fernique’s theorem (Bogachev, 1998, Thm. 2.8.5)). There exists α > 0 such
that ∫

X
exp(α∥X∥2

X )dµ(X)<∞.
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Fernique’s theorem implies that any mapping X → Y which grows at most polynomially at
infinity belongs to L2

µ(X ;Y). In particular, the mapping

j : X ∗ → L2
µ(X ), F 7→ j(F ) = F,

is well-defined. We use it to define the Cameron-Martin space:

Definition C.2 (Cameron-Martin space). The Cameron-Martin space of µ (in X ) is the set
H of all X ∈ X whose H-norm is finite, where

∥X∥H := sup
{
F (X) : F ∈ X ∗,∥j(F )∥L2

µ(X ) ≤ 1
}
.

To further describe the structure of H, we define the reproducing kernel Hilbert space X ∗
µ

of µ as the closure of j(X ∗) in L2
µ(X ) as well as the mapping

Rµ : X ∗
µ → X , F 7→

∫
X
XF (X)dµ(X),

where the integral is in the sense of Bochner. Notice that Rµ is well-defined by Fernique’s
theorem.

Proposition C.3 (Relation between H and X ∗
µ (Lunardi et al., 2015/2016, Prop. 3.1.2)). An

element H ∈ X belongs to H if and only if there exists Ĥ ∈ X ∗
µ such that H = Rµ(Ĥ). In this

case, we have ∥H∥H = ∥Ĥ∥L2
µ(X ). Hence, Rµ : X ∗

µ → H is an isometric isomorphism that turns
H into a Hilbert space with inner product ⟨H,K⟩H := ⟨Ĥ,K̂⟩L2

µ(X ) whenever H = Rµ(Ĥ) and
K =Rµ(K̂).

In our case, where X is a separable Hilbert space, the Cameron-Martin space has a
particularly simple structure. Indeed, it follows from Lunardi et al. (2015/2016, Thm. 4.2.7)
that the family of vectors {ξi}i∈N with

ξi :=
√
λiϕi, ∀i ∈ N, (C.1)

is an orthonormal basis of H. The corresponding elements ξ̂i ∈ X ∗
µ are given by

ξ̂i(·) = λ
−1/2
i ⟨·,ϕi⟩X , ∀i ∈ N. (C.2)

The right-hand side in (C.2) is an element of X ∗ and we henceforth identify each ξ̂i with its
version in X ∗.

C.2. The Gaussian Sobolev space W 1,2
µ,b(X ;Y)

Recall from Section 2.3 the weighted space Xb with weight sequence b = (bi)i∈N, 0< b ≤ 1, and
with orthonormal basis {ηi}i∈N, ηi := biϕi, as defined in (2.1).
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C.2.1. Construction
The construction of Gaussian Sobolev spaces is based on so-called cylindrical functionals:

Definition C.4 (Cylindrical functionals and operators). A functional φ : X → R is called a
cylindrical functional if there exist n ∈ N, ℓ1, . . . , ℓn ∈ X ∗, and a function ω : Rn → R such that

φ(X) = ω(ℓ1(X), . . . , ℓn(X)), ∀X ∈ X .

We call φ a cylindrical boundedly Fréchet differentiable functional if, with the above notation,
ω ∈ C1

b (Rn). The space of all such functionals is denoted by FC1
b (X ). Moreover, we define the

set of all cylindrical boundedly Fréchet differentiable Y-valued operators by

FC1
b (X ,Y) := span

{
X ∋X 7→ φ(X)Y ∈ Y : φ ∈ FC1

b (X ),Y ∈ Y
}

so that every F ∈ FC1
b (X ,Y) can be written as F =

∑n
i=1φiYi for some φi ∈ FC1

b (X ), Yi ∈ Y,
and n ∈ N.

Proposition C.5 (Closability of DXb
). The (Fréchet) differential operator along Xb, DXb

:
FC1

b (X ;Y) → L2
µ(X ;HS(Xb,Y)), is closable in L2

µ(X ;Y).

Proof First, a short computation shows that for every F ∈ FC1
b (X ,Y), the derivative DXb

F
lies in L2

µ(X ;HS(Xb,Y)). Hence, the mapping DXb
: FC1

b (X ;Y) → L2
µ(X ;HS(Xb,Y)) is well-

defined. The proof of closability is a straight-forward modification of the proof of Lunardi
et al. (2015/2016, Lem. 10.2.4), replacing the derivative along the Cameron-Martin space by
the derivative along the space Xb. □

C.2.2. Properties
We commence with an important criterion for an operator to belong to W 1,2

µ,b(X ;Y):

Lemma C.6. If Fn → F in L2
µ(X ;Y) as n → ∞ and supn∈N ∥Fn∥

W
1,2
µ,b

(X ;Y) < ∞, then F ∈

W 1,2
µ,b(X ;Y).

Proof Since W 1,2
µ,b(X ;Y) is a Hilbert space, it is reflexive. As (Fn)n∈N is bounded in W 1,2

µ,b(X ;Y)
by assumption, there exists a subsequence (Fnk

)k∈N which converges weakly in W 1,2
µ,b(X ;Y) to

some G as k → ∞. Since Fnk
→ F in L2

µ(X ;Y) by assumption, we conclude that F = G, and
the claim follows. □

Next, we consider the ℓ2-characterization of W 1,2
µ,b(X ;Y), see Theorem 3.5. For γ ∈ Γ and

i ∈ N, we define γ(i) = (γ(i)
k )k∈N ∈ Γ as follows: If γi = 0, we set γ(i) := 0, and if γi > 0, we set

γ
(i)
k :=

{
γk −1 if k = i,

γk if k ̸= i.
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Proposition C.7. Let F ∈W 1,2
µ,b(X ;Y). Then,

∂

∂ηi
F =

∑
γ∈Γ

bi

√
γi

λi

(∫
X
FHγ,λdµ

)
Hγ(i),λ, ∀i ∈ N, (C.3)

and

∥F∥2
W

1,2
µ,b

(X ;Y) =
∑
γ∈Γ

(
1+

∞∑
i=1

b2
i
γi

λi

)∥∥∥∥∫
X
FHγ,λdµ

∥∥∥∥2

Y
. (C.4)

Conversely, if for a family of vectors (Yγ)γ∈Γ ⊂ Y one has

∑
γ∈Γ

(
1+

∞∑
i=1

b2
i
γi

λi

)
∥Yγ∥2

Y <∞, (C.5)

then F :=
∑

γ∈ΓYγHγ,λ lies in W 1,2
µ,b(X ;Y).

Proof First, let us fix a cylindrical functional φ ∈ FC1
b (X ). By Da Prato (2006, Lemma 10.14),

the partial derivatives of φ satisfy

∂

∂ϕi
φ=

∑
γ∈Γ

√
γi

λi

(∫
X
φHγ,λdµ

)
Hγ(i),λ, ∀i ∈ N. (C.6)

Since ∂
∂ηi

φ = bi
∂

∂ϕi
φ, it follows from (C.6) together with orthonormality of the Hermite

polynomials that ∫
X

(
∂

∂ηi
φ

)
Hγ(i),λdµ= bi

√
γi

λi

∫
X
φHγ,λdµ, ∀i ∈ N. (C.7)

By linearity, the identities (C.6) and (C.7) hold, in fact, for every cylindrical operator φ ∈
FC1

b (X ,Y).
Now suppose that F ∈ W 1,2

µ,b(X ;Y). It suffices to prove (C.3) as (C.4) then follows by
Parseval’s identity (2.5). For this, it is enough to show that∫

X

(
∂

∂ηi
F

)
Hγ(i),λdµ= bi

√
γi

λi

∫
X
FHγ,λdµ, ∀i ∈ N. (C.8)

By definition of W 1,2
µ,b(X ;Y), there exists a sequence (Fn)n∈N ⊂ FC1

b (X ,Y) such that
limn→∞Fn = F and limn→∞

∂
∂ηi

Fn = ∂
∂ηi

F in L2
µ(X ;Y). We set φ = Fn in (C.7) and take

the limit n→ ∞ to obtain (C.8).
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Conversely, suppose that (C.5) holds for a sequence (Yγ)γ∈Γ ⊂ Y. We fix an enumeration
τ : N → Γ of Γ and define

Fn :=
n∑

j=1
Yτ(j)Hτ(j),λ, ∀n ∈ N.

By Parseval’s identity, we can bound the L2
µ(X ;Y)-norm of the Fn by

∥Fn∥2
L2

µ(X ;Y) =
n∑

j=1

∥∥Yτ(j)
∥∥2

Y ≤
∑
γ∈Γ

∥Yγ∥2
Y (C.9)

and the right-hand side is finite by (C.5). This implies, in particular, that (Fn)n∈N is a Cauchy
sequence in L2

µ(X ;Y). Hence, there exists some F ∈ L2
µ(X ;Y) such that Fn → F in L2

µ(X ;Y)
as n→ ∞. Since Fn ∈ FC1

b (X ,Y), we can set φ= Fn in (C.6) and obtain

∂

∂ηi
Fn =

n∑
j=1

bi

√
τ(j)i

λi
Yτ(j)Hτ(j)(i),λ, ∀i ∈ N.

Consequently, we can bound the L2
µ(X ;HS(Xb,Y))-norm of the derivatives DXb

Fn by

∫
X

∥∥DXb
Fn(X)

∥∥2
HS(Xb,Y)dµ(X) =

∫
X

∞∑
i=1

∥∥∥∥ ∂

∂ηi
Fn(X)

∥∥∥∥2

Y
dµ(X)

=
∞∑

i=1

∫
X

∥∥∥∥∥∥
n∑

j=1
bi

√
τ(j)i

λi
Yτ(j)Hτ(j)(i),λ(X)

∥∥∥∥∥∥
2

Y

dµ(X) =
∞∑

i=1

n∑
j=1

b2
i
τ(j)i

λi

∥∥Yτ(j)
∥∥2

Y

≤
∞∑

j=1

∞∑
i=1

b2
i
τ(j)i

λi

∥∥Yτ(j)
∥∥2

Y ,

(C.10)

and the right-hand side is again finite by (C.5). Combining (C.9) and (C.10), we conclude
that the Fn are uniformly bounded in W 1,2

µ,b(X ;Y). By Lemma C.6, it then follows that F ∈
W 1,2

µ,b(X ;Y). □

We now consider operators with a special structure. They will become important in the
proof of Theorem 3.10 in Appendix D. To this end, recall from (C.1), (C.2) the orthonormal
basis {ξi}i∈N of H with ξi =

√
λiϕi, Rµ(ξ̂i) = ξi, and ξ̂i ∈ X ∗. For every F ∈ L2

µ(X ;Y) and
n ∈ N, we define

EnF : X → Y, EnF := E[F | ξ̂1, . . . , ξ̂n], (C.11)

to be the conditional expectation of F with respect to the σ-algebra generated by the random
variables ξ̂1, . . . , ξ̂n. Furthermore, for n ∈ N, we define the mapping

Pn : X → span{ξ̂i : i ∈ [n]}, PnX :=
n∑

i=1
ξ̂i(X)ξi. (C.12)
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Proposition C.8 (Properties of EnF in L2
µ). For F ∈ L2

µ(X ;Y), let EnF and Pn be given as
in (C.11) and (C.12), respectively. Then the following properties hold true:

(i) For every F ∈ L2
µ(X ;Y) and n ∈ N, we have

EnF (X) =
∫

X
F (PnX+(I−Pn)Z)dµ(Z) for µ-a.e. X ∈ X .

In particular, EnF can be identified with an operator Fn on Pn(X ) by setting Fn(Z) :=
EnF (X) for Z = PnX.

(ii) For every F ∈ L2
µ(X ;Y), the sequence (EnF )n∈N converges to F in L2

µ(X ;Y).

Proof We refer to the proofs of Proposition 7.4.1 and Proposition 7.4.4, respectively, in Lunardi
et al. (2015/2016), which can be adopted almost verbatim, only changing the Lebesgue integrals
to Bochner integrals. □

Proposition C.9 (Properties of EnF in W 1,2
µ,b). Let F ∈ W 1,2

µ,b(X ;Y) and EnF be defined as
in (C.11). Then, EnF ∈W 1,2

µ,b(X ;Y) for every n ∈ N and limn→∞EnF = F in W 1,2
µ,b(X ;Y).

The case of H-differentiable functionals, that is, b =
√

λ (see Remark 2.1) and Y = R, is
covered by Lunardi et al. (2015/2016, Prop. 10.1.2) which (for p= 2) reads as follows:

Proposition C.10. Let F ∈ W 1,2
µ,

√
λ

(X ). Then, for every n ∈ N, we have EnF ∈ W 1,2
µ,

√
λ

(X )
and the following properties hold true:

(i) For every i ∈ N, the ith partial derivative of EnF is given by

∂

∂ξi
EnF =

{
En( ∂

∂ξi
F ) if i≤ n,

0 if i > n.

(ii) We have limn→∞EnF = F in W 1,2
µ,

√
λ

(X ).

Proof of Proposition C.9 We first prove the claim for F ∈ FC1
b (X ,Y) and then for general

operators in W 1,2
µ,b(X ;Y) by a density argument. To this end, let us fix F ∈ FC1

b (X ,Y) and
n ∈ N. By linearity, it suffices to consider cylindrical operators of the form F (·) = φ(·)Y with
φ ∈ FC1

b (X ) and Y ∈ Y. Since ηi = biλ
−1/2
i ξi, we have

∂

∂ηi
EnF (X) = biλ

−1/2
i

∂

∂ξi
EnF (X) = biλ

−1/2
i Y

∂

∂ξi
Enφ(X), ∀X ∈ X , ∀i ∈ N.
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Using Parseval’s identity, Proposition C.10(i), and the contraction property of the conditional
expectation in Lp-spaces, we compute

∥∥DXb
EnF

∥∥2
L2

µ(X ;HS(Xb,Y)) =
∫

X

∞∑
i=1

∥∥∥∥ ∂

∂ηi
EnF (X)

∥∥∥∥2

Y
dµ(X)

=
∫

X

∞∑
i=1

b2
iλ

−1
i ∥Y ∥2

Y

∣∣∣∣ ∂∂ξi
Enφ(X)

∣∣∣∣2 dµ(X) =
n∑

i=1
b2

iλ
−1
i ∥Y ∥2

Y

∥∥∥∥En

(
∂

∂ξi
φ

)∥∥∥∥2

L2
µ(X )

≤
n∑

i=1
b2

iλ
−1
i ∥Y ∥2

Y

∥∥∥∥ ∂

∂ξi
φ

∥∥∥∥2

L2
µ(X )

≤
∫

X

∞∑
i=1

∥∥∥∥ ∂

∂ηi
F (X)

∥∥∥∥2

Y
dµ(X)

=
∥∥DXb

F
∥∥2

L2
µ(X ;HS(Xb,Y)).

(C.13)

Since, in addition, ∥EnF∥L2
µ(X ;Y) ≤ ∥F∥L2

µ(X ;Y) by the contraction property, we conclude that
∥EnF∥

W
1,2
µ,b

(X ;Y) ≤ ∥F∥
W

1,2
µ,b

(X ;Y). In particular, this shows that EnF ∈ W 1,2
µ,b(X ;Y) for every

n ∈ N. To prove convergence in W 1,2
µ,b(X ;Y), we first note that by Proposition C.8(ii), EnF

converges to F in L2
µ(X ;Y) as n → ∞. Since φ is cylindrical, it can be written as φ(X) =

ω(ξ̂1(X), . . . , ξ̂k(X)) for some k ∈ N and ω ∈ C1
b (Rk). This implies∥∥DXb

EnF −DXb
F
∥∥

L2
µ(X ;HS(Xb,Y)) ≤

(
max
i∈[k]

b2
iλ

−1
i

)
∥Y ∥Y

∥∥∥∇X√
λ
Enφ−∇X√

λ
φ
∥∥∥

L2
µ(X ;X√

λ
)
,

and the right-hand side converges to 0 as n → ∞ by Proposition C.10(ii). Altogether, we
conclude that limn→∞EnF = F in W 1,2

µ,b(X ;Y) for all F ∈ FC1
b (X ,Y). The claim for general

F ∈W 1,2
µ,b(X ;Y) then follows from a density argument and similar estimates as above. □

We provide one more technical lemma which asserts that operators of a certain form lie
in W 1,2

µ,b(X ;Y). To this end, recall that W 1,1
loc (Rn;Y) denotes the Sobolev space of all weakly

differentiable mappings Rn → Y which are up to their first derivative locally integrable (with
respect to Lebesgue measure Ln). As usual, we set W 1,1

loc (Rn;R) = W 1,1
loc (Rn). Moreover, for

X ∈ X and i ∈ N, we use the notation xi := ⟨X,ϕi⟩X , where {ϕi}i∈N is the PCA basis of X . In
particular, for ξ̂i ∈ X ∗ given by (C.2) we have λ−1/2

i xi = ξ̂i(X).

Lemma C.11. Let F : X → Y be an operator of the form F = ω ◦ (ξ̂1, . . . , ξ̂n) with ω ∈
W 1,1

loc (Rn;Y) and n ∈ N. Then, F ∈W 1,2
µ,b(X ;Y) and

∂

∂ηi
F (X) = biλ

−1/2
i ∂iω(λ−1/2

1 x1, . . . ,λ
−1/2
n xn)

for µ-a.e. X ∈ X and every i ∈ [n].

Proof For brevity, we write ξ̂ := (ξ̂1, . . . , ξ̂n). For R > 0, let φR : Rm → R be a smooth
bump function such that φR = 1 on BR := {x ∈ Rn : ∥x∥Rn < R} and supp(φR) ⊂ B2R. We
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set ωR := ωφR. By a standard approximation argument (see, e.g., Brezis (2011, Thm 9.2)
adapted to the Hilbert-valued case by replacing Lebesgue integrals by Bochner integrals),
there exists a sequence (ωR,j)j∈N ⊂C∞

c (Rn;Y) of smooth, compactly supported operators such
that limj→∞ωR,j = ωR and limj→∞ ∂iωR,j = ∂iωR in L2(Rn;Y) for every i ∈ [n]. We define
FR,j := ωR,j ◦ ξ̂ and note that FR,j ∈ FC1

b (X ,Y). By construction, taking the limit j → ∞
yields

FR,j → ωR ◦ ξ̂ in L2
µ(X ;Y) (C.14)

as well as
∂

∂ηi
FR,j → biλ

−1/2
i (∂iωR)◦ ξ̂ in L2

µ(X ;Y) for every i ∈ [n]. (C.15)

The right hand-sides in (C.14) and (C.15) converge for R→ ∞ in L2
µ(X ) to ω and biλ

−1/2
i (∂iω◦

ξ̂), respectively. Hence, taking a suitable subsequence of radii R(j) shows that for j → ∞,

FR(j),j → ω ◦ ξ̂ in L2
µ(X ;Y)

as well as
∂

∂ηi
FR(j),j → biλ

−1/2
i ∂iω ◦ ξ̂ in L2

µ(X ;Y) for every i ∈ [n].

Moreover, we have ∂
∂ηi

FR(j),j = 0 for i > n and every j ∈ N. This yields the claim by definition
of W 1,2

µ,b(X ;Y), see Definition 3.1 and recall Appendix B. □

D. Proof of Theorem 3.10

The argument follows along the lines of the proof of Lunardi et al. (2015/2016, Prop.
10.1.4) with several important modifications. Let F : X → Y be Lipschitz continuous with
L := [F ]Lip(X ,Y). The idea is to use Lemma C.6 to show that F ∈ W 1,2

µ,b(X ;Y). By Lipschitz
continuity, we have ∥F (X)∥Y ≤ ∥F (0)∥Y +L∥X∥X for every X ∈ X and therefore, by the
Fernique theorem (Theorem C.1), F ∈ L2

µ(X ;Y). As approximating sequence to F we take
Fn := EnF , as defined in (C.11). By Proposition C.8, we have limn→∞EnF = F in L2

µ(X ;Y)
and we can write EnF (X) = Vn(Tn(X)) for some Vn : Rn → Y and Tn : X → Rn, Tn(X) :=
(ξ̂1(X), . . . , ξ̂n(X)) with ξi, ξ̂i defined in (C.1), (C.2). Note that Vn inherits Lipschitz continuity
from F . Indeed, using Proposition C.8(i) and the fact that ξ̂i(ξj) = δi,j , we find for x, x̄ ∈ Rn

that

∥Vn(x+ x̄)−Vn(x)∥Y =

∥∥∥∥∥EnF

(
n∑

i=1
xiξi +

n∑
i=1

x̄iξi

)
−EnF

(
n∑

i=1
xiξi

)∥∥∥∥∥
Y

≤
∫

X

∥∥∥∥∥F
(

n∑
i=1

xiξi +
n∑

i=1
x̄iξi +(I−Pn)Z

)
−F

(
n∑

i=1
xiξi +(I−Pn)Z

)∥∥∥∥∥
Y

dµ(Z)

≤ L

∥∥∥∥∥
n∑

i=1
x̄iξi

∥∥∥∥∥
X

= L

∥∥∥∥∥
n∑

i=1

√
λix̄iϕi

∥∥∥∥∥
X

= L

(
n∑

i=1
λix̄

2
i

)1/2

(D.1)

≤ L

(
max
i∈[n]

√
λi

)
∥x̄∥Rn . (D.2)
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Proof of (i). Suppose that dim(Y) = m ∈ N and let {ψj}j∈[m] be an orthonormal basis of
Y. For j ∈ [m], we define the function(al)s

V
(j)

n : Rn → R, x 7→ ⟨Vn(x),ψj⟩Y

E(j)
n F : X → R, X 7→ ⟨EnF (X),ψj⟩Y = V

(j)
n (Tn(X)).

V
(j)

n is Lipschitz continuous due to (D.2). By Rademacher’s theorem, it is therefore
Fréchet differentiable Ln-almost everywhere and, in particular, it belongs to W 1,1

loc (Rn). By
Lemma C.11, we then obtain

DXb
(E(j)

n F )(X)(ηi) =
{
biλ

−1/2
i ∂iV

(j)
n (Tn(X)) if 1 ≤ i≤ n,

0 otherwise.

at any point X ∈ X such that V (j)
n is differentiable at Tn(X). To derive an upper bound for

|∂iV
(j)

n (x)|, x ∈ Rn, we equip Rn with a rescaled Euclidean inner product,

⟨x,y⟩Rn
λ

:=
n∑

i=1

√
λixiyi

with induced norm ∥x∥Rn
λ

:=
√

⟨x,x⟩Rn
λ

. We denote the hereby defined space as Rn
λ and observe

that {λ−1/2
i ei}i∈N is an orthonormal basis. Now note that (D.1) implies that V (j)

n is L-Lipschitz
as a function from Rn

λ to R. Hence, for Ln-almost every x ∈ Rn and 1 ≤ i≤ n, it follows

n∑
i=1

λ−1
i |∂iV

(j)
n (x)|2 =

n∑
i=1

|DV (j)
n (x)(λ−1/2

i ei)|2

= ∥DV (j)
n (x)∥

2
HS(Rn

λ
,R) = ∥DV (j)

n (x)∥
2
L(Rn

λ
,R) ≤ L2.

(D.3)

Consequently, whenever V (j)
n is differentiable at Tn(X), we have for every j ∈ [m],

∥∥DXb
(EnF )(X)

∥∥2
HS(Xb,Y) =

∥∥∥∥ m∑
j=1

DXb
(E(j)

n F )(X)ψj

∥∥∥∥2

HS(Xb,Y)

=
∞∑

i=1

∥∥∥∥ m∑
j=1

DXb
(E(j)

n F )(X)(ηi)ψj

∥∥2
Y =

∞∑
i=1

m∑
j=1

|DXb
(E(j)

n F )(X)(ηi)|2

=
n∑

i=1

m∑
j=1

b2
iλ

−1
i |∂iV

(j)
n (Tn(X))|2 ≤mL2,

(D.4)

where in the last step we used (D.3) and the fact that bi ≤ 1 for every i ∈ N.
Next, we show that for µ-a.e. X ∈ X and every j ∈ [m], V (j)

n is Fréchet differentiable at
Tn(X). To this end, let A ⊂ Rn be the set such that for every j, V (j)

n is differentiable at
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every point x ∈ Rn \A. Then, each V
(j)

n is Fréchet differentiable at any point Tn(X) with
X ∈ X \T−1

n (A). It thus suffices to show that µ(T−1
n (A)) = 0. We know that Ln(A) = 0, and

since µn is absolutely continuous with respect to Ln, it follows that µn(A) = 0. Moreover, it
is easy to see that µn is equal to the push-forward measure (Tn)♯µ, and thus µ(T−1

n (A)) = 0.
Hence, (D.4) holds for µ-a.e. X ∈ X , which implies∫

X

∥∥DXb
(EnF )(X)

∥∥2
HS(Xb,Y)dµ(X) ≤mL2, ∀n ∈ N.

As EnF → F in L2
µ(X ;Y), we can now use Lemma C.6 to conclude that F ∈W 1,2

µ,b(X ;Y). This
shows that Lip(X ,Y) ⊂W 1,2

µ,b(X ;Y).
Finally, we show that C0,1(X ,Y) is continuously embedded in W 1,2

µ,b(X ;Y). By (D.4),
we know that

∥∥DXb
(EnF )(X)

∥∥
L2

µ(X ;HS(Xb,Y)) ≤
√
mL. Moreover, from Proposition C.8(i) it

follows that ∥EnF∥L2
µ(X ;Y) ≤ supX∈X ∥F (X)∥Y . In total, we have

∥EnF∥
W

1,2
µ,b

(X ;Y) ≤
(

sup
X∈X

∥F (X)∥2
Y +mL2

)1/2
≤

√
m∥F∥C0,1(X ,Y).

As limn→∞EnF = F in W 1,2
µ,b(X ;Y) by Proposition C.9, the claim follows.

Proof of (ii). Suppose that dim(Y) = ∞. Notice that in this case we cannot use the same
argument as in the proof of (i) for two reasons. First, (D.4) does not give a meaningful bound for
m= ∞. Second, and more subtly, a similar estimate as in (D.3) does not hold because equality
of the operator norm and the Hilbert-Schmidt norm is only true for rank-one-operators. We
thus have to argue differently.

To this end, assume that b ∈ ℓ2(N). We derive bounds for the partial derivatives ∂iVn

and use square-summability of b to ensure finiteness even if Y has infinite dimension.
First, as Vn : Rn → Y is Lipschitz continuous, we can apply the generalized Rademacher
theorem to conclude that Vn is Hadamard differentiable Ln-almost everywhere in Rn,
see Aronszajn (1976, Thm. 1 in Chpt. 2 & Rmk. 2 in Chpt. 1). Since Rn is finite-dimensional,
Vn is, in fact, Fréchet differentiable Ln-almost everywhere—recall Appendix A. In particular,
Vn belongs to W 1,1

loc (Rn;Y). As in the proof of (i), we can thus apply Lemma C.11 to get

DXb
(EnF )(X)(ηi) =

{
biλ

−1/2
i ∂iVn(Tn(X)) if 1 ≤ i≤ n,

0 otherwise.

at any point X ∈ X such that Vn is differentiable at Tn(X). Note that setting z = ei (i.e., the
ith standard unit vector in Rn) in (D.1) implies that ∥∂iVn(x)∥Y ≤ L

√
λi for Ln-a.e. x ∈ Rn

and every 1 ≤ i≤ n. Consequently, whenever Vn is differentiable at Tn(X), it follows that

∥∥DXb
(EnF )(X)

∥∥2
HS(Xb,Y) =

∞∑
i=1

∥∥DXb
(EnF )(X)(ηi)

∥∥2
Y

=
n∑

i=1
b2

iλ
−1
i ∥∂iVn(X)∥2

Y ≤ L2∥b∥2
ℓ2(N).

We can now proceed as in the proof of (i) to conclude the proof. □
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