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REGULARITY

MICHAEL GRIEBEL AND HELMUT HARBRECHT

Abstract. Kernel interpolation in tensor product reproducing kernel Hilbert

spaces allows for the use of sparse grids to mitigate the curse of the dimension.
Typically, besides the generic constant, only a dimension dependent power of a

logarithm term enters here into complexity estimates. We show that optimized

sparse grids can avoid this logarithmic factor when the interpolation error is
measured with respect to Sobolev spaces of hybrid regularity. Consequently,

in such a situation, the complexity of kernel interpolation does not suffer from

the curse of dimension.

1. Introduction

Kernel interpolation is based on the theoretical framework provided by repro-
ducing kernel Hilbert spaces [1], RKHS for short. An RKHS is a specific type of
Hilbert space of functions where every function’s value at any given point can be
reproduced via its inner product with the reproducing kernel. Mathematically, the
reproducing kernel is the Riesz representer of the point evaluation. This feature
amounts to a simple and efficient way to obtain kernel-based approximations that
interpolate given scattered data. To this end, the representer theorem [34] is used,
which states that the interpolant can be written as a finite linear combination of the
kernel function evaluated at the data points. Kernel interpolation arises in machine
learning and scattered data approximation, compare [8, 20, 27, 31, 32, 33]. The
quality of this approximation, i.e., the estimate of the approximation error, is well
established and can be found in e.g. [8, 31].

In this article, we aim at the construction of optimized sparse grids for the di-
mension robust interpolation with respect to tensor product kernels. A fundamen-
tal contribution to sparse grid kernel interpolation has recently been provided by
[21, 22]. While the sparse grid construction therein relies on a multilevel approach
invoking level dependent correlation lengths of the kernel function under consider-
ation, we will use here a kernel function of fixed correlation length and construct
for that the sparse grid interpolant. This methodology has already been exploited
and analyzed in [12], including so-called superconvergence, compare [26, 28].

Error estimates for kernel interpolation have been established so far only in clas-
sical, isotropic Sobolev spaces or in Sobolev spaces of dominating mixed derivatives,
[12, 21, 31]. The resulting approximation rates are in general not independent of
the underlying dimension. To remove this dependency, we consider in this article
now so-called Sobolev spaces of hybrid regularity. This class of function spaces and
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their associated norms are designed to simultaneously capture two different types
of regularity – isotropic smoothness and mixed smoothness. They play an impor-
tant role in quantum chemistry as they describe the regularity of the Coulombic
wavefunction in the electronic Schrödinger equation, see [2, 24, 35] for example. As
shown in [13, 14], one can derive optimized sparse grids for such spaces and indeed
obtain dimension robust approximation rates under certain circumstances. Further
applications of Sobolev spaces of hybrid regularity can be found in [15] for parabolic
initial boundary value problems and in [18] for homogenization problems.

The analysis in [13, 14] is based on wavelet bases for the definition of the sparse
grid spaces in combination with norm equivalences that hold between a whole scale
of Sobolev spaces. The same technique applies also to the Fourier transform, com-
pare [9, 10]. In contrast, in the present article, we show how these results can be
transferred to kernel interpolation where one has no norm equivalence. Indeed, to
verify dimension robust approximation rates, it suffices to have Jackson and Bern-
stein inequalities, which are available for kernel interpolation. Moreover, in contrast
to the approach in [13, 14], our new technique allows to substantially extend the
range of the scales of Sobolev spaces where the estimates are valid.

For sake of simplicity and clearness of representation, we restrict ourselves to
the simple setting of tensor products of Sobolev spaces of periodic functions on the
interval T = [0, 1] and to equidistant point distributions. Hence, we consider the
d-dimensional torus Td in higher dimensions. The extension to general product
domains and quasi-uniform point distributions can be derived along the lines of
[12]. Note that we first consider the case of a bivariate sparse grid in order to make
the ideas of the proofs clear to the reader. Afterwards, we extend the results to the
multivariate setting.

The outline of this article is as follows: In Section 2, we introduce the univariate
Sobolev spaces under consideration and review kernel interpolation in reproducing
kernel Hilbert spaces. In Section 3, we focus on the bivariate situation. We intro-
duce Sobolev spaces of hybrid regularity and derive related Jackson and Bernstein
inequalities. Then we introduce optimized sparse grid spaces and provide error
estimates for the kernel interpolation in these spaces. We extend the bivariate re-
sults to arbitrary dimension in Section 4. Concluding remarks are finally stated in
Section 5.

Throughout this article, in order to avoid the repeated use of generic but un-
specified constants, we denote by C ≲ D that C is bounded by a multiple of D
independently of parameters on which C and D may depend. Especially, C ≳ D is
defined as D ≲ C, and C ∼ D as C ≲ D and C ≳ D.

2. Preliminaries

2.1. The Sobolev space Hs(T) of periodic functions. Let T := [0, 1] be the
unit interval and Hs(T) denote the periodic Sobolev space of fractional smoothness
s ≥ 0. For s ∈ N, this space can be characterized by

Hs(T) :=
{
f ∈L2(T) : ∥f (k)∥L2(T) < ∞

and f (k−1)(0) = f (k−1)(1) for all k = 1, . . . , s
}
,

equipped with the norm

∥f∥2Hs(T) =

(∫
T
f(x) dx

)2

+

∫
T

(
f (s)(x)

)2
dx < ∞.
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Indeed, the above expression defines a norm for Hs(T) because the integrals of
the derivatives f (k) vanishes for all k = 1, . . . , s − 1 due to the periodic boundary
conditions.

We need the following definition:

Definition 2.1. A reproducing kernel for a Hilbert space H of functions u : Ω → R
with inner product (·, ·)H is a function κ : Ω× Ω → R such that

(1) κ(·, y) ∈ H for all y ∈ Ω,
(2) u(y) =

(
u, κ(·, y)

)
H for all u ∈ H and all y ∈ Ω.

A Hilbert space H with reproducing kernel κ : Ω × Ω → R is called reproducing
kernel Hilbert space (RKHS).

Reproducing kernels are known to be symmetric and positive semidefinite. Thereby,
a continuous kernel κ : Ω× Ω → R is called positive semidefinite if

(2.1)

N∑
i,j=1

αiαjκ(xi, xj) ≥ 0

holds for all all mutually distinct points x1, . . . , xN ∈ Ω and all α1, . . . , αN ∈ R, for
any N ∈ N. The kernel is even positive definite if the inequality in (2.1) is strict
whenever at least one αi is different from 0.

For general real s > 1
2 , the reproducing kernel in Hs(T) is given by

(2.2) κ(x, y) = 1 +
∑

k∈Z\{0}

1

(2π|k|)2s
exp

(
2πik(x− y)

)
.

It is symmetric and positive definite. For s ∈ N being a natural number, this kernel
simplifies to

κ(x, y) = 1 +
(−1)s+1

(2s)!
B2s(|x− y|),

where B2s : [0, 1] → R denotes the Bernoulli polynomial of degree 2s, compare
[3, 5].

2.2. Kernel interpolation. We fix the Hp(T) with p > 1
2 as reproducing kernel

Hilbert space with kernel k(·, ·) given by (2.2) for s = p. For j ∈ N0, we define the
index set

∆j := {0, . . . , 2j − 1}
and the associated equidistant grid

Xj := {xj,k := 2−jk : k ∈ ∆j}.

Then, the kernel interpolant

uj(x) =
∑
k∈∆j

uj,kκ(x, xj,k) ∈ Hp(T)

with respect to the grid Xj is given by solving the linear system of equations

(2.3) Kjuj = f j ,

where

(2.4) Kj = [κ(xj,k, xj,k′)]k,k′∈∆j
, uj = [uj,k]k∈∆j

, f j = [u(xj,k)]k∈∆j
.
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The matrix Kj is called kernel matrix. It is a periodic Toeplitz matrix, so that
the linear system (2.4) of equations can efficiently be solved by the fast Fourier
transform.

The kernel interpolant is known to be the best approximation of a given function
u ∈ Hp(T) in

Vj = span{κ(·, x) : x ∈ Xj} ⊂ Hp(T)
with respect to the Hp(T)-norm. This means that it solves the following Galerkin
problem:

(2.5) Seek Pju ∈ Vj : (Pju, v)Hp(T) = (u, v)Hp(T) ∀ v ∈ Vj .

In other words, the (Galerkin) projection Pj : Hp(T) → Vj is Hp(T)-orthogonal.
Recall that Pju is obtained by simply solving the associated kernel system (2.3)
with (2.4).

2.3. Jackson and Bernstein estimates. The approximation Pju satisfies the
error estimate

(2.6) ∥u− Pju∥L2(T) ≲ 2−pj∥u∥Hp(T)

uniformly in j ∈ N0, see [31, Proposition 11.30] for example. Since there holds

(u, v)Hp(T) ≲ ∥u∥L2(T)∥v∥H2p(T),

this rate of convergence can be doubled by using [28, Theorem 1] provided that the
data satisfy even u ∈ H2p(T), i.e., we then have

(2.7) ∥u− Pju∥L2(T) ≲ 2−2jp∥u∥H2p(T).

In view of this result and employing Galerkin orthogonality, we find

∥u− Pju∥2Hp(T) = (u− Pju, u)Hp(T)

≲ ∥u− Pju∥L2(T)∥u∥H2p(T)

≲ 2−2jp∥u∥2H2p(T),

which implies

(2.8) ∥u− Pju∥Hp(T) ≲ 2−jp∥u∥H2p(T).

Next we consider the projection Qj : H
p(T) → Vj given by

(2.9) Qju := Pju− Pj−1u, where P−1u := 0.

We find from (2.7) and (2.8) the estimates

∥Qju∥L2(T) ≲ 2−jp∥u∥Hp(T), ∥Qju∥Hp(T) ≲ 2−jp∥u∥H2p(T).

By interpolation, we thus arrive at the approximation property, also known as
Jackson’s inequality,

(2.10) ∥Qju∥Ht1 (T) ≲ 2−j(t2−t1)∥u∥Ht2 (T) for all 0 ≤ t1 ≤ p ≤ t2 ≤ 2p.

Finally, from [25, 30], we obtain for u ∈ Hs(T) the inverse inequality, also known
as Bernstein’s inequality,

∥Pju∥Ht2 (T) ≲ 2j(t2−t1)∥Pju∥Ht1 (T) for all 0 ≤ t1 ≤ t2 ≤ p,

which we will need in the following, immediately resulting from

(2.11) ∥Qju∥Ht2 (T) ≲ 2j(t2−t1)∥Qju∥Ht1 (T) for all 0 ≤ t1 ≤ t2 ≤ p.
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Note the different ranges where the Jackson and Bernstein inequalities hold.
Estimate (2.10) is valid whenever the function u to be approximated provides extra
regularity relative to the underlying RKHS Hp(T) and the error is measured in a
weaker norm than the Hp(T)-norm. For functions u ∈ Hp(T), the inverse estimate
(2.11) however bounds a stronger norm of the expression Qju ∈ Vj by a weaker
norm of this expression, but both norms are now weaker than the Hp(T)-norm.

3. Bivariate approximation

3.1. Sobolev spaces of hybrid regularity. Sobolev spaces of hybrid regularity
have been introduced firstly in [13]. They are given by

(3.1) Hs,t
iso-mix(T

2) := Ht(T)⊗Hs+t(T) ∩Hs+t(T)⊗Ht(T)

This class of spaces Hs,t
iso-mix(T2) can be characterized for t ∈ N0 by

Hs,t
iso-mix(T

2) :=
{
f ∈ L2(T2) : ∥∂αf∥Ht

mix(T2) < ∞ for all ∥α∥1 ≤ s
}
.

Thus, the functions that are contained in Hs,t
iso-mix(T2) are all functions from the

classical, isotropic Sobolev space Hs
iso(T2), where the s-th order derivatives provide

in addition mixed Sobolev smoothness of order t. Note that the classical, isotropic
Sobolev space Hs

iso(T2) satisfies

Hs
iso(T2) = Hs,0

iso-mix(T
2) = Hs(T)⊗ L2(T) ∩ L2(T)⊗Hs(T)

while the classical Sobolev space Ht
mix(T2) of dominating mixed regularity, also

called mixed Sobolev space, satisfies

Ht
mix(T2) = H0,t

iso-mix(T
2).

We refer to Figure 1 for an illustration of the different Sobolev spaces under con-
sideration. It especially shows the obvious embeddings

Hs+t
mix (T

2) ⊂ Hs,t
iso-mix(T

2) ⊂ Hs
iso(T2).

3.2. Bernstein and Jackson inequalities. If κ(·, ·) is the reproducing kernel in
Hp(T), then the product kernel

(3.2) κ(x,y) := κ(x1, y1)⊗ κ(x2, y2).

is the reproducing kernel in the mixed Sobolev space Hp
mix(T2). This space will

serve as the reproducing kernel Hilbert space under consideration, where we carry
out all our estimates in the following.

Remark 3.1. Let κs(x, y) be the kernel for the Sobolev space Hs(T) and κt(x, y) be
the kernel for the Sobolev space Ht(T), where we assume that d/2 < t ≤ s. Then,
the kernel

(3.3) κ(x,y) := κs(x1, y1)⊗ κt(x2, y2) + κt(x1, y1)⊗ κs(x2, y2)

is the kernel of the Sobolev space of hybrid smoothnessHs−t,t
iso-mix(T2). Note, however,

that for this kernel no estimates on the approximation errors are known so far.

Given a function u ∈ Hp
mix(T2), the computation of the respective kernel inter-

polant u 7→ P ju ∈ V j := Vj1 ⊗ Vj2 , where

P j := Pj1 ⊗ Pj2 : Hp
mix(T

2) → V j
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H2p
mix(T2)

H
3p
2

mix(T2)

H
p, p2
iso-mix(T2)

Hp
iso(T2)

α

β

p

3
2p

2p

p 3
2p

2p

Figure 1. Visualization of the derivatives ∂α
x ∂

β
y f(x, y) being

bounded in the Sobolev spaces Hs,t
iso-mix(T2) of hybrid regularity

in comparison to the isotropic Sobolev spaces Hs
iso(T2) and the

Sobolev spaces of dominating mixed derivatives Ht
mix(T2) for the

specific choices of s and t.

with Pj given by (2.5), amounts to solving the linear system of equations

(3.4) (Kj1 ⊗Kj2)uj = f j .

Here Kj1 and Kj2 are the univariate kernel matrices defined in (2.4), while

uj = [uj,k]k∈∆j
, f j = [u(xj,k)]k∈∆j

,

where

∆j := ∆j1 ×∆j2 , xj,k := (xj1,k1
, xj2,k2

).

Since the system matrix is a Kronecker product of periodic Toeplitz matrices, the
linear system (3.4) of equations can efficiently be solved by means of the fast Fourier
transform using well-known tensor and matrizication techniques found in e.g. [17].

Setting

Qj := Qj1 ⊗Qj2 = (Pj1 − Pj1−1)⊗ (Pj2 − Pj2−1) : H
p
mix(T

2) → Vj1 ⊗ Vj2

with Qj given by (2.9), and using standard tensor product arguments, we obtain
in view of (2.10) the approximation property

(3.5) ∥Qju∥Ht1
mix(T2)

≲ 2−(t2−t1)∥j∥1∥u∥
H

t2
mix(T2)

for all 0 ≤ t1 ≤ p ≤ t2 ≤ 2p

and in view of (2.11) the inverse inequality

(3.6) ∥Qju∥Ht2
mix(T2)

≲ 2(t2−t1)∥j∥1∥Qju∥Ht1
mix(T2)

for all 0 ≤ t1 ≤ t2 ≤ p.
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Lemma 3.2 (Isotropic inverse estimate). For 0 ≤ s1 ≤ s2 ≤ p and u ∈ Hp
mix(T2),

we find

∥Qju∥Hs2
iso(T2) ≲ 2(s2−s1)∥j∥∞∥Qju∥Hs1

iso(T2)

for all j ∈ N2
0.

Proof. According to the univariate inverse estimate (2.11), we find

∥Qju∥Hs2
iso(T2) ≲ ∥Qju∥Hs2 (T)⊗L2(T) + ∥Qju∥L2(T)⊗Hs2 (T)

≲ 2(s2−s1)j1∥Qju∥Hs1 (T)⊗L2(T) + 2(s2−s1)j2∥Qju∥L2(T)⊗Hs1 (T)

≲ 2(s2−s1)∥j∥∞∥Qju∥Hs1
iso(T2).

□

We note that the proof applies also if we add some mixed Sobolev regularity
t ≥ 0, i.e., we have

(3.7) ∥Qju∥Hs2,t

iso-mix(T2)
≲ 2(s2−s1)∥j∥∞∥Qju∥Hs1,t

iso-mix(T2)

for all j ∈ N2
0 provided that 0 ≤ s1 ≤ s2 ≤ p − t. Indeed, even more general, we

will proof the following result.

Lemma 3.3 (General inverse estimate). For 0 ≤ s1 ≤ s2 ≤ p and 0 ≤ t1 ≤ t2 ≤ p
such that s2 + t2 ≤ p and u ∈ Hp

mix(T2), there holds

∥Qju∥Hs2,t2
iso-mix(T2)

≲ 2(s2−s1)∥j∥∞+(t2−t1)∥j∥1∥Qju∥Hs1,t1
iso-mix(T2)

for all j ∈ N2
0.

Proof. Applying (3.7) yields

∥Qju∥Hs2,t2
iso-mix(T2)

≲ 2(s2−s1)∥j∥∞∥Qju∥Hs1,t2
iso-mix(T2)

.

In view of the inverse estimate (3.6), we further have

∥Qju∥Hs1,t2
iso-mix(T2)

≲ 2(t2−t1)∥j∥1∥Qju∥Hs1,t1
iso-mix(T2)

.

Putting both estimates together, we obtain the desired result. □

3.3. Optimized sparse grid spaces. We now discuss the construction of optimal
sparse grid spaces for the approximation in the Sobolev space Hs,t

iso-mix(T2) of hybrid
smoothness as given in (3.1). To this end, define the optimized sparse grid space

(3.8) V̂
λ

J :=
∑
λ∈Iλ

J

Vj1 ⊗ Vj2 ,

where the underlying index set for the levels is given by

(3.9) Iλ
J = {j ∈ N2

0 : ∥j∥1 − λ∥j∥∞ ≤ J(1− λ)}

with λ ∈ (−∞, 1). Note that the choice λ → −∞ yields the classical full tensor
product space while the choice λ = 0 results in the classical sparse grid space,
compare Figure 2 for an illustration.
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Figure 2. The index sets Iλ
J for J = 200 and λ → −∞ (top

left), λ = −1 (top right), λ = 0 (bottom left), and λ = 0.5 (bottom
right).

Theorem 3.4 (Complexity). Consider the sparse grid space V̂
λ

J given by (3.8)
with (3.9) and λ ∈ (−∞, 1). Then there holds

dim
(
V̂

λ

J

)
≲


2J , if λ > 0,

2JJ, if λ = 0,

22J
1−λ
2−λ , if λ < 0.

Proof. We assume without loss of generality that λ ̸= 0 as the result for the standard
sparse grid is well-known, see [4] for example.

We first note that the inequality in (3.9) can be rewritten by means of ∥j∥1 =
min{j1, j2}+max{j1, j2} and ∥j∥∞ = max{j1, j2} as

min{j1, j2}+max{j1, j2}(1− λ) ≤ J(1− λ).

Hence, the indices contained in Iλ
J are characterized by the inequality

min{j1, j2}
1− λ

+max{j1, j2} ≤ J.

The minimum and maximum switches at the level j that satisfies

(3.10)
j

1− λ
+ j = J ⇒ j = J

1− λ

2− λ
.



KERNEL INTERPOLATION IN SOBOLEV SPACES OF HYBRID REGULARITY 9

Hence, we can estimate1

dim
(
V̂

λ

J

)
≲

J 1−λ
2−λ∑

j2=0

J− j2
1−λ∑

j1=0

2j1+j2 +

J 1−λ
2−λ∑

j1=0

J− j1
1−λ∑

j2=0

2j1+j2

≲

J 1−λ
2−λ∑

j2=0

2j2+J− j2
1−λ +

J 1−λ
2−λ∑

j1=0

2j1+J− j1
1−λ

≲ 2J

[ J 1−λ
2−λ∑

j2=0

2−j2
λ

1−λ +

J 1−λ
2−λ∑

j1=0

2−j1
λ

1−λ

]
.

If λ > 0, we have always negative exponents in the sums and arrive therefore at

the desired claim dim
(
V̂

λ

J

)
≲ 2J . If λ < 0, the exponents in the sums are always

positive which amounts to

dim
(
V̂

λ

J

)
≲ 2J2−J λ

2−λ = 22J
1−λ
2−λ .

□

We see that the logarithm in the dimension of the optimized sparse grid space

V̂
λ

J disappears for λ > 0, whereas the dimension tends towards the dimension of
the full tensor product space VJ ⊗ VJ for λ → −∞

3.4. Approximation rates. We shall next investigate the approximation power

of the sparse grid space V̂
λ

J . To this end, we define the projection Q̂
λ

J : Hp
mix(T2) →

V̂
λ

J onto the optimized sparse grid space V̂
λ

J by

Q̂
λ

J =
∑
j∈Iλ

J

Qj .

Theorem 3.5 (Iso-mix-convergence). Assume 0 ≤ s ≤ p and p ≤ t ≤ 2p. Then,
there holds ∥∥u− Q̂

λ

Ju
∥∥
Hs

iso(T2)
≲ 2−J(t−s)∥u∥Ht

mix(T2)

provided that λ ∈ [0, s
t ). If λ = s

t , then an additional logarithmic factor appears,
i.e. ∥∥u− Q̂

λ

Ju
∥∥
Hs

iso(T2)
≲ J2−J(t−s)∥u∥Ht

mix(T2).

Proof. By combining the isotropic inverse estimate from Lemma 3.2 with the ap-
proximation property (3.5) we find that

∥u− Q̂
λ

Ju∥Hs
iso(T2) ≤

∑
j ̸∈Iλ

J

∥Qju∥Hs
iso(T2)

≲
∑
j ̸∈Iλ

J

2s∥j∥∞∥Qju∥L2(T2)

≲
∑
j ̸∈Iλ

J

2s∥j∥∞−t∥j∥1∥u∥Ht
mix(T2).

1Note that we count here for simplicity certain indices twice. However, this does only enter
into the generic constant.
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...

· · ·

C

A

B

Iλ
J

j1

j2

J

J 1−λ
2−λ

JJ 1−λ
2−λ

Figure 3. Visualization of the panelization of N2
0 into the index

set Iλ
J and the index sets which enter the sums A, B, and C.

We obtain2

∥∥u− Q̂
λ

Ju
∥∥
Hs

iso(T2)
≲

J 1−λ
2−λ∑

j2=0

∞∑
j1=J− j2

1−λ

2s∥j∥∞−t∥j∥1∥u∥Ht
mix(T2)

+

J 1−λ
2−λ∑

j1=0

∞∑
j2=J− j1

1−λ

2s∥j∥∞−t∥j∥1∥u∥Ht
mix(T2)

+

∞∑
j1=J 1−λ

2−λ

∞∑
j2=J 1−λ

2−λ

2s∥j∥∞−t∥j∥1∥u∥Ht
mix(T2) = A+B + C,

where obviously A = B holds, compare Figure 3 for an illustration.
To estimate B we use

B ≲

J 1−λ
2−λ∑

j1=0

∞∑
j2=J− j1

1−λ

2(s−t)j2−tj1∥u∥Ht
mix(T2)

≲

J 1−λ
2−λ∑

j1=0

2(s−t)(J− j1
1−λ )−tj1

∞∑
j2=0

2(s−t)j2

︸ ︷︷ ︸
≲1

∥u∥Ht
mix(T2)

≲ 2(s−t)J

J 1−λ
2−λ∑

j1=0

2(t−s)
j1

1−λ−tj1∥u∥Ht
mix(T2).

2Here and in the following, the summation limits are in general no natural numbers and must of
course be rounded properly. We leave this to the reader to avoid cumbersome floor/ceil-notations.
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If 0 ≤ λ < s
t , the exponent is negative and hence the sum is uniformly bounded by

a constant, leading to

B ≲ 2(s−t)J∥u∥Ht
mix(T2).

If λ = s
t , the exponent in the sum is equal to zero such that the sum is proportional

to J which yields an additional logarithmic factor, i.e.

B ≲ J2(s−t)J∥u∥Ht
mix(T2).

For the expression C we have

C

2
≲

∞∑
j1=J 1−λ

2−λ

∞∑
j2=j1

2(s−t)j2−tj1∥u∥Ht
mix(T2)

≲
∞∑

j1=J 1−λ
2−λ

2(s−2t)j1

∞∑
j2=0

2(s−t)j2

︸ ︷︷ ︸
≲1

∥u∥Ht
mix(T2)

≲ 2J(s−2t) 1−λ
2−λ

∞∑
j1=0

2(s−2t)j1

︸ ︷︷ ︸
≲1

∥u∥Ht
mix(T2) ≲ 2J(s−t)∥u∥Ht

mix(T2),

where we used in the the last step that

(2t− s)
1− λ

2− λ
≥ t− s

whenever λ ∈ [0, s
t ].

Putting the estimates of A = B and C together yields the desired result. □

Remark 3.6. We note that the above proof is inherently different from that in
[13, 14], which is based on wavelets, since we now cannot exploit norm equivalences
any more for our kernel approach. As a consequence, we obtain the logarithmic
factor J for the choice λ = s

t , which is not contained in the error estimate of
[13, 14]. Nevertheless, in case of λ ∈ (0, s

t ), neither the rate of approximation nor

the number N of degrees of freedom in V̂
λ

J exhibit a logarithmic factor. This means
that the convergence rate does not suffer from curse of dimension, i.e., we obtain
the same rate as for the univariate kernel interpolation:∥∥u− Q̂

λ

Ju
∥∥
Hs

iso(T2)
≲ N−(t−s)∥u∥Ht

mix(T2).

Having this result proven, we can easily generalize it to Sobolev spaces of hybrid
regularity.

Theorem 3.7 (General convergence). Assume 0 ≤ s2 ≤ s1 ≤ p and 0 ≤ t1 ≤ t2 ≤
2p such that we have3

H2p
mix(T

2) ⊂ Hs2,t2
iso-mix(T

2) ⊂ Hp
mix(T

2) ⊂ Hs1,t1
iso-mix(T

2) ⊂ L2(T2).

Then there holds∥∥u− Q̂
λ

Ju
∥∥
H

s1,t1
iso-mix(T2)

≲ 2−J((t2−t1)−(s1−s2))∥u∥
H

s2,t2
iso-mix(T2)

3The desired embedding amounts to the inequalities s1 + t1 ≤ p ≤ s2
2

+ t2 and s2 + t2 ≤ 2p.
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provided that λ ∈ [0, s1−s2
t2−t1

). If λ = s1−s2
t2−t1

, an additional logarithmic factor appears,
i.e. ∥∥u− Q̂

λ

Ju
∥∥
H

s1,t1
iso-mix(T2)

≲ J2−J((t2−t1)−(s1−s2))∥u∥
H

s2,t2
iso-mix(T2)

.

Proof. In view of Lemma 3.3, we find∥∥u− Q̂
λ

Ju
∥∥
H

s1,t1
iso-mix(T2)

≤
∑
j ̸∈Iλ

J

∥Qju∥Hs1,t1
iso-mix(T2)

≲
∑
j ̸∈Iλ

J

2(s1−s2)∥j∥∞∥Qju∥Hs2,t1
iso-mix(T2)

≲
∑
j ̸∈Iλ

J

2(s1−s2)∥j∥∞−(t2−t1)∥j∥1∥u∥
H

s2,t2
iso-mix(T2)

.

Proceeding now in complete analogy to the proof of Theorem 3.5, but with s1 − s2
instead of s and t2 − t1 instead of t, yields the desired claim. □

Remark 3.8. The condition s1 ≥ s2 is essential for the present result, meaning
that we measure the error in a space which has a higher isotropic smoothness
than the function to be approximated. If s1 = s2, we find λ = 0, such that the
interval [0, s1−s2

t2−t1
) is empty and we always obtain the logarithmic factor J in the

approximation error. We should further mention that the result of Theorem 3.7
could also be shown in [13, 14] for s1 < s2 due to the norm equivalences of wavelet
bases. This is however not possible in our situation using kernel interpolants.
Nevertheless, s1 < s2 also implies λ < 0 and hence results in associated optimized
sparse grids which contain significantly more points than the regular sparse grid.
As a consequence, the cost complexity would be higher than (poly-) loglinear in
this situation.

4. Extension to higher dimensions

4.1. Sobolev spaces of hybrid regularity. In higher dimensions, the Sobolev
spaces of dominating mixed derivatives are defined by

Ht
mix(Td) :=

d⊗
j=1

Ht
mix(T).

This means that Ht
mix(Td) contains all periodic functions f ∈ L2(Td) with bounded

derivatives ∥∂αf∥L2(Td) < ∞ for all ∥α∥∞ ≤ t. In contrast, the classical, isotropic
Sobolev space

Hs
iso(Td) :=

d⋂
i=1

[( i−1⊗
j=1

L2(T)
)
⊗Hs(T)⊗

( d⊗
j=i+1

L2(T)
)]

contains all periodic function with bounded derivatives ∥∂αf∥L2(Td) < ∞ for all
∥α∥1 ≤ s.

The Sobolev space of hybrid regularity can be defined in analogy to (3.1) as

Hs,t
iso-mix(T

d) :=

d⋂
i=1

[( i−1⊗
j=1

Ht(T)
)
⊗Hs+t(T)⊗

( d⊗
j=i+1

Ht(T)
)]

.
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It consists of all periodic functions f ∈ L2(Td) with derivatives ∥∂αf∥Ht
mix(Td) < ∞

bounded in Ht
mix(Td) for all ∥α∥1 ≤ s.

Note that there holds the series of embeddings

(4.1) H
s+ t

d

mix (Td) ⊂ H
s+ t

d

iso (Td) ⊂ Hs,t
iso-mix(T

d) ⊂ Hs
iso(Td) ⊂ H

s
d

mix(T
d)

for all s, t ≥ 0 and d ≥ 1.

4.2. Kernel interpolation. We now investigate kernel interpolation in Hp
mix(Td).

The reproducing kernel κ(x,y) in Hp
mix(Td) is given as the d-fold tensor product

of the univariate kernel, which means that

κ(x,y) =

d∏
k=1

κ(xk, yk).

We define the projections P j and Qj by

P j := Pj1 ⊗ · · · ⊗ Pjd , Qj := Qj1 ⊗ · · · ⊗Qjd .

Given a function u ∈ Hp
mix(Td), the kernel interpolant

P ju =
∑

k∈∆j

uj,kκ(x,xj,k)

with respect to the (full) tensor product grid

Xj :=
d

×
i=1

Xji =

{
xj,k = (xj1,k1

, . . . , xjd,kd
) : k ∈ ∆j :=

d

×
ℓ=1

∆jℓ,kℓ

}
is obtained by solving the system

(4.2) (Kj1 ⊗ · · · ⊗Kjd)uj = f j ,

where the univariate kernel matrices Kjℓ = [κ(xjℓ,k, xjℓ,k′)]k,k′∈∆jℓ
are given by

(2.4) and

uj = [uj,k]k∈∆j
, f j = [u(xj,k)]k∈∆j

.

We again note that the linear system (3.4) of equations can efficiently be solved
by using the fast Fourier transform in combination with well-known tensor and
matrizication techniques found in e.g. [17].

Obviously, the kernel interpolant is the best approximation of u ∈ Hp
mix(Td) in

the subspace

V j =

d⊗
i=1

Vji = span{κ(·,x) : x ∈ Xj} ⊂ Hp
mix(T

d)

with respect to the Hp
mix(Td)-norm.

4.3. Bernstein and Jackson inequalities. We find the following straightforward
extension of Lemma 3.3 to the d-dimensional setting:

Lemma 4.1 (General inverse estimate). For 0 ≤ s1 ≤ s2 ≤ p and 0 ≤ t1 ≤ t2 ≤ p
such that s2 + t2 ≤ p and u ∈ Hp

mix(Td), there holds

∥Qju∥Hs2,t2
iso-mix(Td)

≲ 2(s2−s1)∥j∥∞+(t2−t1)∥j∥1∥Qju∥Hs1,t1
iso-mix(Td)

for all j ∈ Nd
0.
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Now, we introduce for λ ∈ (−∞, 1) the index set

Iλ
J = {j ∈ Nd

0 : ∥j∥1 − λ∥j∥∞ ≤ J(1− λ)}.
This yields the optimized sparse grid space

V̂
λ

J :=
∑
j∈Iλ

J

V j =
∑
j∈Iλ

J

d⊗
i=1

Vji ,

which has the dimension

dim
(
V̂

λ

J

)
≲


2J , if λ > 0,

2JJd−1, if λ = 0,

2Jd
1−λ
d−λ , if λ < 0.

The last case is seen as follows: If we are looking for the largest level j ∈ Nd
0 with

j1 = · · · = jd =: j such that the index j is still contained in Iλ
J , we find

dj − λj = J(1− λ) ⇒ j = J
1− λ

d− λ

in analogy to (3.10). This is the largest full tensor product space V j =
⊗d

j=1 Vj

that is contained in V̂
λ

J . It has

dim(V j) = dim(Vj)
d = 2Jd

1−λ
d−λ

degrees of freedom and gives the bound for dim
(
V̂

λ

J

)
in the case λ < 0, compare

also [13, 14].
Finally, the generalization of Theorem 3.7 to the d-dimensional setting reads as

follows, compare also [13, 14]:

Theorem 4.2 (General convergence). Assume 0 ≤ s2 ≤ s1 ≤ p and 0 ≤ t1 ≤ t2 ≤
2p such that4

(4.3) H2p
mix(T

d) ⊂ Hs2,t2
iso-mix(T

d) ⊂ Hp
mix(T

d) ⊂ Hs1,t1
iso-mix(T

d) ⊂ L2(Td).

Then there holds∥∥u− Q̂
λ

Ju
∥∥
H

s1,t1
iso-mix(Td)

≲ 2−J((t2−t1)−(s1−s2))∥u∥
H

s2,t2
iso-mix(Td)

provided that λ ∈ [0, s1−s2
t2−t1

). If λ = s1−s2
t2−t1

, an additional polylogarithmic factor
appears, i.e.∥∥u− Q̂

λ

Ju
∥∥
H

s1,t1
iso-mix(Td)

≲ Jd−12−J((t2−t1)−(s1−s2))∥u∥
H

s2,t2
iso-mix(Td)

.

Proof. The proof is along the lines of the proof of Theorem 3.5. One has∥∥u− Q̂
λ

Ju
∥∥
H

s1,t1
iso-mix(T2)

≤
∑
j ̸∈Iλ

J

∥Qju∥Hs1,t1
iso-mix(T2)

≲
∑
j ̸∈Iλ

J

2(s1−s2)∥j∥∞∥Qju∥Hs2,t1
iso-mix(T2)

≲
∑
j ̸∈Iλ

J

2(s1−s2)∥j∥∞−(t2−t1)∥j∥1∥u∥
H

s2,t2
iso-mix(T2)

.

4In view of (4.1), the desired embedding amounts to the inequalities s1 + t1 ≤ p ≤ s2
d

+ t2 and

s2 + t2 ≤ 2p.
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We find

{j ∈ Nd
0 : ∥j∥1 − λ∥j∥∞ > J(1− λ)} =

d⋃
k=1

Ak

with

Ak :=

{
j ∈ Nd

0 : jk = ∥j∥∞ ∧
d∑

i=1
i̸=k

ji + (1− λ)jk > J(1− λ)

}
.

Hence,

∥∥u− Q̂
λ

Ju
∥∥
H

s1,t1
iso-mix(T2)

≲
d∑

k=1

∑
j∈Ak

2−(t2−t1)
∑

i̸=k ji2((s1−s2)−(t2−t1))jk∥u∥
H

s2,t2
iso-mix(T2)

.

Since there holds

Ak ⊂ Bk :=

{
j ∈ Nd

0 :

d∑
i=1
i̸=k

ji + (1− λ)jk > J(1− λ)

}
,

we can further estimate

∥∥u− Q̂
λ

Ju
∥∥
H

s1,t1
iso-mix(T2)

≲
d∑

k=1

∑
j∈Bk

2−(t2−t1)
∑

i̸=k ji2((s1−s2)−(t2−t1))jk∥u∥
H

s2,t2
iso-mix(T2)

.

The error contributions in each of the simplicial index sets Bk corresponds to the
error of a generalized sparse grid with weights αi = 1

1−λ for i ̸= k and αk = 1,

compare [11]. Thus, the k-th error contributions can be estimated by using [11],
leading to the desired bound. In particular, the polylogarithmic factor Jd−1 appears
only in the case when the error contributions are identical along the boundary of
the index set Iλ

J , which is only the case for λ = s1−s2
t2−t1

. □

4.4. Computation of the sparse grid kernel interpolant. We should finally

comment on the computation of the kernel interpolant Q̂
λ

Ju. We may employ the
sparse grid combination technique as introduced in [16, 29]. To this end, we use
the identity

(4.4) Q̂
λ

J =
∑
j∈Iλ

J

cjP j , where cj :=
∑

j′∈{0,1}d:

j+j′∈Iλ
J

(−1)∥j
′∥1 ,

compare [6, 7]. Hence, the sought sparse grid kernel interpolant Q̂
λ

Ju is composed
by the tensor product kernel interpolants uj := P ju from the different full tensor
product spaces V j with cj ̸= 0. Each of the tensor product kernel interpolants uj

can now be computed (completely in parallel) by solving the linear system (4.2)
of equations. We emphasize that the combination technique does not introduce
an additional consistency error for the problem under consideration, see [12] for a
proof.
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5. Conclusion

In the present article, we have shown that the approximation rate for kernel
interpolation in Hp

mix(Td) with respect to optimized sparse grids, i.e.

(5.1)
∥∥u− Q̂

λ

Ju
∥∥
H

s1,t1
iso-mix(Td)

≲ 2−J((t2−t1)−(s1−s2))∥u∥
H

s2,t2
iso-mix(Td)

,

is dimension independent for the choice 0 < λ < s1−s2
t2−t1

whenever 0 ≤ s2 ≤ s1 ≤ p

and 0 ≤ t1 ≤ t2 ≤ 2p such that (4.3) holds and u ∈ Hp
mix(Td) is sufficiently smooth.

Nevertheless we like to emphasize that the generic constant which is involved in
this error estimate still depends (exponentially) on the dimension d.

The result (5.1) carries over straighforwardly to quasi-uniform point sets

X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ T
instead of equidistant point sets, where the cardinality of the point sets

Xj := {xj,k : k ∈ ∆j}
satisfies |∆j | ∼ 2j . The notion quasi-uniform means in the present context that the
fill distance satisfies

hj := sup
x∈T

min
xk∈Xj

∥x− xk∥2 ≲ 2−j

while the separation radius satisfies

qj := min
xk,xℓ∈Xj :

xk ̸=xℓ

1

2
∥xk − xℓ∥2 ≳ 2−j .

Our result applies moreover one-to-one to general product domains and the non-
periodic case as described in [12], if the doubling trick from [26, 28] is applicable.
Thanks to this trick we are able to exploit extra smoothness if present for the
function to be approximated. Nonetheless, if the doubling trick does not apply, we
still have an estimate of the form∥∥u− Q̂

λ

Ju
∥∥
Hs,t

iso-mix(Td)
≲ 2−J((p−t)−s)∥u∥Hp

mix(Td)

whenever 0 < s, 0 ≤ t, and s+ t
d ≤ p. Hence, in general, no logarithm appears in

the approximation rate for kernel interpolation if we measure the error with respect
to an isotropic Sobolev space being different from L2(Td) for the choice 0 < λ < s

t .
In case of the Schrödinger equation, one has the product of three-dimensional

one-particle spaces instead of just one-dimensional spaces like in our article here and
s1 = 1, t1 = 0, and s2 = 1, while 1

2 ≤ t2 ≤ 1 depends on the particular symmetry
behaviour of the wavefunctions, see [24, 36] for the details. This means that the

usual sparse grid space (i.e., the space V̂
λ

J with λ = 0, now on three-dimensional
particle spaces) would be optimal, which results in (poly-) logarithmic factors in
the number of degrees of freedom as well as in the rate of approximation. Note that
the antisymmetry of the wavefunctions can be built into the kernel interpolant in
accordance with [23].
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