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ABSTRACT. This paper presents a Riemannian trust region algorithm for un-
constrained optimization problems with locally Lipschitz objective functions
defined on complete Riemannian manifolds. To this end we define a function
® : TM — R on the tangent bundle TM, and at k-th iteration, using the
restricted function ‘I>|kaM where T, M is the tangent space at xj, a local
model function @ that carries both first and second order information for
the locally Lipschitz objective function f : M — R on a Riemannian mani-
fold M, is defined and minimized over a trust region. We establish the global
convergence of the proposed algorithm. Moreover, using the Riemannian e-
subdifferential, a suitable model function is defined. Numerical experiments
illustrate our results.

1. INTRODUCTION

Most classical problems considered in optimization are formulated in Banach
spaces, where the linear structure plays an important role. However, many prob-
lems in computer vision, robotics, signal processing and geometric mechanics, to
name but a few, are more conveniently expressed as optimization problems on Rie-
mannian manifolds [4, 38, 34, 45, 48, 51]. Therefore it is of eminent interest to
develop useful computational and theoretical tools of optimization on manifolds.
This paper is concerned with the numerical solution of optimization problems de-
fined on Riemannian manifolds where the objective function may be nonsmooth.

Many algorithms for solving the following unconstrained optimization problem,

min f(z)
where f : R™ — R is continuously differentiable, have been proposed. Trust region
methods are an important class of iterative methods due to their strong global
convergence and fast local convergence; see [17] . In this class of iterative methods,
a step to the k+ 1-th iterate is obtained by minimizing a model function @y defined
by

Qi(wr,d) = f(zy) + V(zr)Td+ %dTBkd,

over a restricted region centered at the current iterate. It is worth pointing out
that in this model function, By is adequately selected and the model function
preserves the first and second order information of the objective function f. The
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so-called trust region ratio evaluates an agreement between the model and the
actual objective reductions along the computed step. Considering the trust region
ratio, one can decide whether the step is accepted or rejected. After that the trust
region radius is updated and a new point is obtained.

The classical trust region methods for smooth problems cannot be used for non-
smooth ones since in general the gradient of the objective function at the current
iterate does not exist. Several trust region methods for minimizing a nonsmooth
objective function defined on a linear space have been presented and applied to the
nonlinear equations problem, the nonlinear fitting problem, and the constrained
optimization problems; see [42, 18, 3] and references therein. The most well-known
nonsmooth trust region methods begin from a starting point x; which may not be
close to the minimum of the objective function f : R®™ — R. They use a function
® : R™ x R™ — R to build at each iteration a model @ defined by

Qulre,d) = flax) + Blar,d) + 5d” Bud,

which must be an approximation of f(x + d) for small d. Therefore, they should
impose some conditions on the function ® : R™ x R™ — R and the sequence of the
symmetric matrices By. For instance, [42] is among the first works on trust region
methods for unconstrained optimization problems with locally Lipschitz objective
functions; in that article several conditions on B and & : R™ x R™ — R are
proposed, which insure that @ is an approximation for f(zy + d) for small d and
the algorithm is convergent.

Nonsmooth trust region algorithms approximately solve the subproblem

(acn <5, QK@D
to obtain di. Using the trust region ratio, either the step is accepted or rejected.

The extension of nonsmooth trust region algorithms and their (global) conver-
gence properties to Riemannian manifolds are the subject of the present paper. A
manifold, in general, does not have a linear structure; hence the usual techniques,
which are often used to study optimization problems on linear spaces cannot be
applied and new techniques need to be developed.

There is clearly a link between the techniques of optimization on manifolds and
standard constrained optimization approaches. However, there are manifolds that
are not defined as constrained sets in R™; important examples are Grassmann mani-
folds [6, 14] or symmetric positive definite matrices [9, 40, 54]. To solve optimization
problems on these spaces, intrinsic methods are a popular method of choice.

A manifold is, per definition, locally isomorphic to a linear space via chart maps.
For this reason one might wonder whether it suffices to simply work in a chart
domain and use classical linear algorithms. Unfortunately, such an approach does
in general not lead to useful algorithms: First of all symmetries of the underlying
Riemannian manifold will in general not be respected by such algorithms. Moreover,
there often does not exist a canonical useful representation for charts. But more
fundamentally, localizing to a chart inevitably leads to distortions in the metric
which leads to much slower convergence. Finally, we are interested in establishing
global convergence of the algorithms which we study. Such a property is clearly out
of reach by working in a chart domain, which is a local procedure (it should now
also be clear that the mathematical analysis of global convergence requires global
arguments from Riemannian geometry and cannot be deduced from corresponding
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linear results). For all those reasons, together with the evident need for efficient
and reliable Riemannian optimization algorithms, the construction and study of
intrinsic algorithms has become a thriving area of research in the past few years.

The development of Riemannian nonsmooth optimization algorithms is primarily
motivated by large-scale applications that have gained much popularity in recent
years regarding the framework of ! optimization, stochastic optimization, and sta-
tistical learning. Those applications include robust, sparse, structured principal
component analysis, statistics on manifolds (e.g. median calculation of positive
semidefnite tensors), and low-rank optimization (matrix completion, collaborative
filtering, source separation); see [32, 52, 53, 51]. Furthermore, these algorithms have
many applications in image processing, computer vision, nonsmooth constrained
optimization problems on linear spaces; [5, 15, 21].

Previous Work. For the optimization of smooth objective functions many
classical methods for unconstrained minimization, such as Newton-type and trust-
region methods, have been successfully generalized to problems on Riemannian
manifolds; see [1, 4, 19, 38, 44, 49, 50, 55]. The recent monograph [2] by Absil,
Mahony and Sepulchre discusses, in a systematic way, the framework and many
numerical first-order and second-order manifold-based algorithms for minimization
problems on Riemannian manifolds with an emphasis on applications to numerical
linear algebra; see [2].

As we discussed above, one of the most important methods in the unconstrained
optimization of smooth functions is the trust region method due to its strong global
convergence and fast local convergence. In [1], a Riemannian trust region method
for smooth functions on Riemannian manifolds was introduced. Similar to Eu-
clidean trust region methods, the Riemannian trust region method ensures global
convergence properties while allowing superlinear local convergence. The trick in
[1] was to define a retraction R on a Riemannian manifold M that defines for any
x € M, a one-to-one correspondence R, between a neighborhood of z in M and a
neighborhood of 0, in the tangent space T, M. Using this retraction, the objective
function f on M is lifted to an objective function f, = foR, on T, M. Then a qua-
dratic model of f, is defined, and a classical method on the Euclidean space T, M is
used to compute a minimizer of the model within a trust region around 0, € T,, M.
Afterward, the minimizer is lifted back to M to be a new candidate for the next
iterate. The most noticeable point in the mentioned trust region method is that
it does not deal with a unique objective function since in any iteration the retrac-
tion is changed. However, the authors proved that under some conditions, the nice
properties of the classical trust region method are preserved in their Riemannian
generalizations.

In considering optimization problems with nonsmooth objective functions on
Riemannian manifolds, it is necessary to generalize concepts of nonsmooth analysis
to Riemannian manifolds. In the past few years a number of results have been
obtained on numerous aspects of nonsmooth analysis on Riemannian manifolds;
see [7, 8, 27, 28, 29, 37].

Recently, some mathematicians have started developing nonsmooth optimization
algorithms for manifold settings although their attempts are limited to generalizing
some subgradient based and proximal point algorithms. In [10, 13, 22], constrained
minimization problems on Hadamard manifolds are solved using a generalization
of the proximal point method. There have also been some studies by Ferreira,
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Bento and Oliveira and their colleagues who generalized subgradient-type meth-
ods for convex and quasiconvex functions defined on Riemannian manifolds; see
[11, 12, 20, 23, 41]. Finally, it is worth mentioning paper [21], which presents a
survey on Riemannian geometry methods for smooth and nonsmooth constrained
optimization as well as gradient and subgradient descent algorithms on a Riemann-
ian manifold. In that paper, the methods are illustrated by applications from
robotics and multi antenna communication.

Contributions. Our main contributions are twofold. First, we impose some
conditions on a function ® : TM — R, where T'M is the tangent bundle of a
Riemannian manifold M, to insure that our model function

Qk(zka ) = f(xk) + (I)(xkv ) + %<Bk"v > : Tsz —-R

preserves the first order information of the locally Lipschitz objective function
f M — R. Our proposed conditions are generalizations of the conditions in
[42]. Our first main result, Theorem 3.6, states that, provided these assumptions
are satisfied, then the Riemannian trust region scheme which iteratively (approxi-
mately) minimizes the model function @ on a ball in T,, M converges globally to
a critical point of f.

As the second main contribution of this paper, in Section 4 we propose several
choices for a suitable function ®, the simplest one being the Clarke generalized
directional derivative of f as a function TM — R. However, this function is only
practical if the subdifferential of f can be computed explicitly, which might not
be the case. Therefore, based on an approximation scheme for the so-called e-
subdifferential first introduced in [25] for the Riemannian case, we also present a
numerical approximation of the subdifferential which is efficiently computable and
which still yields a globally convergent algorithms. This is carried out in Section 4.

To the best of our knowledge, the resulting algorithm is the first practical non-
smooth trust region algorithm for locally Lipschitz functions defined on Riemannian
manifolds. In Section 5 we present some numerical experiments. Our proposed al-
gorithm is implemented in MATLAB and applied to some nonsmooth problems
with locally Lipschitz objective functions. Numerical results show that the pro-
posed algorithm has a far better performance in some problems in comparison with
existing first order methods, such as subgradient descent.

2. PRELIMINARIES

Throughout this paper, M is an n-dimensional complete manifold endowed with
a Riemannian metric (.,.) on the tangent space T, M; see [33]. As usual B(z,J)
denotes the open ball with respect to the Riemannian distance centered at x with
radius 6. For the point © € M, exp, : U, — M defines the exponential function at
x, where U, is an open subset of T,,M. For a minimizing geodesic v : [0,{] — M
connecting x to y in M, and for a vector v € T, M there is a unique parallel vector
field P along 7 such that P(0) = v, this is called the parallel translation of v along
7. The mapping T, M > v — P(l) € T,M is a linear isometry from T, M onto T, M.
This map is denoted by L,,. An easy consequence of the definition of the parallel
translation along a curve as a solution to an ordinary linear differential equation
implies that the mapping

(2.1) C:TM — Ty M, C(x,€) = Lyy, (£),
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when z is in a neighborhood U of xg, is well defined and continuous at (zg,&p);
that is, if (zn,&n) = (%0,&0) in TM then Ly, 40 (&n) = Lagzo (§0) = &o, for every
(x0,&0) € TM; see [7, Remark 6.11].

Note that ip7(z) denotes the injectivity radius of M at z; that is the supremum
of the radius r of all balls B(0,, r) in T,,M for which exp,, is a diffeomorphism from
B(0,,r) onto B(x,r). If U is a compact subset of a Riemannian manifold M and
i(U) :=inf{ip(x) : © €U}, then 0 < i(U); see [30].

A set S in a Riemannian manifold M is said to be convex if every two points
p1, p2 € S can be joined by a unique geodesic whose image belongs to S.

A real valued function f is said to be locally Lipschitz on M if f is Lipschitz
near x, for every x € M; that is for every z € M, there exit an open neighborhood
B(z,d) and a real number k£ > 0 such that | f(z) — f(y) |< kdist(z,y) for every
z,y € B(x,d), where dist is the Riemannian distance on M.

It is easy to see that the metric on TM can be defined as follows; see [16].
Assume that u, v € TM, 7 : TM — M is the projection map, and let v be a
piecewise smooth path from x = 7(u) to y = w(v), whose derivative is never zero.
Let L7, be the parallel translation along v. We define the square of the distance
from u to v as the infimum over all paths v from 7(u) to 7(v) of

dist., (u,v)? = ||L, (u) — v||* + length(v)?.

zy

To justify the above assertion, note that over a small piece of v, parallel trans-
lation gives us a canonical identification of any two tangent spaces, and hence the
tangent bundle is metrically the product of an interval and R".

If x and y are two points in the same convex neighbourhood in M, let « be the
geodesic joining them and L, be the parallel translation along v from the tangent
space at = to the tangent space at y. Then

distras(u,v)? < || Lay(u) — v||* + dist(z, y)?.

Moreover,
dist(z,y) < distrar(u,v).

3. A NONSMOOTH TRUST REGION METHOD ON RIEMANNIAN MANIFOLDS

Assume that f : M — R is alocally Lipschitz function on a complete Riemannian
manifold M.

The trust region algorithm proposed in the present section, which is based on
[42], relies on the choice of a function ® : TM — R (modeling the derivative of
f) and a sequence {By : k = 1,2,..} of n x n symmetric matrices (modeling the
Hessian of f) from which we build a sequence of model functions

Ou: { T = R
k (v, d) = flax) + O(ax, d) + 2 (Brd, d)

analogous to a second order Taylor expansion in the Euclidean case.
Then the proposed trust region scheme iteratively computes approximative min-
ima of these model functions over a trust region as follows:
Let
(3.1)
Z = argmin{Qk(xk,dk) = f(xk)+q)(ﬂfk,dk)+1/2<Bkdk,dk> : dk € Tka, Hdk” S 5k}
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Then in each iteration step we compute dj; or, if this turns out to be not practical,
an approximation dj of dj in the sense that

(3.2) flar) = Qrlar, di) > colf(xr) — Qr(xr, di)] and ||di < 0%,

for a fixed constant 0 < ¢g < 1.
Then, depending on the trust ratio in each step we either reduce the trust region
by reducing the value dj, and solving (3.1), or we update

(3.3) gy = expxk(cik),
see Algorithm 1.

Remark 3.1. A natural choice for the function ® would be the Clarke generalized
directional derivative of f as defined below in (4.1).

In case the Clarke generalized directional derivative of f is not given explicitly (as
is the case for instance in [21, Sections 3.2 and 3.3] and [31]), in Section 4 we also
propose a numerical approzimation which only solves (3.1). The choice of matrices
{By} is quite general; in our results they simply need to be uniformly bounded but
even this property can be weakened; see for instance [42]. In our algorithms we
have used a Riemannian generalization of the BFGS method to iteratively update
the matrices By; see also [43].

Remark 3.2. Instead of using the exponential map to update xi, we can choose
a retraction R : TM — M. The notion of retraction on a manifold, includes all
first-order approzimations to the Riemannian exponential; see [1]. The retraction
can be used to take a step in the direction of a tangent vector. Using a good retrac-
tion amounts to finding an approzimation of the exponential mapping that can be
computed with low computational cost while not adversely affecting the behavior of
the optimization algorithm.

In the remainder of this section we formulate assumptions on the ® to ensure
global convergence of the sequence (zy)x to a critical point of f, in the following
sense.

Definition 3.3. With f: M — R and ® : TM — R, define
(3.5) Y(z, ) = sup{—P(z,d) : de T, M, |d|| <}

The point x € M is called a critical point with respect to ® of the objective function
f if there exists 6 > 0 such that ¥(x,d) = 0.

In the Euclidean case the notion of critical point as defined in Definition 3.3 is
common in the context of nonsmooth trust region methods; see [42, 18]. Note that
the upper Dini directional derivative of f at z in the direction d € T, M denoted
by f*(x;d) is defined as follows;

FH(x;d) == limsup [f(exp,(td)) — f(z)
3a) s " .

A point z is called a Dini stationary point if for all d € T, M, f*(x;d) > 0. Under
weak assumptions a critical point corresponds to a so-called ‘Dini stationary point’
[42]. Indeed, we may impose the following assumption on ® in order to be able to
prove that any critical point of f is also a Dini stationary point of f.
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Algorithm 1 A nonsmooth trust region algorithm on Riemannian manifolds

1: Data: An n-dimensional complete Riemannian manifold (M, g); a real valued
locally Lipschitz function f on M.
2: Parameters: dg > 0, dg > §1 > 0, ¢, c1,¢2,¢3,¢4 >0, c0 <1 <1, cg < 1.
3: Input: initial iterate x; € M, and By € S(n), where S(n) denotes the space
of symmetric n x n-matrices.
4: Output: sequence of iterates {xy}.
5: for k=1,2,... do find
(3.4)
dy, = argmin{ Qg (zx, di) = f(zr)+P (2, dp)+1/2(Brdk, di) : di, € To, M, ||di|| < 6x}-
where ® : TM — R is a given function.
6: Assume d}, is an inexact solution of 3.4 in the sense that

f(ax) — Qu(ar, di) > col f(xr) — Qr(ak, di)]

7 if di, = 0 then, Stop.
8: else
9: _
e — flak) = flexpg, (di))
flar) = Qular, di)
10: if ¢y < rg, then x5 = eXpwk(cZk) and update Bj.
11: end if
12: if ri < co, then zy11 = xp, 041 = c30k.
13: else
14: if co < 1 < cq, then d; 1 = dg.
15: else 511 = min{cydy, do }-
16: end if
17: end if
18: end if
19: end for

Assumption 3.1. Assume that D is a bounded open convex set containing N :=
{reM: f(x) < f(zo)} and for allz € D and d € T, M it holds that

@) _ oy g),

lim inf
t10
where fT(xz;d) is the upper Dini directional derivative of f at x in the directional
deT, M.

It is obvious that if = is a critical point of f in the sense of Definition 3.3 then
O(x,td)

for ¢ small enough ®(x,td) > 0 and therefore liminf, g > 0. Hence, using

Assumption 3.1, we have that for all d € T, M, f*(x;d) > 0. One can also show
that a local minimizer x of a locally Lipschitz function f : M — R is always a
critical point, provided that the function ® satisfies some natural assumption. This
will be done in Lemma 3.4 below.

3.1. Convergence Conditions. Let ® : TM — R and I = {1,2,...}, N =
{r € M : f(x) < f(x1)} where z; is a starting point for Algorithm 1. Let



8 P. GROHS*, S. HOSSEINT*

{Br : k =1,2,..} be a sequence of n X n symmetric matrices. In this section,
we make some assumptions on ® and B and show that these assumptions ensure
global convergence of Algorithm 1 to a critical point of f in the sense of Definition
3.3. We extend results of [42] to the Riemannian case.

We start with the following assumptions on the function .

Assumption 3.2. Let ® : TM — R. Assume that

(3.6) ®(2,0,) =0 Ve € M,

(3.7 O(z,ad) < a®(x,d), V(r,d)eTM,0<a<l,
(3.8) for all x € M, ®|p,ar is lower semi continuous,
for any (x,d) € TM it holds that

(3.9) flexp,(d)) = f(z) < @(d) + o(|[d]),

and there exists 0, such that
(3.10) for all § < 0, the function v(.,0) is lower semi continuous,

where ¢ is defined in (3.5) and the implicit constant in the o-term is uniform over
compact sets.

First we show that, provided ® satisfies Assumption 3.2, every local minimum of
a locally Lipschitz function f: M — R is a critical point in the sense of Definition
3.3.

Lemma 3.4. Suppose that f: M — R and ® : TM — R such that Assumption 3.2
holds. Then every local minimizer of f is a critical point in the sense of Definition
3.3.

In order to establish this result we utilize the following simple lemma which is a
straightforward extension of [42, Lemma 3.1].

Lemma 3.5. Suppose that ¢ satisfies Assumption 3.2 and let 1 be defined by
(3.5). Then for any x € M, the function d — ¥(z,d), d € T, M, is nonnegative
and nondecreasing and for any o € [0, 1],

Y(z,ad) = ar(x,0),
and for any 6 > 0,
Y(x,6) =0 if and only if Y(x,1) = 0.
We can now proceed to the

Proof of Lemma 3.4. Suppose that Z is a local minimizer of f on some neighbor-

hood B(Z, §) which is not a critical point, then Lemma 3.5 implies that ¢(z, 1) > 0.

Therefore, there exists dz with ||dz|| < 1 such that ®(Z,dz) < 0. Assume that ¢ < 1

is small enough, hence by Assumptions (3.9) and (3.7)

flexpg(tdz)) — f(7) < (T, tdz) + o([[tdz|]) < t®(Z,dz) + o([[tdz]]).

Therefore, if ¢ is small enough

fexpy(tdz)) — f(Z)
t
which means that Z is not a local minimizer of f and this is a contradiction. [

< ®(z,dy)/2 < 0,
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Now we want to establish conditions for the convergence of Algorithm 1 to a
critical point of f.

We need to make more assumptions on the starting point and the sequence
(Bk)k-

Assumption 3.3. Recall N = {x € M : f(z) < f(x1)} where x1 is the starting
point of Algorithm 1. Assume that N is bounded. Furthermore assume that there
exists C' > 0 such that |Bg|| < C, for allk=1,2,....

The main theorem of this section reads as follows.

Theorem 3.6. Suppose that ® and (Bg) are such that Assumptions 3.2 and 3.3
hold true. If T is an accumulation point of {xy}, generated by Algorithm 1, then T
is a critical point of f in the sense of Definition 3.3.

In order to establish Theorem 3.6 we require the following result which can be
proved exactly in the same way as Lemma 3.2 in [42].

Lemma 3.7. Let x € M and § > 0,0 < ¢y < 1. Define
d* := argmin{Q,(d) := f(z) + ®(x,d) + 1/2(Bd,d) : de€ T, M, |d| <é}

and let d be an approzimate solution of the above problem in the sense that

f(@) = Qu(d) = colf(z) — Qu(d)] and |d] < 0.
Then, for all v > § it holds that
_ C .
f(2) = Qu(d) = iww,u) min{d, ¢ (z,v)/ (| B|v)},
where the second term in the min notation is understood as oo if B = 0.

The following lemma proves that if Algorithm 1 generates a sequence {zj} with
x, = T for all large k, then T is a critical point of f.

Lemma 3.8. Suppose that T is an accumulation point of {xx} which is not a critical
point. Then there exist € > 0 and B > 0 such that for all k satisfying

(3.11) dist(zy,T) <€, 0< 0 < B, |Bg| <C,

we have
_ Fw) — flexpy, ()
flzr) — Qulxy, dy)

where Ty, Ok, co are the same as in algorithm 1.

> co,

Proof. Since Z is not a critical point, Lemma 3.5 implies that 1 (Z,8) > 0 for
every 6 > 0. Using Assumption (3.10), let &, be such that for all 0 < § < 4.,
(., 0) is lower semi continuous. Therefore, there exist § > 0 and € > 0 such that
W(Z,6,) =260 >0 and

Y(xg, dx) > 0 provided dist(zy, ) < €.
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Assuming that §; < 8 < d., then by Assumption (3.9) and Lemma 3.7
(3.12)

fexp,, (di)) — Qi (y, di) < o(||dkll) — 1/2(Bdx, dx)
flar) = Qu(zr,dr) = (co/20.)¢(wk, ) min{dx, P(wr, ) /(|| Brl04)}
o([ldxl) + 1/2|| Bi]l[| x>
= (co/20.)(xk, 0.) min{y, (wk, 0.) /(|| Brlld:)}
o(|ldxl) +1/2C||d 5
= (co/20.)¢(@k, 0x) min{dx, P (zk, ) /(|| Bellds) }
< 0(0k)
=~ (c0/264)0 min{dy,0/(Cs.)}
Assuming that § is small enough, then
flexpg, (dr)) — Qu(xk, di)
flar) — Qrlxy, di)

which completes the proof.

<1—027

We can now proceed to the

Proof of Theorem 3.6. Note that M is a complete Riemannian manifold and N is
compact. We assume that an infinite subsequence {zy : k € I.} converges to some
Z which is not a critical point. Let Iy = {k: ry > c2} and I, C Iy. Therefore, by
Lemma 3.7

flzr) = f(zre1) 2 ca(f(zr) — Qr(zk, di))

> ik, o) min{d, o, o) /(1 Bel100))

> %7/)(%,50)min{5k7¢($ka5o)/(05o)}~
Therefore,
(3.13) +m>f@@—ﬂ@_2§§2¢mﬁ@mﬂ%,@m%ﬂm%»

kelg

By Lemma 3.5, we may find 8 and ¢ such that for all 0 < € < ¢y and xy, € clB(Z,¢),

(3.14) (g, 00) > (TR, 04) = B> 0.

Set h ={kely: o> %} and Iz = Ip \ I;. Then (3.13) shows that
0

(3.15) 37 (W(an, 00))” < +oo,
kel

and

(3.16) > (@, 60)dk < +o0.
kels

Hence, we may assume that there is N(e) > 0 such that for all k > N(e) and k € I,
we have

(3.17) dist(z,Z) < = and Z Y(xg, 00)0k <

kels, k>N (e)

N
N)\m
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By (3.17) and (3.14), we can prove that for all k& with kg < k < k1, where kg is
an index in I, with kg > N(e¢) and k; is the first index in I greater than ko,

dist(xg, T) < dist(zg—1,x) + dist(zr—1,T)

< dist(zg,, Z) + Z dist(Zma1, Tm)

ko<m<k,me&ly

< dist(zg,, T) + Z dist(exp,, (dm), Tm)

ko<m<k,mel>

1
ko<m<k,mé&lz
<e,
and therefore
(3.18) Y(xk,00) > Y(wk,04) > B> 0.

This means that I; must be finite since otherwise Y, ;. (¥(z, 50))2 is not finite.
Therefore, we have limy_,, zx = T for k € I and Zkelo 0 < 0o. This contradicts
the fact that 6511 > 0 for all large k € Iy and the proof is complete. O

4. A SUITABLE MODEL FUNCTION

In the previous Section 3, we have developed a general trust region method and
established global convergence, provided that some criteria on the function ® and
the sequence (By)r hold true. The present section presents several choices for @
which lead to convergent algorithms.

4.1. The Clarke generalized directional derivative. If f were a smooth func-
tion, then clearly the function ® would simply be the directional derivative of f.
It is clear that since the function is not necessarily differentiable, we cannot use
the differential of the objective function. However we might be able to use gen-
eralized directional derivatives instead. Let us continue with the definition of the
Clarke generalized directional derivative for locally Lipschitz functions on Riemann-
ian manifolds; see [27, 29].

Definition 4.1 (Clarke generalized directional derivative). Suppose f : M — R is a
locally Lipschitz function on a Riemannian manifold M. Let ¢, : U, — T, M be an
exponential chart at x. Given another point y € Uy, consider oy,,(t) := ¢, (tw), a
geodesic passing through y with derivative w, where (¢y,y) is an exponential chart
around y and d(¢z0¢,")(0y)(w) = v. Then, the Clarke generalized directional
derivative of f at x € M in the direction v € T, M, denoted by f°(x;v), is defined
as

fo(.’L', ’U) — limsup f(ay,v(t)) — f(y) )

y—x, t}0 t

If f is differentiable in z € M, we define the gradient of f as the unique vector
grad f(x) € T, M, which satisfies

(grad f(z),&) = df (z)(§) for all £ € T, M.
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Definition 4.2 (Subdifferential). We define the subdifferential of f, denoted by
Of(x), as the subset of T,M whose support function is f°(x;.). It can be proved
[27] that

of (z) = Conv{‘lim grad f(z;) : {x;} CQf, x; = z},

where 1y is a dense subset of M on which f is differentiable.*

Therefore, we have a good candidate for the function ® : TM — R, which can
be defined by

(4.1) ®(z,d) := f°(x,d) = sup{({,d) : £€0f(x)},
see [27].

The resulting model function leads to a convergent algorithm as the following
result shows.

Theorem 4.3. Let f : M — R be locally Lipschitz and define ® as in (4.1).
Then the function ® satisfies Assumption 3.2. In particular, Algorithm 1 converges
globally to a critical point of f.

Proof. The fact that ¢ satisfies Assumption 3.2 follows directly from Theorem 2.4
and Theorem 2.9 of [27]. Therefore, by Theorem 3.6 the resulting trust region
algorithm converges. O

4.2. The e-subdifferential. A crucial observation is that the computation of ®
as in (4.1) can be impractical in case that no explicit expression for the subdiffer-
ential f(x) is available. Using an approximation of the Clarke subdifferential, we
overcome this problem and define a local model that is practically and efficiently
implementable.

The following definition presents an approximation of the subdifferential which
can be computed approximately; see [25].

Definition 4.4 (e-subdifferential). Let f : M — R be a locally Lipschitz function
on a Riemannian manifold M, € < ip(x). We define the e-subdifferential of f at
x denoted by O. f(x) as follows;

0: f(x) = conv{dexp; ' (y)(0f(y)) : y € c1B(w,e)}.
The following result has been proven in [24].

Lemma 4.5. Let U be a compact subset of M and e < i(U); then for every open
neighborhood Win U, the set valued mapping O-f : W — T'M is upper semi con-
tinuous.

Now we construct a suitable model function for the following unconstrained
optimization problem,

min f(z),

where f : M — R is a locally Lipschitz function. Assume that D is a bounded open
subset of M and € < i(cl(D)). We define ® : TD — R by
(4.2) O(z,d) :==sup{({,d) : € € 0:-f(x)}, for every x € D.

We now show that this function ® satisfies Assumption 3.2.
INote that lim grad f(z;) in this definition is obtained as follows. Let & € T, M, ¢ =1,2,... be

a sequence of tangent vectors of M and £ € T, M. We say &; converges to £, denoted by lim &; = &,
provided that z; — z and, for any smooth vector field X, (&;, X (x;)) — (&, X (z)).
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Theorem 4.6. The function ® : TD — R defined by (4.2) satisfies Assumption
3.2.

Proof. Tt is easy to prove that ® satisfies Assumptions (3.6) and (3.8). Moreover,
®|r, ps is upper semi continuous, to show this for every e > 0, we set § < e/ K where
K is the Lipschitz constant of f on a neighborhood of . Now if ||d — w]|| < d, then

O(z,w) < P(z,w—d)+ P(z,d) < K||lw—d|| + ®(z,d) < e + D(x,d),

therefore the claim is proved.
To prove that ® satisfies Assumption (3.9), note that for (x,d) € TM,

flexp,(d)) = f(z) < f°(2,d) + o(||d]|) < ®(x,d) + o([[d]]).

Now we prove that ® satisfies Assumption (3.10). To this end, we first prove that:
For each € > 0, there exists ¢ > 0 such that for x € B(z¢,0) C D

Ly (0= f (%)) € 0-f(20) + €Br, M,

where By, ar is the unit ball of Ty, M. To see this; note that for e > 0 the set
0: f(wo) + €Br, v is an open neighborhood of Ly, (0= f(20)) = O f(20). It follows
from the continuity of (2.1) that there exists an open neighborhood V- C T'M of
Oc f(x0) such that

C(V) C 0=f(x0) + €Br, m-

By the upper semi continuity of 0. f, there exists a neighborhood V' of xy such
that for each = € V' we have 0. f(x) C V. Now let x € V', then

Lo (0= f(x)) € 0: f(20) + €Br, M,

as required. Now we claim that there exists d, > 0 such that for all x € D and
dy € T, M with ||d;|| < d., we have @ is upper semi continuous at d.

To prove the claim; since I,,(y) := dexp, *(y) is a smooth function with respect to
y, we have that it is bounded on clB(x, £) by some m,, > 0, from the Lipschitzness of
f on clB(z,¢), Theorem 2.9 of [27] implies that for every £ € 0. f(x), ||&|| < My K,.
Since cl(D) is compact, there exists a finite number of neighborhoods B(x;,€) such
that D C (JI_, B(wi,e). Assume that mi K := min{m,, K,, : i = 1,...,n},
0, :=m1 K. Let z and d, be, respectively, arbitrary elements of D and T, M with
[ del| < b

We prove that for each € > 0, there exists § > 0 such that

O(y,dy) < ®(z,d,) + €, provided distyas(dy, dy) < 6.

Assume that 0 < € < 1, then there exists 6; > 0 such that for each y € B(x,d:1) C D,

€
Ly (0 C o, —DBr. .

va (0 f(y)) € O f(2) + 3K, DT M
Since ®|r, s is upper semi continuous and ®(x,0,) = 0, hence there exists d3 > 0
such that ||w.|| < d3 implies that ®(z,w,) < ¢/3. Assume that o := min{ds, mngE},
then the continuity of (2.1) implies that there exists do > 0,

| Lyz(dy) — de|| < o, provided distrar(de,dy) < 2.
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Let § < min{d1, d2, 63} be such that B(x, d) is convex. We suppose that distras(ds, dy) <
0, then dist(z,y) < 6 and y € B(x,d) C D. Therefore

P(y,dy) = Slgp{<§7dy> 1 £€0:f(y)}
= sup{(Lya&; Lyady) : § € 0-f(y)}
< sup{(n, Lyzdy) : n € 0=f(x)+ ;BTwM}
n

3Kmy
(4.3) gs;f{w tu,dy +wy): 0€D-f(x), veE 3K€m1 Broar, |wal| < o}
< sup{(6,) + (6,2} 0 € 0F @), sl < o+ 5+ 5
< B(z,dy) + % + % F Bz, wy) < Bz, dy) + e,

O

It is worth mentioning that every critical point with respect to ® defined by (4.2)
is an e-stationary point; i.e. there is y in clB(z,¢) such that 0 € df(y). A key
property of the e-subdifferential is that it can be approximated efficiently. In our
implementations, we substitute the e-subdifferential of the objective function f with
its approximation presented in [24]. Indeed, to approximate the e-subdifferential
at xy, we start with the gradient of an arbitrary point nearby z; and move the
gradient to the tangent space in xj, via the derivative of the logarithm mapping,
and in every subsequent iteration, the gradient of a new point nearby xj, is computed
and moved to the tangent space in z; to add to the working set to improve the
approximation of 0. f(xx). Indeed, we do not want to provide a description of the
entire e-subdifferential set at each iteration; what we do is approximate 0. f(zx) by
the convex hull of its elements. In this way, let W; := {v1,...,u} C 9. f(x); then
we define

wy = argmin ||v|.
vEconvW;
Now if we have
(4.4) flexp,, (eg1)) — f(ak) < —cellwi]l, ¢ € (0,1)
where g; = fuz—ju, then we can say convI¥; is an acceptable approximation for
Oc f(zr). Otherwise, we add a new element of 0. f(x) \ convW; to W;.  Indeed,
having (4.4) implies that the set convi¥; contains a vector w; such that g, = _H%H

is a good approximation of the steepest descent direction. See [24] for further
details on how to algorithmically realize this approximation procedure. The
following lemma proves that if W, is not an acceptable approximation for 9. f(z),
then there exists vjy1 € O, f(x) such that (viy1,q1) > —c|lwi|| > —||wi]|, therefore
viy1 € O f(z) \ convWWy; for a proof see [24].

Lemma 4.7. Let W; = {v1,...,u;} C O-f(x), 0 ¢ convW; and

wy = argmin{||v| : v € convW;}.

If we have f(exp,(eqi)) — f(x) > —cellwil, where gy = 2, then there exist 6 €
(0,e] and U141 € Of (exp,(Bogr)) such that

(dexp, ' (exp, (Bogr)) (Vig1), g1)> — cllwill,
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and vi41 :=dexp; t(exp, (0ogi))(V141) & convIV].

Algorithm 2 is used to find a vector v;4; € 0. f(x) which can be added to the
set W} in order to improve the approximation of 9. f(x). It is easy to prove by
Proposition 3.2 and Proposition 3.3 of [39] that this algorithm terminates after
finitely many iterations. Therefore, using an approximation of O¢ f(x) we define a

Algorithm 2 An h-increasing point algorithm; v = Increasing(x, g, a, b).
1: Input x € M,ge T, M,a,beR.
2: Let t =b.
3: repeat
4: select v € df (exp,(tg)) such that (v, dexp,(tg)(g)) + c||w| € dh(t)

5: if (v,dexp,(tg)(g)) + c|lw|]| <0 then
6: t= %er

7: if h(b) > h(t) then

8: a=t

9: else

10: b=t

11: end if

12: end if

13: until (v, dexp,(tg)(g)) + c||w] >0

function ®(zy,d) := max{(¢,d) : & € convW;} which approximately satisfies our
assumptions and is easily computable at every d € T, M. Indeed, if we assume
that ¢ € {1,...,{} is such that for a fixed d € T, M we have (v;,d) < (v;,d) for
every j € {1,...,1}, then for every & € convW,, we have & := 22:1 Vs such that
Zi:l as = 1 and therefore (£, d) < (v;,d).

5. NUMERICAL EXPERIMENTS

The Riemannian nonsmooth trust region algorithm presented in the previous
section was implemented in Matlab. To the best of our knowledge, our algorithm is
the first practical nonsmooth trust region algorithm for locally Lipschitz functions
defined on Riemannian manifolds. In our implementation, we update the sequence
of matrices {By} by using the BFGS method; see [43]. Moreover, we compare the
nonsmooth trust region algorithm with Riemannian subgradient descent algorithms
presented in [15, 25, 21]. The number of function evaluations is used as a measure
efficiency for the algorithms. The parameters are initialized similar to the smooth
version of the classical trust method. We set the parameters as ¢; = 0.75, ¢co = 0,
c3=05,¢c,=2,c=10"%e=10"% §=10"1 5 =101

The unit sphere $? is the smooth compact manifold

S?={zecR?: |z| =1},

and the global coordinates on 52 are naturally given by this embedding into R3.
The tangent space at a point x € S? is

T,5% = {v e R®: (z,v) = 0}.
The inner product on 7,52 is defined by

(v, w)r, g2 = (v, W)Rs.
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The exponential map
exp, : TS — S2

is defined by
v

exp, (v) = cos(|[v])z + Sin(\\vll)w-
Moreover, if z € 52, then
exp, ' : 8% = T,,S?
is defined by

0
a0~ eSO,

where § = arccos(z,y). The Riemannian distance between two points z,y in S? is
given by

exp, ' (y) =

dist(z, y) = arccos(z, y).

Let t — 7(t) be a geodesic on S?, and let u = H;/:%' The parallel translation of a

vector v € T, ()S?, along the geodesic v, is given by [2]
Loy (0)yy(t) (v) = =7(0) sin([[y* (0)[[t)u'v + wcos(|y° (0) [[t)u'v + (I — uw)v.

5.1. Denoising on a sphere. First, we are going to solve the one dimensional
total variation problem for functions which map into a two dimensional sphere S2.
Assuming that M is a manifold, consider the minimization problem

5.1 i F(u) := disto(f,u)? + \|V

(5.1) wepiin o () 1= dista(£,0)7 + Al[Vulli }

where f : [0,1] — M is the given (noisy) function, v is a function of bounded
variation from [0, 1] to M, disty is the distance on the function space L?([0,1]; M)
and A > 0 is a Lagrangian parameter, [46]. Note that for every w € [0, 1], Vu(w) :
R — TywyM and ||[Vul, = f[o 1 [IVu(w)||dw. Now we can formulate a discrete

version of the problem (5.1) by restricting the space of functions to VhM which is
the space of all geodesic finite element functions for M associated with a regular
grid on [0,1]; see [47, 24]. We refer to [47] for the definition of geodesic finite
element spaces VhM .

Using the nodal evaluation operator ¢ : V;M — M™, (g(vy)); = vp(x;), where x;
is the i-th vertex of the simplicial grid on [0, 1], one can find an equivalent problem
defined on M™ as follows,

(5-2) Inin {F.(u) = dist. (s(f), )* + AV @)1}

where dist, is the Riemannian distance on M™.
Let e(f) = (p1, .., Pn), then Fy : M™ — R can be defined by

Fo(uy, oy uy) = X0 dist(pi, ui)? 4+ AX07 dist (ug, wig 1),

where dist is the Riemannian distance on M.

Now we assume that M = S2. First, we need to define a function from [0, 1] to
52 to get the original image. Afterward, we add a gaussian noise to the image to
get the noisy image. Finally, we apply Algorithm 1 to the function F, defined on
M1 to get the denoised image; see Figure 1.

Table 1 provides the numerical results for the TV regularization on S? using
the nonsmooth trust region method and e-subdifferential method. In this table,
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——— The original image
The noisy image
The denoised image

FIGURE 1. TV regularization on S?

TABLE 1. Numerical results in terms of number of function evaluations
and the final obtained value of the function for TV regularization

17

No. | f in trust region method | nfeval | f in e-subdifferential method | nfeval
1 3.2266 365 3.2362 934
2 3.2512 327 3.2579 976
3 3.2902 424 3.3145 3316
4 3.2794 509 3.2896 3097
5 3.2366 365 3.2472 934
6 3.2212 327 3.2572 971
7 3.2432 424 3.3066 3216
8 3.2884 509 3.2976 1097
9 3.2187 325 3.2472 1100
10 | 3.2012 327 3.2972 1906
11 | 3.2302 424 3.3136 1001
12 | 3.2394 509 3.2576 1097
13 | 3.2234 365 3.2365 4934
14 | 3.2456 327 3.2542 3976
15 | 3.2912 424 3.3298 3316

“nfval” stands for the number of function evaluations, we also have presented the
minimum value of the function. The number of function evaluations is considered
as a measure of efficiency for the trust region method.
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FIGURE 2. TV regularization on P(2). Down-to-up: the original image, the
noisy image, the denoised image

5.2. Denoising on P(2). Data taking values in a manifold appear naturally in
various signal and image processing applications. One example is diffusion tensor
imaging where the data live in the Riemannian manifold of positive (definite) ma-
trices; see [9, 40, 54]. The space of all n x n symmetric, positive definite matrices
will be denoted by P(n). The tangent space to P(n) at any of its points P is the
space TpP(n) = {P} x S(n), where S(n) is the space of symmetric n X n matrices.
On each tangent space TpP(n), the inner product is defined by
(A, B)r,p(n) = tr(P"'AP™'B).
The Riemannian distance between P,Q € P(n) is given by
dist(P, Q) = (X1, In?*(\;)) /2,
where \;, i = 1,...,n are eigenvalues of P~1Q. The exponential map
expp : S(n) — P(n)
is defined by
expp(v) = P2 exp(P~Y20P~1/2)p1/2,
Moreover, if P € P(n), then
expp' : P(n) — S(n)
is defined by
expp! (Q) = P2 log(P~12QP~12) P12,
where log, exp, denote the logarithm and exponential functions on matrix space.
For another example, we assume that M = P(2). We add a noise to an original

image on P(2). Then we apply our nonsmooth trust region algorithm to F. on
M1 to denoise the noisy image. In Figure 2, we present the results regarding
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TABLE 2. Numerical results in terms of number of function evaluations
and the final obtained value of the function for TV regularization on

P(2).

No. | f in trust region method | nfeval | f in e-subdifferential method | nfeval
1 0.2340 180 0.2354 1344
2 0.1981 111 0.1917 1541
3 0.2102 102 0.2231 1681
4 0.1623 154 0.1734 894
5 0.1689 134 0.1670 800
6 0.1890 159 0.1840 1680
7 0.2301 451 0.2401 970
8 0.1891 167 0.1871 1356
9 0.1924 101 0.1981 1451
10 | 0.2101 186 0.2191 1189
11 | 0.1690 192 0.1673 891
12 | 0.1871 171 0.1780 3911
13 | 0.1988 161 0.1981 1601
14 | 0.2121 195 0.2191 761
15 | 0.2241 108 0.2240 1316

to the minimization of F, on M1, Table 2 provides the numerical results for
the TV regularization on P(2) using the nonsmooth trust region method and e-
subdifferential method.

5.3. Riemannian geometric median on a sphere. Our second numerical ex-
periment is concerned with the Riemannian geometric median on S2. Let M be
a Riemannian manifold. Given points p1, ..., p,, in M and corresponding positive
real weights wi, ..., wp,, with >/ w; = 1, define the weighted sum of distance

functions
m

flg) = widist(pi, q),
=1

where dist is the Riemannian distance function on M. We define the weighted
geometric median z as the minimizer of f. When all the weights are equal, w; =
1/m, we call x simply the geometric median. Now, we assume that M = S2.

Table 3 provides the numerical results for finding the geometric median on S?
with m = 5000, using the nonsmooth trust region method and the e-subdifferential
method. The starting point and the points p; are chosen randomly. As before,
“nfval” stands for the number of function evaluations; we also have presented the
minimum value of the function. The number of function evaluations is considered
as a measure of efficiency for the trust region method.

5.4. Rayleigh quotients on a sphere. Now we are going to compare our non-
smooth trust region algorithm with the Riemannian subgradient descent presented
in [21]. To this end, we consider the maximum of m Rayleigh quotients on the
sphere S" 1, i.e.,

1
(5.3) f(z) = max 5:1:’141'337

i=1,....m
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TABLE 3. Numerical results in terms of number of function evaluations
and the final obtained value of the function for the geometric median

on S?

No. | f in trust region method | nfeval | f in e-subdifferential method | nfeval
1 0.4306 8 0.4365 192
2 0.4302 11 0.4305 67
3 0.4101 2 0.4200 108
4 0.4338 13 0.4390 110
5 0.4206 13 0.4273 93
6 0.4312 5 0.4326 97
7 0.4302 11 0.4321 105
8 0.4394 11 0.4398 109
9 0.4316 11 0.4321 98
10 | 0.4212 8 0.4237 97
11 | 0.4302 9 0.4388 128
12 | 0.4334 10 0.4399 167
13 | 0.4266 6 0.4280 211
14 | 0.4292 5 0.4300 145
15 | 0.4372 4 0.4384 316

where A; € R™*" is symmetric. Our aim is to find a minimum of f. Table 4
provides the numerical results for finding the minimum of f on S? with m = 20,
using the nonsmooth trust region method and the subgradient descent method.
Moreover, we say that an algorithm solves a problem successfully if the following
condition is satisfied:
|fopt - f * ‘
= <e
‘fOPt + 1| -
where fop; is the minimum value of the function and f* is the minimum value
obtained by the algorithm, and € = 10~* is an accuracy level. Figure 3 shows that
the nonsmooth trust region algorithm solve the problem.

5.5. Sphere packings on Grassmannians. The sphere packings on Grassman-
nians have many applications in wireless communication and statistics and seem to
be good candidates for use in quantum information theory; see for example [6, 14].
We assume that the Grassmannian Gr(n, k) is the set of all k-dimensional linear
subspaces of R™. In this section, we consider the problem of the packing of m
spherical balls on Gr(n, k) with respect to the chordal distance. Let B(P,r) denote
the ball in Gr(n, k) with respect to chordal distance. Then we would like to find m
points Py, ..., Py, in Gr(n, k) such that

(5.4) max{r| Vi # j: B(P;,r)NB(P;,r) =0},

is maximized. This problem has been solved in [21] using a subgradient method.

Indeed, Gr(n, k) can be identified with the set {P € S(n)| P? = P, tr(P) = k};
see [26]. Moreover, the tangent space of the Grassmannian at the point P, denoted
by TpGr(n, k), is the following set

TpGrass(n, k) = {PQ2 — QP| Q € so(n)},
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TABLE 4. Numerical results in terms of number of function evaluations
and the final obtained value of the function for Rayleigh quotients on

52
No. | fin trust region method | nfeval | f in subdifferential method | nfeval
1 0.6529 128 1.7832 501
2 0.3294 116 0.3341 3614
3 0.7321 116 0.7996 5501
4 0.5211 123 0.5458 2123
5 0.5156 117 0.4962 509
6 0.6321 156 0.6578 1504
7 0.4321 167 0.4567 1350
8 0.6421 127 0.6432 680
9 0.7691 117 0.7761 1384
10 | 0.4021 116 0.4187 890
11 | 0.6531 170 0.6520 1230
12| 0.5090 175 0.5021 2012
13 | 0.5401 149 0.5721 1890
14 | 0.3489 110 0.3901 2056
15 | 0.3209 113 0.3009 1105
10° \ :
—&— Trust region method
—*— Subgradient method
10°
107 b

g 107+

5 |

S0t |

-

20

40

1
60
iterations

1
80 100

FIGURE 3. Rayleigh qoutients on S?. We compare the trust region
method introduced in this paper with the Riemannian subgradient al-

gorithm from [21].

21
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TABLE 5. Numerical results in terms of number of function evaluations
and the final obtained value of the function for sphere packings on Grass-

mannians
No. | Minimal distance in TR | nfeval | Minimal distance in SB | nfeval
1 1.851 167 1.706 601
2 1.689 104 1.674 231
3 1.795 115 1.779 1109
4 1.862 146 1.796 1123
5 1.801 110 1.892 234
6 1.813 156 1.711 1609
7 1.862 145 1.791 1209
8 1.874 132 1.776 890
9 1.719 112 1.721 1409
10 | 1.789 123 1.799 980
11 | 1.708 145 1.769 430
12 | 1.804 154 1.704 1230
13 | 1.897 179 1.791 1679
14 | 1.676 134 1.659 2340
15 | 1.631 104 1.611 1306
where

son) = {9 € R™™| @' = —q}.
As Gr(n, k) is a subset of the Euclidean vector space S(n), the scalar product

(P, Q) := tr(PQ) induces a Riemannian metric on it. Therefore the chordal distance
on Gr(n, k), denoted by dist(P, @), is defined by

dist(P, Q) = \/gllP - QllF,

where ||.||r denotes the Frobenius norm. On Gr(n, k) with the induced Riemannian
metric, the geodesic v emanating from P in the direction n € TpGrass(n, k) is
defined by

V(t) = exp(t(nP — Pn)) P exp(=t(nP — Prn)).
The problem (5.4) is equivalent to the minimizing the following nonsmooth function;

(55) F(Pl,,Pm) = Ifl[li,?)(tl‘(PZPj)7

on Gr(n, k) x ... x Gr(n, k); see [31].

In Table 5, we illustrate the results of the nonsmooth subgradient (SB) method
and nonsmooth trust region method (TR) for the sphere packing in Gr(16,2) with
m = 10 and the same arbitrary starting points for both methods.

6. CONCLUSIONS

We have presented a practical algorithm in the context of trust region methods
for nonsmooth problems on Riemannian manifolds. To the best of our knowledge,
this is the first paper on nonsmooth trust region method on Riemannian manifolds.
We also introduce a practical local model in our trust region scheme for locally Lip-
schitz functions. We have seen that the use of exponential map yields trust region
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subproblems expressed in Euclidean spaces T, M. Therefore, all the classical meth-
ods for solving the trust region subproblem can be applied. In our implementation,
we use the approach based on the Cauchy point and the CG-Steihaug methods; see
[3]. The main result is the global convergence property of our trust region method
which is stated in Theorem 3.6.

An implementation of our proposed trust region algorithm, along with the sub-
gradient and e-subgradient methods, is given in Matlab environment and tested on
some problems. Numerical results of the considered algorithms show that compar-
ing with the e-subgradient algorithm, the nonsmooth trust region algorithm has a
better performance in terms of the number of function evaluations. Moreover, com-
paring with the subgradient algorithm, the nonsmooth trust region method gives
us a better approximation of the minimum value of the function for some examples.
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