
ON THE DENSITY THEOREM FOR THE SUBDIFFERENTIAL

OF CONVEX FUNCTIONS ON HADAMARD SPACES

M. MOVAHEDI, D. BEHMARDI, S. HOSSEINI

Abstract. In this paper, a dual space for a geodesically complete Hadamard

space is introduced. By using this notion we present a new definition of the

subdifferential of convex functions on geodesically complete Hadamard spaces.

Moreover, some properties of this subdifferential such as a density theorem are

proved.

1. introduction

Nondifferentiability appears naturally in different areas of mathematics and

arises explicitly in the description of various modern technological systems. Non-

smooth analysis studies the local behavior of nondifferentiable functions and sets

lacking smooth boundaries. Generalized gradients or subdifferentials refer to sev-

eral set-valued replacements for the usual derivative which are used in developing

differential calculus for nonsmooth functions.

Nondifferentiable functions are often considered on finite-dimensional or infi-

nite dimensional Banach spaces, where the linear structure plays a central role.

Recently, attempts have been made to replace Banach spaces with Riemannian
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manifolds and develop a subdifferential calculus; see [9, 10, 11, 12] and the refer-

ences therein. It is also worth mentioning paper [15], which presents a definition of

the coaccretive subdifferential of a convex function defined on a Hilbert ball. The

approach in that paper involves the structure of (B, ρ) as a Hilbert manifold, where

ρ is the hyperbolic metric on B; see also [13, page 188].

Unlike Riemannian manifolds, Hadamard spaces are not equipped with a Rie-

mannian metric. Hence, we need new tools to construct a suitable dual space in

order to define subdifferential of functions on Hadamard spaces. In 2010, Ahmadi-

Kakavandi and Amini in [1] defined a dual space for an Hadamard space using the

concept of bound vectors. They defined a pseudometric D on R × X × X , where

X is an Hadamard space, and considered the pseudometric space (R×X ×X , D),

as a subspace of the pseudometric space (Lip(X ,R), L) of all real-valued Lipschitz

functions. Then, they defined an equivalence relation on R × X × X , where the

equivalence class of (t, a, b) is

[t
−→
ab] := {s

−→
cd; t〈

−→
ab,−→xy〉 = s〈

−→
cd,−→xy〉 (x, y ∈ X )}.

The dual metric space of X presented in [1] is as follows,

X ∗ := {[t
−→
ab]; (t, a, b) ∈ R×X × X},

moreover in that paper a notion of the subdifferential for a proper function on an

Hadamard space is defined.

The aim of this paper is to present a new dual for any Hadamard space and our

most important result is to prove the density theorem for the subdifferential of a

lower semicontinuous convex function on an Hadamard space, which is a general-

ization of the classical one on Hilbert spaces; see [6]. Our approach is different from

the one used in [1] and exploits the notion of geodesics to define the dual space.

Indeed, we define X ∗ as the disjoint union of the sets X ∗x , where x ∈ X and X ∗x
contains all unit speed geodesics of X starting at x. Moreover, the subdifferential

of a function f at a point x is defined as a subset of X ∗x , however this property is

not visible in the definition of the subdifferential in [1]. Consequently, this leads us

to the claim that the subdifferential of convex functions defined in this paper is an

analogue of the concept of the subdifferential of convex functions in Riemannian

manifolds and the Hilbert balls.
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We assume that X is a geodesically complete Hadamard space with a metric d.

Recall that a geodesic in X is a curve of constant speed which is locally minimizing.

We say X has non-positive curvature (in the sense of Alexandrov) if every point

p ∈ X has a neighborhood U with the following properties:

(i) for any two points x, y ∈ U there is a geodesic σyx : [0, 1] → U from x to y of

length d(x, y),

(ii) for any triple of points x, y, z ∈ U , we have

d2(z,m) ≤ 1

2
(d2(z, x) + d2(z, y))− 1

4
d2(x, y),

where σyx is as (i) and m = σyx(1/2) is the middle point between x and y.

We say X is an Hadamard space if X is complete and the assertions (i) and (ii)

above hold for all points x, y, z ∈ X . Hadamard spaces are uniquely geodesic, i.e.,

there exists a unique geodesic between any pair of points.

In this paper, we assume that X is a geodesically complete Hadamard space,

that is, every geodesic in X is a subarc of a geodesic which is parameterized on the

whole real line. Let E2 be the Euclidean space equipped with the metric

dE2((x1, x2), (y1, y2)) = ((x1 − y1)2 + (x2 − y2)2)1/2.

A geodesic triangle 4(x, y, z) in X is the union of three points x, y, z ∈ X and the

geodesic segments joining them. The comparison triangle for4(x, y, z), is a triangle

4(x̄, ȳ, z̄) in E2 such that d(x, y) = dE2(x̄, ȳ), d(x, z) = dE2(x̄, z̄) and d(z, y) =

dE2(z̄, ȳ). According to this notation, if a is a point on the geodesic segment joining

x, y, then ā is its comparison point provided that d(x, a) = dE2(x̄, ā). Also the

comparison angle ∠x̄(ȳ, z̄), is the interior angle of the comparison triangle4(x̄, ȳ, z̄)

at x̄.

The first step in defining a subdifferential for a function defined on an Hadamard

space X is to introduce a dual space X ∗ for X .

We denote by X ∗ the set of all unit speed geodesics of X . In other words,

X ∗ =
∐
x∈X X ∗x where X ∗x is the set of all unit speed geodesics of X starting at x.

Consider the map 〈 , 〉 : X ∗x ×X ∗x → R defined by

〈γyx, γzx〉 =
1

2
[d2(x, z) + d2(x, y)− d2(y, z)].

It is clear that (〈γyx, γyx〉)(1/2) = d(x, y), for more details see [3].



4 M. MOVAHEDI, D. BEHMARDI, S. HOSSEINI

Let γyx ∈ X∗x , σwz ∈ X∗z and D := dom(σwz ) = dom(γyx). Then we say γyx is

parallel to σwz if there exists C ∈ R such that d(σwz (t), γyx(t)) = C, for all t ∈ D.

2. The subdifferential of a convex function

In this section, we present a new definition of the subdifferential of a convex

function on an Hadamard space. Note that the function f : X → R is called convex

if, for any geodesic γ, the composition f ◦ γ is convex (in the usual sense). Let us

start with the definition of the directional derivative for functions on geodesically

complete Hadamard spaces.

Definition 2.1. Let f : X → R be a real valued function. The directional deriva-

tive of f at x ∈ X in the direction γzx ∈ X ∗x for some z ∈ X , denoted by Df(x; γzx),

is defined as

(2.1) Df(x; γzx) := lim
t↓0

f(γzx(t))− f(x)

t
.

We will use the following remark in the proof of Theorem 2.4.

Remark 2.2. Assume that X = R, x ∈ R and f : R→ R, then for every b ∈ (x,∞),

the directional derivative of f at x in the direction of γx+b
x is defined by

Df(x; γx+b
x ) = lim

t↓0

f(x+ t)− f(x)

t
,

which is the same as the usual directional derivative of f at x in the direction 1

denoted by Df(x; 1).

Theorem 2.3. If f : X → R is a convex function on X and γzx ∈ X ∗x , then

(i) the function Q : dom(γzx) ∩ (0,∞)→ R defined by

Q(t) =
f(γzx(t))− f(x)

t
,

is increasing.

(ii) Df(x; γzx) exists and is equal to inftQ(t).

(iii) Df(x; γxx) = 0.

Proof. (i) Since f is convex, the function g(t) = f(γzx(t)), defined on dom(γzx), is

convex. If 0 < t1 < t2, then we have

g(t1)− g(0)

t1
≤ g(t2)− g(0)

t2
.
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This implies that

f(γzx(t1))− f(x)

t1
≤ f(γzx(t2))− f(x)

t2
,

which means that Q is increasing.

(ii) Assertion (i) implies that for any decreasing sequence of positive numbers {tn}

which converges to zero, the sequence {Q(tn)} is increasing so that {Q(tn)} has a

limit which is Df(x; γzx) = inftQ(t).

(iii) Note that for every x ∈ X and each t, γxx(t) = x. Hence

Df(x; γxx) = lim
t↓0

f(γxx(t))− f(x)

t
= 0.

�

Theorem 2.4. (Mean value theorem ) Suppose that x, y ∈ X , f : X −→ R is

convex. Then, there exists t0 ∈ (0, d(x, y)) such that

f(y)− f(x)

d(x, y)
≤ Df(γyx(t0);σy

γy
x(t0)

).

Proof. Let γyx be the unit speed geodesic joining x to y. Then, foγyx is a real valued

convex function on [0, d(x, y)]. Using the mean value theorem for convex functions

from R to R, there exist t0 ∈ (0, d(x, y)) and z ∈ ∂foγyx(t0) such that

foγyx(d(x, y))− foγyx(0)

d(x, y)
= z,

where ∂foγyx(t0) denotes the subdifferential of the real valued function foγyx at t0.

We set w = γyx(t0), then for the unit speed geodesic σyw,

Df(w;σyw) = lim
t↓0

foσyw(t)− foσyw(0)

t
= Dfoσyw(0; 1).

Since the geodesic connecting w and y is unique, so σyw(t) = γyx(t0 + t) for every t ∈

[0, d(w, y)]. Hence, Dfoσyw(0; 1) = Dfoγyx(t0; 1) and z ≤ Dfoγyx(t0; 1). Therefore,

f(y)− f(x)

d(x, y)
≤ Df(γyx(t0);σy

γy
x(t0)

).

�

Definition 2.5. Let f : X → R be a convex function. A geodesic γzx ∈ X ∗x is called

the subgradient of f at x if

f(y) ≥ f(x) + 〈γzx, σyx〉, ∀y ∈ X , ∀σyx ∈ X ∗x .
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The set of all subgradients of f at x is called the subdifferential of f at x and is

denoted by ∂f(x). The set-valued map ∂f : X → X ∗ is called the subdifferential

of f .

It is worth pointing out that ∂f(x) ⊂ X ∗x , for every x ∈ X . A roughly analogous

concept of subdifferential is introduced and investigated on the Hilbert ball in [14].

Theorem 2.6. Let f : X → R be a convex function. γxx ∈ ∂f(x) if and only if x

is a minimum point of f .

Proof. We know that 〈γxx , σyx〉 = 0, for every x, y ∈ X , and σyx ∈ X ∗x . Hence, if

γxx ∈ ∂f(x), then

f(y) ≥ f(x) + 〈γxx , σyx〉 = f(x), ∀y ∈ X , ∀σyx ∈ X ∗x ,

which means that x is a minimum point of f .

Now assume that x is a minimum point of f , so for every y ∈ X , f(y) ≥ f(x).

Therefore,

f(y) ≥ f(x) + 〈γxx , σyx〉 = f(x), ∀y ∈ X , ∀σyx ∈ X ∗x ,

and the proof is complete. �

Theorem 2.7. Let f : X → R be a convex function. If Df(x;σyx) ≥ 〈γzx, σyx〉, for

all y ∈ X and σyx ∈ X ∗x , then γzx ∈ ∂f(x).

Proof. The relations

Df(x;σyx) ≥ 〈γzx, σyx〉, f(y)− f(x) ≥ f(σyx(s))− f(x)

s
≥ Df(x;σyx),

imply

f(y)− f(x) ≥ 〈γzx, σyx〉,

and hence γzx ∈ ∂f(x). �

Corollary 2.8. Let f : X → R be a convex function. Then x is a minimum point

of f if and only if Df(x; γzx) ≥ 0, for each γzx ∈ X ∗x .

Proof. If x is a minimum point, then f(γzx(t)) ≥ f(x) for each z ∈ X and t ∈ domγzx.

Hence, Df(x; γzx) ≥ 0. The converse is obvious by Theorem 2.7. �
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Lemma 2.9. For each triple of points x, y, z ∈ X , there exists w ∈ X such that

d(x, y) = d(z, w) and γyx is parallel to σwz .

Proof. Since X is geodesically complete, there is a unit speed geodesic ray γx which

connects x and y. By Proposition 9.2.28 in [5], there exists a unique unit speed

geodesic ray σz starting at z, parallel to γx. Set w ∈ X such that w = σz(d(x, y)).

Then, d(x, y) = d(w, z) and γyx is parallel to σwz . Suppose that σvz is another geodesic

segment parallel to γyx. Since it is also parallel to σwz and d(σwz (0), σvz (0)) = 0, we

have d(σwz (t), σvz (t)) = 0, for each t ∈ [0, d(x, y)]. �

We use the notation γyx ‖ γwz when γyx is parallel to γwz , for x, y, z, w ∈ X . Also

if x, y ∈ E2, then xy is the line segment between x and y.

Definition 2.10.

(i) The function Pxy : X ∗x −→ X ∗y defined by Pxy(γwx ) = γvy is called the parallel

translation of γwx along γyx, in which v is selected such that d(x,w) = d(y, v)

and γwx is parallel to γvy .

(ii) To define the sum of γax and γbx, consider a point c such that Pxa(γbx) = γca.

Then, γax + γbx := γcx.

(iii) We define

−γyx := Pyx(γxy ).

γax − γbx := γax + (−γbx).

Theorem 2.11. Suppose that γyx = Pax(γba) and γzx = Pax(γca), then

(i) d(b, c) = d(y, z),

(ii) ∠a(b, c) = ∠x(y, z),

(iii) 〈γba, γca〉 = 〈γyx, γzx〉,

(iv) 〈−γyx, γzx〉 = 〈γyx,−γzx〉.

Proof. Let 4(ā, b̄, c̄) and 4(x̄, ȳ, z̄) be the comparison triangles for 4(a, b, c) and

4(x, y, z), respectively. By definition, d(γba(t), γyx(t)) = dE2(γba(t), γyx(t)) = C in

which C is constant for each t. We can assume that āb̄ ‖ x̄ȳ and āc̄ ‖ x̄z̄.

This means that, ∠ā(b̄, c̄) and ∠x̄(ȳ, z̄) are two angles with parallel sides. Then,

they are congruent or supplementary. But since dE2(γba(t), γyx(t)) is constant for

each t, the two angles are congruent.
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By a similar argument, we get ∠ā(γba(t), γca(t)) = ∠x̄(γyx(t), γzx(t)), for each t.

Thus, by definition, ∠a(b, c) = ∠x(y, z). Moreover, 4(ā, b̄, c̄) is congruent to

4(x̄, ȳ, z̄). Then, dE2(b̄, c̄) = dE2(ȳ, z̄) and hence d(b, c) = d(y, z). Now by (i)

and the definition of 〈., .〉, (iii) is obvious.

(iv) Suppose that −γzx = γz
′

x and −γyx = γy
′

x . Let 41 = 4(x1, y′, z) and 42 =

4(x2, y, z′) be the comparison triangles for 4(x, y′, z) and 4(x, y, z′) respectively.

Since γy
′

x ‖ γxy and γz
′

x ‖ γxz , we can consider 41 and 42 such that x1y′ is parallel

to yx2 and x2z′ is parallel to zx1. Then, ∠x1(z, y′) = ∠x2(y, z′). Therefore, 41 and

42 are congruent. Hence, dE2(z′, y) = dE2(y′, z). It means that d(z′, y) = d(y′, z).

Now we have

〈−γyx, γzx〉 = 〈γy′x , γzx〉 = 1
2 [d2(x, z) + d2(y′, x)− d2(y′, z)]

= 1
2 [d2(x, z′) + d2(x, y)− d2(z′, y)] = 〈γyx, γz

′

x 〉 = 〈γyx,−γzx〉.
�

Lemma 2.12. Let f : X → R be a convex function. Then, ∂f : X → X ∗ is

monotone; that is

〈γyx, σzx − Pyx(ηny )〉 ≤ 0, ∀x, y ∈ X , ∀ηny ∈ ∂f(y), ∀σzx ∈ ∂f(x).

Proof. Suppose that ηny ∈ ∂f(y) and σzx ∈ ∂f(x). Thus f(y)− f(x) ≥ 〈γyx, σzx〉 and

f(x)− f(y) ≥ 〈γxy , ηny 〉. Note that

〈γxy , ηny 〉 = 〈Pyx(ηny ), Pyx(γxy )〉 = 〈−Pyx(ηny ), γyx〉.

Therefore,

〈γyx, σzx − Pyx(ηny )〉 ≤ 0, ∀x, y ∈ X , ∀ηny ∈ ∂f(y), ∀σzx ∈ ∂f(x).

�

Let S be a nonempty closed convex subset of X and πS : X −→ S be the nearest

point map onto S.

Now we need some lemmas to prove the density theorem for the subdifferential

of a convex lower semicontinuous function on X .

Lemma 2.13. Let f : X → R∪{∞} be a proper, convex and lower semicontinuous

function. Suppose that (e, re) ∈ (epi(f))c and X0 = (x0, f(x0)) = πepi(f)(e, re) with

f(x0)− re = 1. Then, ∂f(x0) 6= ∅.
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Proof. Set E = (e, re). By Proposition 2.4 in [4], for each A = (a, ra) ∈ epi(f)

not equal to X0, we have ∠X0
(E,A) ≥ π

2 . Consequently ρ2(A,X0) + ρ2(X0, E) ≤

ρ2(A,E), where ρ is the metric of the space X × R defined as follows:

ρ2((x1, r1), (x2, r2)) = d2(x1, x2) + (r2 − r1)2.

Thus

d2(a, x0) + d2(x0, e) + (f(x0)− ra)2 + (f(x0)− re)2 ≤ d2(a, e) + (re − ra)2.

Therefore, we can easily find

(2.2)
1

2
[d2(a, x0) + d2(x0, e)− d2(a, e)] ≤ (ra − f(x0))(f(x0)− re).

Since f(x0)− re = 1, we get

〈γex0
, γax0
〉 ≤ ra − f(x0),

for all a ∈ domf . Put ra = f(a). Clearly the above inequality holds for each

a /∈ domf . Hence, γex0
∈ ∂f(x0). �

It is worth pointing out that since ra in (2.2) of the Lemma 2.13 can be selected

large enough, we get f(x0) ≥ re.

Remark 2.14. The notation (1− t)a⊕ tb is used for some results on Hilbert balls in

[15], on hyperbolic spaces in [8, 14] and on Hadamard spaces in [7], to denote the

unique point at with the property d(a, at) = td(a, b) and d(at, b) = (1 − t)d(a, b).

Now, if (x0, y0) and (x1, y1) are two points in X × Y and (x, y) is a point on the

unique geodesic joining them, then (x, y) is the unique point satisfying the following

equations:

ρ((x0, y0), (x, y)) = tρ((x0, y0), (x1, y1)),

and

ρ((x1, y1), (x, y)) = (1− t)ρ((x0, y0), (x1, y1)),

for some t ∈ [0, 1]. Moreover, the point

(γx1
x0

(td(x0, x1)), γy1y0 (td(y0, y1))) = ((1− t)x0 ⊕ tx1, (1− t)y0 ⊕ ty1),
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has the same property. So

(1− t)(x0, y0)⊕ t(x1, y1) = ((1− t)x0 ⊕ tx1, (1− t)y0 ⊕ ty1),

for all t ∈ [0, 1].

Assume that x, y ∈ X . In the next lemma, we use the notation [[x, y]] for the

set {γyx(t) : t ∈ domγyx}.

Lemma 2.15. Let f : X → R∪{∞} be a proper, convex and lower semicontinuous

function. Suppose that (y0, r0) ∈ (epi(f))c and X0 = (x0, f(x0)) = πepi(f)((y0, r0))

and x0 ∈ int(domf), where domf = {x ∈ X | f(x) <∞}. Then, r0 6= f(x0).

Proof. Assume by contradiction that r0 = f(x0). Put Y0 = (y0, r0). Let r

be a positive number that B(x0, r) ⊆ domf . There is λ0 ∈ [0, 1], such that

γy0x0
(λd(x0, y0)) ∈ B(x0, r) for the unit speed geodesic γy0x0

and for each λ ∈ [0, λ0].

First suppose that there exists x1 ∈ B(x0, r) ∩ [[x0, y0]] such that f(x0) < f(x1).

Hence, x1 = γy0x0
(λ1d(x0, y0)) for some λ1 ∈ (0, λ0). Put X1 = (x1, f(x1)) ∈ epif .

Then,

ρ2(X1, X0) + ρ2(X0, Y0) ≤ ρ2(X1, Y0).

Putting α = (f(x1)− f(x0))2, we have

(2.3) ρ2(X0, X1) = d2(x0, x1) + α = λ2
1d

2(x0, y0) + α

(2.4) ρ2(Y0, X1) = d2(y0, x1) + α = (1− λ1)2d2(x0, y0) + α

and

(2.5) ρ2(X0, Y0) = d2(x0, y0).

Hence, by (2.3), (2.4) and (2.5), we have

λ2
1d

2(x0, y0) + α+ d2(x0, y0) ≤ (1− λ1)2d2(x0, y0) + α.

Thus λ2
1 + 1 ≤ (1 − λ1)2, and we get λ1 ≤ 0, a contradiction. Next, consider the

case that f(x) ≤ f(x0), for each x ∈ B(x0, r) ∩ [[x0, y0]]. Let

Yn = (1− 1

n
)X0 ⊕

1

n
Y0 = (yn, rn).
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Hence, by Proposition 2.4 in [4], X0 is the nearest point of epi(f) to each Yn and

{Yn} is a convergent sequence to X0. If y0 ∈ B(x0, r), then f(y0) ≤ f(x0). Thus

(y0, r0) = (y0, f(x0)) ∈ epi(f) which is a contradiction. Therefore, y0 ∈ (B(x0, r))
c.

Since by Remark 2.14, rn = f(x0) for every n, so a similar argument for each Yn

shows that yn ∈ (B(x0, r))
c. This means that {yn} is a sequence in (B(x0, r))

c

which is converging to x0, thus x0 /∈ B(x0, r) that is a contradiction. �

Lemma 2.16. Let E′ ∈ (epi(f))c and X0 = (x0, f(x0)) = πepi(f)(E
′), then there

exists E = (e, re) ∈ (epi(f))c such that f(x0)− re = 1 and X0 = πepi(f)(E).

Proof. Let γ be the geodesic joining X0 to E′. Put E′ = (e′, re′). First suppose

that f(x0)− re′ ≥ 1. Since γ is continuous, by the intermediate value theorem, the

assertion is obvious.

Next, suppose that f(x0)− re′ < 1. Put

l = ρ(X0, E
′), s =

l

f(x0)− re′
.

Let γ be the extension of γ to [0,∞) that is the unit speed geodesic ray emanating

from X0. Put E = γ(s). We claim that E is the desired point. If E = (e, re),

then one has E′ = (1 − l
s )X0 ⊕ l

sE. By Remark 2.14, e′ = (1 − l
s )x0 ⊕ l

se and

re′ = (1− l
s )f(x0) + l

sre. Hence, f(x0)− re′ = l
s (f(x0)− re). Therefore,

f(x0)− re =
s

l
(f(x0)− re′) = s× f(x0)− re′

l
= 1.

Now we prove that πepi(f)(E) = X0. Suppose by contradiction that πepi(f)(E) = X ′

and X0 6= X ′. Then, ∠X0(X ′, E′) ≥ π
2 and ∠X′(X0, E) ≥ π

2 . Then, the sum of the

angles of 4(X ′, X0, E) is more than π, that is a contradiction. �

The next theorem is a generalization of the density theorem on geodesically

complete Hadamard spaces. For density theorem on Hilbert spaces see [6].

Theorem 2.17. Suppose that f is a proper, convex and lower semicontinuous

function. Then dom(∂f(x)) is dense in int(domf).

Proof. Given x0 ∈ int(domf), the point X0 = (x0, f(x0)) is a boundary point

of epi(f). So there exists a sequence Yn = (yn, rn) in the complement of epi(f),
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converges to X0. Since epi(f) is convex and closed in X×R, for each Yn, there exists

a unique point Xn = (xn, f(xn)) ∈ epi(f) such that πepi(f)(Yn) = Xn. Moreover,

ρ(Xn, X0) ≤ ρ(Xn, Yn) + ρ(Yn, X0) ≤ 2ρ(Yn, X0),

which implies that Xn converges to X0. Therefore, the sequence {xn} converges to

x0 and for every neighborhood U of x0, there exists xn ∈ U . By Lemma 2.16, one

can assume that f(xn)− rn = 1, so by Lemma 2.13, ∂f(xn) 6= ∅. �
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