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Abstract

New regulations, stronger competitions and more volatile capital markets have increased
the demand for stochastic asset-liability management (ALM) models for insurance companies
in recent years. The numerical simulation of such models is usually performed by Monte Carlo
methods which suffer from a slow and erratic convergence, though. As alternatives to Monte
Carlo simulation, we propose and investigate in this article the use of deterministic integra-
tion schemes, such as quasi-Monte Carlo and sparse grid quadrature methods. Numerical
experiments with different ALM models for portfolios of participating life insurance products
demonstrate that these deterministic methods often converge faster, less erratic and produce
more accurate results than Monte Carlo simulation even for small sample sizes and complex
models if the methods are combined with adaptivity and dimension reduction techniques.
In addition, we show by an analysis of variance (ANOVA) that ALM problems are often of
very low effective dimension which provides a theoretical explanation for the success of the
deterministic quadrature methods.
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1 Introduction

Much effort has been spent on the development of stochastic asset-liability management (ALM)
models for life insurance companies in the last years, see, e.g., [3, 4, 5, 8, 13, 16, 22, 27, 28]
and the references therein. Such models are becoming more and more important due to new
accountancy standards, greater globalisation, stronger competition, more volatile capital markets
and low interest rates. They are employed to simulate the medium and long-term development of all
assets and liabilities. This way, the exposure of the insurance company to financial, mortality and
surrender risks can be analysed. The results are used to support management decisions regarding,
e.g., asset allocation, bonus declaration or the development of more profitable and competitive
insurance products. The models are also applied to obtain market-based, fair value accountancy
standards as required by Solvency II and the International Financial Reporting Standard.

Due to the wide range of path-dependencies, guarantees and option-like features of insurance
products, closed-form representations of statistical target figures, like expected values or variances,
which in turn yield embedded values or risk-return profiles of the company, are in general not
available. Therefore, insurance companies have to resort to numerical methods for the simulation of
ALM models. In practise, usually Monte Carlo methods are used which are based on the averaging
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of a large number of simulated scenarios. These methods are robust and easy to implement but
suffer from an erratic convergence and relatively low convergence rates. In order to improve an
initial approximation by one more digit precision, Monte Carlo methods require, on average, the
simulation of a hundred times as many scenarios as have been used for the initial approximation.
Since the simulation of each scenario requires to run over all relevant points in time and all
policies in the portfolio of the company, often very long computing times are needed to obtain
approximations of satisfactory accuracy. As a consequence, a frequent and comprehensive risk
management, extensive sensitivity investigations or the optimisation of product parameters and
management rules are often not possible.

In this article, we focus on approaches to speed up the simulation of ALM models. To this
end, we rewrite the ALM simulation problem as a multivariate integration problem and apply
quasi-Monte Carlo (see, e.g., [19, 31, 38]) and sparse grid methods (see, e.g., [10, 14, 15, 20,
33, 41]) in combination with adaptivity [15] and dimension reduction techniques [1, 30] for its
numerical computation. Quasi-Monte Carlo and sparse grid methods are alternatives to Monte
Carlo simulation, which can attain faster rates of convergence, can exploit the smoothness of the
integrand and have deterministic upper bounds on the error. In this way, they have the potential
to significantly reduce the number of required scenarios and computing times.

For many problems from mathematical finance, the efficiency of these deterministic quadrature
methods has already been studied and numerical experiments have showed that they are indeed
often faster and more accurate than Monte Carlo simulation. Examples are the pricing of bonds
[2, 32], options [1, 17] and mortgage backed securities [11, 14, 15, 37]. To our knowledge, it is
so far not known if deterministic methods can also be successfully applied to ALM simulations.
Such simulations are usually much more complex and time-consuming than the examples men-
tioned above since many different model equations for the capital market, for the management of
the insurance company and for the policyholder behaviour are involved. While there are many
publications on modeling aspects, only very few focus on the numerical issues which arise in the
simulation of ALM models in life insurance. Monte Carlo methods with antithetic variates, Faure
low-discrepancy sequences1 and different time discretisation methods were studied in [12]. Finite
difference methods were considered in [6, 25, 43].

In order to assess the efficiency of deterministic simulation methods we here use the general
ALM model framework developed in [16] as a benchmark. This model includes as special cases
many other models (e.g., [3, 4, 22]) which have been proposed in the literature for the ALM
of participating life insurance products. We show in numerical experiments based on different
parameter setups how the accuracy of Monte Carlo, quasi-Monte Carlo and sparse grid integration
depends on mathematical properties such as the variance and the smoothness of the corresponding
integration problem. Our numerical results demonstrate that quasi-Monte Carlo methods based on
Sobol sequences and dimension-adaptive sparse grids based on Gauss-Hermite quadrature formulas
are often faster and more accurate than Monte Carlo simulation even for complex ALM models
with many time steps.

It is known that the performance of these deterministic numerical methods is closely related
to the effective dimension (see, e.g., [11, 44]) of the underlying integration problem. To this end,
we determine the effective dimension in the truncation and in the superposition sense by means of
an analysis of variance (ANOVA) decomposition of the integrand. The results indicate that ALM
problems are often of very low effective dimension, which provides a theoretical explanation for
the efficiency of the deterministic quadrature methods. In this context we also show that path
generating methods for the capital market scenarios have a significant impact on the effective
dimension and on the performance of the numerical methods. Thereby, we compare the random
walk, the Brownian bridge and two principal component constructions.

The remainder of this article is as follows: First, in Section 2, we describe the framework of
the ALM model and introduce our benchmark model. In Section 3, we then discuss the numerical
simulation of ALM models by Monte Carlo and deterministic integration methods. In Section 4, we

1Faure sequences were found to be inferior to Monte Carlo simulation in [12] for an ALM problem similar to the
one considered here. But, no dimension reduction techniques were considered there.
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then present numerical results for several different parameter setups which illustrate the efficiency
of the different numerical approaches as well as the numerical effects which arise due to different
model components and path constructions. The article finally closes in Section 5 with concluding
remarks.

2 Stochastic ALM Models in Life Insurance

In the context of ALM simulations, it is necessary to estimate the medium and long-term develop-
ment of all assets and liabilities of an insurance company as well as the interactions between them
in order to determine their sensitivity to financial, mortality and surrender risks. Thereby, the
future development of the capital markets, the behaviour of the policyholders and the decisions
of the company’s management have to be taken into account. This can either be achieved by the
computation of particular scenarios (stress tests) which are based on historical data, subjective
expectations, and guidelines of regulatory authorities or by a stochastic modelling and simulation
of the capital markets, of the policyholder behaviour and of all involved accounts. In the latter
case, the simulation of such models can either be performed under the risk-neutral probability
measure, which is appropriate for the fair valuation of embedded options and the identification of
fair contract designs, or under the objective probability measure which is used for risk analyses. In
the following, we restrict ourselves to the second approach. For numerical simulation both settings
are equivalent, though.

In the following, we start with an abstract representation of ALM models in life insurance in
terms of a general state space model. This representation reveals the different building blocks from
a computational point of view and is used in the remainder of this article.

2.1 Overall Model Structure

Here, we focus on the situation where a stochastic capital market model is used, while all other
model components are assumed to be deterministic. We model all terms in discrete time.2 The
simulation starts at time t = 0 and ends at time t = T . The time interval [0, T ] is decomposed
into K periods [tk−1, tk] with tk = k∆t and period length ∆t = T/K. Thereby, a (Markov) multi-
period model specifies how the different accounts evolve from one point in time to the next. Then,
the overall structure of one time step of such ALM models can often be organized into different
modules as illustrated in Figure 1.

Figure 1: Overall structure of one time step of the ALM model.
2Our starting point is thus either a discrete-time model or the discretisation of a continuous-time model.
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The stochastic component, the capital market model (or scenario generator), is usually defined
by a system of stochastic differential equations for the involved market components (e.g., stocks
and interest rates). It is usually based on an underlying multivariate Brownian motion. The
deterministic part of the ALM model includes all model equations specified in the asset model,
the management model and the liability model. In the asset-model, the market prices of the
different asset classes, the return rate of the company’s portfolio and the overall development of
the capital are determined. In the liability model, the premium payments and all survival, death
and surrender benefits are collected, which depend on the specific insurance product. In addition,
the balance sheet items on the liability side (e.g., the actuarial reserve, the bonus reserve or the
equity) are updated. In the management model, the capital allocation, the bonus declaration and
the shareholder participation are specified by deterministic management rules which can depend
on the capital markets, the cash flows, the reserves and all other accounts.

2.2 State Space Representation

To obtain a convenient and compact representation of stochastic ALM models, we assume that the
entire state of the insurance company at time tk can be represented by a state vector Xk ∈ RM .
This vector contains all information, e.g., balance sheet items and policyholder accounts, which
are required to carry the simulation from one point in time to the next, thereby depending on the
development of the capital markets. We further assume that the state of the capital markets at
time tk can be described by a vector Sk ∈ RD. It contains, for instance, the current stock prices
and interest rates at time tk.

The initial state of the insurance company at the start of the simulation is given and denoted
by X0. Its temporal development is then specified by the equation

Xk = r(Xk−1,Sk) (1)

in a recursive way for k = 1, . . . ,K, which mirrors the Markov property of the ALM model. For
a given input vector Sk, the state equation r : RM+D → RM thereby relates the state of the
insurance company at time tk to the state at time tk−1. It includes all model equations specified
in the asset model, in the management model and in the liability model. Most models proposed
in the literature or used in practise can be written in the form (1) using a sufficiently complex
function r.

The computation of one scenario of the model (1) then involves the computation of the vector

X = (X1, . . . ,XK)

for the states of the insurance company at the different points in time. The states thereby depend
on the vector

S = (S1, . . . ,SK)

which describes the underlying capital market scenario.

2.3 Benchmark Model

As an example for the abstract model (1), we here consider the general ALM model framework from
[16]. It describes the temporal development of a portfolio of participating life insurance policies.
The balance sheet items at time tk which are used in this model are shown in Table 1. The asset
side consists of the market value Ck of the company’s assets at time tk. On the liability side, the
first item is the book value of the actuarial reserve Dk.3 The second item is the allocated bonus
Bk which constitutes the part of the surpluses that have been credited to the policyholders via the
profit participation. The free reserve Fk is a buffer account for future bonus payments. It consists
of surpluses which have not yet been credited to the individual policyholder accounts, and is used to
smooth capital market oscillations in order to achieve a stable and low-volatile return participation

3i.e., the guaranteed savings part of the policyholders after deduction of risk premiums and administrative costs.
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of the policyholders. The last item, the equity Qk, consists of the part of the surpluses which is
kept by the shareholders of the company. The model parameters and model equations which are
used to describe the temporal development of the different balance sheet items are summarized in
Figure 2 and are briefly explained in the following.

Assets Liabilities
Capital Ck Actuarial reserve Dk

Allocated bonus Bk
Free reserve Fk
Equity Qk

Table 1: Items of the simplified balance sheet at time tk.

The capital market model contains the price of a stock and the short interest rate. The temporal
dynamics of the stock price is modelled by a geometric Brownian motion while the short interest
rates are obtained from the Cox-Ingersoll-Ross (CIR) model which is coupled to the stock price
model via a constant correlation factor ρ. This system, which is based on a two-dimensional
Brownian motion, is then discretised according to the period length ∆t with an explicit Euler-
Maruyama discretisation yielding discrete stock prices sk and short interest rates rk for each
period k, see the equations (C1) and (C2) in Figure 2.

In the asset model, the market prices bk(τ) of the bonds of the company at time tk are deter-
mined, which in turn depend on the short interest rates rk and on their duration τ , see equation
(A1). This way, the portfolio return rate pk is specified (A2) which contributes to the development
of the capital Ck of the company in each period (A3).

Next, we consider the management model which specifies the capital allocation, the bonus
declaration and the shareholder participation. The asset allocation in stocks and bonds is dynamic.
Thereby, the company aims to invest a constant percentage β of the total capital in stocks while
the remaining part is invested in zero coupon bonds using a buy-and-hold trading strategy, see
(M1) – (M3). For the declaration of the policyholder interest zk, the mechanism from [22] is used
(M4), which is based on the reserve situation of the company. To distribute the total surplus Gk in
each period k among policyholders and shareholders, a fixed percentage α of the surplus is saved
in the free reserve Fk while the remaining part is added to the equity Qk, see (M5).

In the liability model, the actuarial reserve Di
k and the allocated bonuses Bik for each policy-

holder i, i = 1, . . . ,m, are updated, see (L2) and (L3). They depend on the biometry assumptions
and on the specific insurance products under consideration. Mortality and surrender are thereby
assumed to be deterministic. The probabilities qik and uik that the policyholder i dies or surren-
ders, respectively, in period k are taken from experience-based tables and determine the number
δik of contracts in the portfolio (L1). The surplus Gk in period k, see (L4), consists of the interest
surplus, which results from the spread pk − zk of portfolio and policyholder interest, and of the
surrender surplus, which depends on the surrender factor ϑ. Finally, the equity Qk is obtained
(L5) so that the sum of the assets equals the sum of the liabilities.

Next, we formulate this particular model in terms of the state space representation (1). The
state space Xk at time tk of this model consists of all accounts of the insurance company and of
the policyholders. We use

Xk =
(
B1
k, . . . , B

m
k , D

1
k, . . . , D

m
k , δ

1
k, . . . , δ

m
k , nk, . . . , nk−τ+1, Ck, Fk

)
and thus have M = 3m+ τ + 2, where m is the number of policyholders and τ the duration of the
bonds. From the state space X all remaining variables in the model can be derived. Since any term
of the model is recursively defined, see Figure 2, a state equation of the form Xk = r(Xk−1,Sk)
can be formulated. It includes all model equations from Figure 2 except Equations C1 and C2.
The state space of the capital market model is two-dimensional and given by

Sk = (sk, rk).
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Capital market model:

Input parameters: κ, θ, σr (short interest rates), µ, σs (stock prices)

(C1) Short interest rates rk = rk−1 + κ(θ − rk−1)∆t+ σr
√
|rk−1|∆Wk,1

(C2) Stock prices sk = sk−1 exp{(µ− σ2
s/2)∆t+ σs ∆Wk,2}

Management model:
Input parameters: β (asset allocation), ω, γ (bonus declaration), α (shareholders)

(M1) New investment Nk = Ck−1 + Pk −
∑τ−1
j=1 nk−j bk−1(τ − j)

(M2) Investment in stocks Ak = max {min{Nk, β(Ck−1 + Pk)}, 0}

(M3) Number of new bonds nk = (Nk −Ak)/bk−1(τ)

(M4) Policyholder interest zk = max {z, ω(Fk−1/(Dk−1 +Bk−1)− γ)}

(M5) Free reserve Fk = max{Fk−1 + min{Gk, αGk}, 0}

Asset model:
Input parameters: τ (bond duration)

(A1) Bond prices bk(τ) = A(τ) exp{−B(τ) rk}

(A2) Portfolio return rate pk = (∆Ak +
∑τ−1
j=0 nk−j ∆bk,j)/(Ck−1 + Pk)

(A3) Capital Ck = (1 + pk)(Ck−1 + Pk)− Ek − Tk − Sk

Liability model:

Input parameters: qik, u
i
k (mortality, surrender), z, ϑ, P ik, E

i,G
k , T i,Gk , Si,Gk (product)

(L1) Number of contracts δik =
(
1− qik − uik

)
δik−1

(L2) Actuarial reserve Di
k = ((1 + z)(Di

k−1 + P ik)− qikT
i,G
k )/(1− qik)− Ei,Gk

(L3) Allocated bonus Bik = (1 + zk)Bik−1 + (zk − z) (Di
k−1 + P ik)

(L4) Surplus Gk = pk Fk−1 + (pk − zk) (Dk−1 +Bk−1 + Pk) + (1/ϑ− 1)Sk

(L5) Equity Qk = Ck −Dk −Bk − Fk

Figure 2: Summary of the most important model parameters and equations. Lower indices k refer
to the point in time tk whereas upper indices i refer to the i-th policyholder. The values ∆Wk,` =
W`(tk)−W`(tk−1) for ` ∈ {1, 2}, ∆Ak = Ak(sk/sk−1 − 1) and ∆bk,j = bk(τ − j − 1)− bk−1(τ − j)
denote the increments of the underlying Brownian motion, the changes of the stock investments
and the changes of the bond prices from the beginning to the end of period k, respectively. The
terms A(τ) and B(τ) are constants which are defined in the CIR model. The values Pk, Ek, Tk
and Sk denote the total premium income and the total survival, death, and surrender payments
in period k. Like Dk and Bk, these values result by summation of the individual policyholder
accounts.
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3 Numerical Simulation

Due to the large variety of path-dependencies, guarantees and option-like features of insurance
products and management rules in ALM models, closed-form representations of statistical target
figures, such as expected values, are in general not available. Therefore, numerical methods have
to be used for their simulation. In this section, we discuss the stochastic simulation of ALM models
of type (1) and the arising computational costs. In order to reduce the computing times, we then
rewrite the simulation problem as high-dimensional integration problem and apply deterministic
quadrature methods for its numerical computation. To profit from low effective dimensions we
finally combine these methods with a hierarchical construction of the capital market paths.

3.1 Stochastic Simulation

A single simulation run X of the ALM model (1) corresponds to a particular capital market
scenario S. It can be analysed by looking, e.g., at the balance sheet positions or at cross sections
of the portfolio at certain times. Here, we focus on stochastic simulations of the ALM model (1).
To this end, a large number of scenarios is generated and statistical performance figures such as
expected values are considered and evaluated. These measures are based on the most important
state variables, e.g. the equity or the investment return, and can be written in the form

P = E[fP (X)] (2)

for some evaluation function fP : RM ·K → R. A simple example for such a function fP evaluates
the equity from the state vector XK at the time tK .

Next, we formulate a Monte Carlo algorithm for the approximation of the performance figure
P . Thereby, we assume that the capital market scenarios S result from the discretisation and
simulation of a system of stochastic Itô differential equations which is based on a D-dimensional
Brownian motion. Since K time steps are used in the discretisation this results in an (D · K)-
dimensional problem represented by

S = fC(W),

W = fB(Y),
(3)

where W = (W1, . . . ,WK) denotes the discrete path which contains the values of the Brownian
motion at times t1, . . . , tK and where Y denotes a vector which contains D·K independent standard
normally distributed random numbers. The functions fC : RD·K → RD·K and fB : RD·K →
RD·K represent the generation of the capital market scenarios S and the path construction of the
underlying Brownian motion W, respectively. For the specific ALM model from Section 2.3 the
equation S = fC(W) is explicitly given by Equations C1 and C2 in Figure 2.

The main steps of a standard Monte Carlo algorithm (see, e.g., [19]) using N scenarios for
the approximation of the expected value (2) are summarised in Figure 3. Thereby, the function
fI : RD·K → RM ·K denotes the explicit (i.e. non-recursive) representation of the recursion (1)
and thus contains all equations of the ALM model.

3.2 Computational Costs

The overall computational complexity R which is needed by the algorithm in Figure 3 is given by

R = O(N ·K · Λ),

where N is the number of scenarios which are generated, K is the number of periods which
are simulated, and Λ describes the costs of one time step of the ALM model, i.e., the costs
to evaluate the recursion (1). The required number N of scenarios4 depends on the accuracy

4In practise, usually a fixed prescribed number (e.g., 1000) of scenarios is used. To compare the efficiency of
numerical algorithms it is important that these costs (the number of scenarios) have to be compared to the benefits
(the accuracy). In this article, we therefore aim to find algorithms which obtain a fixed accuracy with as few
scenarios as possible or, conversely, algorithms which are as precise as possible for fixed costs.
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For i = 1, 2, . . . , N
1) Generate normally distributed random numbers Yi ∈ RD·K

2) Construct path of Brownian motion Wi = fB(Yi)
3) Generate capital market scenario Si = fC(Wi)
4) Evaluate ALM model equations Xi = fI(Si)
5) Compute performance figure P i = fP (Xi)

Compute the average P ≈ 1
N

(
P 1 + . . .+ PN

)
.

Figure 3: Approximation of the expected value (2) by Monte Carlo integration.

requirements, the employed numerical method and on the model parameters as they affect several
important mathematical properties of the problem, e.g., its variance, its effective dimension and
its smoothness, see Section 3.4. The costs Λ depends, e.g., on the number of different asset classes,
insurance contracts and management rules. Typically, it is proportional to the size of the state
vectors Xk and Sk, i.e.

Λ = O(M +D).

In models, where market prices of some asset classes have to be computed with numerical approx-
imation methods, where model equations can not be evaluated in recursive form, or where assets
are allocated based on numerical optimisation routines, the complexity of Λ can be significantly
larger than O(M +D), though.

Several approaches exist to reduce the overall computational complexity R. The costs Λ can
be reduced by model simplifications on the asset or the liability side, e.g., by the use of few
representative asset classes and policies (model points), or less complex management rules. Such
simplifications are easy to realise, the resulting model errors are difficult to control, though. The
number of periods K can be reduced by using a coarser time discretisation (e.g., yearly instead
of monthly periods) which however increases the time discretisation error. Higher order [12, 26]
or multilevel methods [18] might be used to reduce this effect. In Monte Carlo simulations, the
number of required scenarios N can often be reduced using variance reduction techniques, like,
e.g., antithetic variates, control variates or importance sampling, see, e.g., [19]. For complex ALM
models, good control variates or importance sampling functions are difficult to obtain, though.
Finally, one can resort to parallel computers to speed up the computation, e.g., by a simultaneous
calculation of different scenarios on different processors.

In this article, we focus on a different approach to decrease the overall computational complexity
by reducing the required number of scenarios. We rewrite the ALM simulation problem as an
multivariate integration problem (see Section 3.3) and apply quasi-Monte Carlo and sparse grid
methods (see Section 3.4) in combination with adaptivity and dimension reduction techniques (see
Section 3.5) for its numerical computation. These approaches are often faster and more accurate
than Monte Carlo simulation as we show in Section 4. They can be combined with the other
approaches mentioned above to reduce the overall computational complexity in order to achieve
additional speedups.

3.3 Integral Representation

Since the distribution of the vector X ∈ RM ·K , which contains the states of the insurance company,
depends on the normally distributed vector Y ∈ Rd with d = D·K, see (1) and (3), the performance
figure (2) can be represented as a d-dimensional integral

P =
∫

IRd

h(y)ϕ(y) dy (4)

where the function h : Rd → R is explicitly given by h = fP ◦ fI ◦ fC ◦ fB , see Figure 3, and
where ϕ(y) = (2π)−d/2e−yT y/2 denotes the Gaussian density function. We see that, for instance,
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the computation of a performance figure in an ALM model with a two-factor capital market and a
monthly discretisation for a time horizon of T = 10 years corresponds to D = 2 and K = 120 and
thus results in a 240-dimensional integral.

In order to apply numerical integration methods, it is often necessary to transform the integral
(4) into an integral over the d-dimensional unit cube [0, 1]d. To this end, we to use the substitution
yi = Φ−1(xi) for i = 1, . . . , d, where Φ−1 denotes the inverse5 of the cumulative normal distribution
function. One obtains

P =
∫

[0,1]d
f(x) dx (5)

with the integrand f(x) = h(Φ−1(x1), . . . ,Φ−1(xd)).6

3.4 Numerical Methods for High-Dimensional Integrals

There is a wide range of methods available for multivariate numerical integration. Typically, the
integral (5) is approximated by a weighted sum of N function evaluations

PN =
N∑
i=1

wif(xi) (6)

with weights wi ∈ IR and nodes xi ∈ [0, 1]d. Depending on the choice of the weights and nodes,
different methods with varying properties are obtained, which are shortly reviewed in the next
paragraphs. Here, one can distinguish between statistical methods (Monte Carlo), number theoretic
methods (quasi-Monte Carlo) and methods based on polynomial exactness (e.g., sparse grids).
While the methods of the first two classes use uniformly distributed point sets, the rules of the
third class are designed to be exact for a certain set of polynomials and thus particularly well
suited for the integration of smooth functions. Example node sets for these three approaches are
shown in Figure 4. Note that the number N of nodes corresponds to the number of simulation
runs and each point xi corresponds to exactly one capital market scenario Si.

Monte Carlo The Monte Carlo (MC) method is the most widely used method for the simulation
of stochastic models. Here, all weights equal wi = 1/N and uniformly distributed sequences of
pseudo-random numbers xi ∈ (0, 1)d are used as nodes.7 The law of large numbers then ensures
that the estimate PN converges to P for N →∞ if f has finite variance σ2(f). The expected mean
square error thereby equals σ2(f) N−1/2. The method thus suffers from a relative low probabilistic
convergence rate of 1/2, i.e.,

|P − PN | = O(N−1/2). (7)

The convergence rate is, however, independent of the dimension d.

Quasi-Monte Carlo Quasi-Monte Carlo (QMC) methods are equal-weight rules like MC.8 In-
stead of pseudo-random numbers, however, deterministic low-discrepancy sequences based either
on digital nets (see, e.g., [19, 31]) or lattices (see, e.g., [38, 39]) are used as nodes. They are
designed to yield a better uniformity than random samples. For a two-dimensional example, this
property is illustrated by the grids in Figure 4 where 128 MC points and 128 QMC points are
displayed. One can see that the pseudo-random points tend to cluster more and are not as evenly

5For the fast computation of Φ−1(xi), we use Moro’s method [29].
6The integrand f which results from this transformation is unbounded on the boundary of the unit cube, which

is undesirable from a numerical as well as theoretical point of view. We tested several alternative transformations
to the unit cube (e.g. using the logistic distribution or polar coordinates), but in combination with (quasi-) Monte
Carlo the transformation yi = Φ−1(xi) turned out to be the most effective one, probably because it cancels the
Gaussian weight. Sparse grid quadrature based on Gauss-Hermite rules can be applied directly to the untransformed
integral (4) such that no transformation is required and the corresponding loss of regularity can be avoided.

7Algorithms which generate uniform pseudo-random numbers are reviewed, e.g., in [19, 31].
8QMC methods can therefore easily be integrated in existing software packages, which are based on MC simula-

tion, by replacing all pseudo random MC samples by quasi-random ones.
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Figure 4: Sample points of the Monte Carlo method (left), Sobol quasi-Monte Carlo method
(middle) and sparse grid method (right). The sparse grid is based on a trapezoidal rule.

distributed as the quasi-random ones. The most popular QMC methods are based on Halton,
Faure, Sobol and Niederreiter-Xing sequences, or on lattice rules which result from Korobov or
fast component-by-component constructions. From the Koksma-Hlawka inequality (see, e.g., [31])
it follows that the worst case error of a QMC method with N samples is given by

|P − PN | = O(N−1(logN)d) (8)

for integrands of bounded variation, which is asymptotically better than the error bound (7) of
the MC method but depends on the dimension d.

Sparse grid methods Sparse grid (SG) quadrature formulas are constructed using certain com-
binations of tensor products of one-dimensional quadrature rules, see, e.g., [10, 14, 20, 33, 41].
Depending on the one-dimensional quadrature rules, these methods integrate polynomials up to
a certain degree exactly and can thus exploit the smoothness of the function f and also obtain
convergence rates larger than one. They converge with order

|P − PN | = O(N−s(logN)(d−1)(s−1)) (9)

for integrands which have bounded mixed derivatives up to order s. Sparse grid quadrature for-
mulas come in various types depending on the one-dimensional basis integration routine, like the
trapezoidal, the Clenshaw-Curtis, the Gauss-Patterson, the Gauss-Legendre or the Gauss-Hermite
rule. In many cases, the performance of sparse grids can be enhanced by spatial adaptivity, see
[7, 9], or by a dimension-adaptive refinement, see [15]. The latter algorithms allow for an adaptive
detection of the important dimensions and adaptively refine in this respect guided by suitable error
estimators. The costs of the method thus rather increase with the number of important dimen-
sions than with the nominal dimension d, which, in particular, permits an efficient application to
high-dimensional problems with few important dimensions.

3.5 Impact of the Dimension

The error bounds (8) and (9) indicate that the convergence rates of QMC and SG methods exhibit
a logarithmic dependence on the dimension d. Furthermore, it is known that the implicit constants
contained in the O-notation in these bounds also depend on d and often increase exponentially
with the dimension, see, e.g., [20, 40, 46].9 For problems with high nominal dimension d, it is thus
not clear if the asymptotic advantages of the QMC and SG methods pay off for practical sample
sizes N .

9This effect, called curse of dimension, is one of the main obstacles for the numerical treatment of high dimensional
problems. For some function classes, e.g., Sobolov spaces with bounded mixed derivatives, it is known that the curse
of dimension can not be avoided by deterministic methods of the form (6), see, e.g., [20, 21, 35]. Such problems are
therefore called intractable.
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One the other hand, numerical experiments showed that QMC methods are faster and more
accurate than MC for certain financial problems even in hundreds of dimensions, like the pricing of
bonds [32], options [1] and mortgage backed securities [11, 37], the valuation of catastrophe bonds
[2] and the computation of the value at risk of asset portfolios [36]. Similar results have been
observed for the SG methods, which were applied successfully to the valuation of performance-
dependent options [17], the pricing of mortgage backed securities [14, 15] and to likelihood estima-
tion [23].

The explanation of this success of QMC and SG methods is that application problems are often
in different or smaller problem classes than the ones on which the classical error bounds are based.
Important examples of such function classes are so-called weighted Sobolov spaces, for which it is
shown in [34, 40] that the exponential dependence on the dimension can be avoided if the weights
decay sufficiently fast. A closely related argumentation given in [11] states that many problems in
finance have the property to be of low effective dimension which can be exploited by QMC and
SG methods.

ANOVA decomposition and effective dimension The notion of effective dimension is based
on the analysis of variance (ANOVA) decomposition of the integrand (5). In the ANOVA, a function
f : [0, 1]d → IR is decomposed by

f(x) =
∑
u⊆S

fu(xu) with fu(xu) =
∫

[0,1]d−|u|
f(x)dxS\u −

∑
v⊂u

fv(xv)

into 2d sub-terms fu where S = {1, . . . , d} and xu denotes the |u|-dimensional vector containing
those components of x whose indices belong to the set u. Thereby, the sub-terms fu describe the
dependence of the function f on the dimensions j ∈ u. The sub-terms satisfy

∫ 1

0
fu(xu)dxj = 0

for all j ∈ u which insures the uniqueness of the decomposition and implies that the variance of
the function f can be written as

σ(f) =
∑
u⊆S

σ(fu),

where σ(fu) denotes the variance of fu.
This decomposition of variance is used to define the effective dimension of the function f as

introduced in [11]. The effective dimension in the truncation sense (the truncation dimension) of
the function f is defined as the smallest integer dt, such that∑

v⊆{1,...,dt}

σ(fv) ≥ 0.99 σ(f).

If the variables are ordered according to their importance, the effective dimension dt roughly
describes the number of important variables of the function f . The effective dimension in the
superposition sense (the superposition dimension) is defined as the smallest integer ds, such that∑

|v|≤ds

σ(fv) ≥ 0.99 σ(f).

It roughly describes the highest order of important interactions between variables in the ANOVA
decomposition.

For large d, it is no longer possible to compute all 2d ANOVA sub-terms. The effective di-
mensions can still be computed in many cases, though. For details and an efficient algorithm for
the computation of the truncation dimension we refer to [44]. For the more difficult problem to
compute the superposition dimension, we use the recursive method described in [45].

The important point is that QMC and SG methods can take advantage of low effective dimen-
sions. QMC methods profit from a low effective dimension by the fact that their nodes are usually
more uniformly distributed in smaller dimensions than in higher ones. Lattice rules can be tailored
to problems in which dimensions are of varying importance using the component-by-component
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construction [39]. SG methods can automatically detect different weightings of the dimensions
and exploit these by a dimension-adaptive grid refinement, see [15]. Thereby, SG methods profit
from low truncation dimension as well as from low superposition dimension. In Section 4.2 we will
give some indications that ALM problems in life insurance indeed belong to spaces of functions
of low effective dimension, which explains the good convergence behaviour and justifies the use of
deterministic methods.

Dimension reduction It is possible to change the effective dimension of the integral (2) without
affecting its value and the distribution of the states X of the ALM model. To this end, we consider
the function fB from (3), which describes the construction of the discrete path W1, . . . ,WK of
the underlying Brownian motion at the points in time tk = k∆t, k = 1, . . . ,K, with t0 = 0 and
tK = T , see also Figure 3. Since the performance figures (2) are independent of the specific choice
of fB , this function is not part of the ALM model specification but a degree of freedom which can
be used to optimize the numerical method which is used for their simulation

To approximate a univariate Brownian motion W at the points tk typically a random walk
(RW) discretisation

Wk = Wk−1 +
√

∆t yk

with W0 = 0 and yk ∼ N(0, 1) is used. With respect to a low effective dimension and an optimal
performance of the deterministic integration methods, much better results can often be achieved by
alternative sampling methods, though. Here, we will investigate the application of the Brownian
bridge (BB) and of the principal component (PCA) construction to ALM problems. For option
pricing problems, these path generating methods have been proposed in [1, 30], see [19] for details.

The BB construction differs from the RW construction in that rather than constructing the
increments sequentially, the path of the Gaussian process is constructed in a hierarchical way which
has the effect that more importance is placed on the earlier variables than on the later ones. The
PCA decomposition uses the eigenvalues and -vectors of the covariance matrix of the Brownian
motion and maximises the concentration of the total variance of the Brownian motion in the first
few dimensions.10 The PCA construction requires O(K2) operations for the generation of one
path instead of O(K) operations which are needed for the RW or for the BB construction. For
large K, this increases the run times of the simulation and can limit the practical use of the PCA
construction.

In the multivariate case, a D-dimensional Brownian motion W with correlation matrix Σ ∈
IRD×D has to be constructed. To this end, one can first generate a discrete D-dimensional un-
correlated Brownian motion by applying RW, BB or PCA separately to each component of the
Brownian motion and then respect the correlation in a second step by multiplication with either
the Cholesky matrix or the eigenvalue decomposition of Σ. Alternatively, one can perform an
eigenvalue decomposition of the entire covariance matrix of W. The latter approach, which we
denote by EVD, leads in the multivariate case to the highest possible concentration of variance in
the first variables, see [19]. We will investigate all four approaches, RW, BB, PCA and EVD, in
Section 4.

4 Numerical Results

We now apply MC, QMC and SG methods for the simulation of several different parameter setups
and compare the efficiency of the different numerical approaches. We determine the variances,
the smoothness and the effective dimensions of the different setups and show how these properties
relate to the convergence behaviour of MC, QMC and SG methods. Finally, we investigate the
impact of the different path generating methods.

10Note that without further assumptions on the integrand f it is not clear which construction leads to the minimal
effective dimension due to possibly non-linear dependencies of f on the underlying Brownian motion. As a partial
remedy, also more complicated covariance matrix decompositions can be employed which take into account the
linear part of the function f , see [24], which, however, are not considered here.
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4.1 Parameter Setups

As remarked in Section 3, the efficiency of numerical integration methods depends on several
mathematical properties of the integrand, such as its variance, its effective dimension and its
smoothness, all of which are affected by the choice of the input parameters of the ALM model.
To investigate the numerical issues which arise from the different choices of parameters and the
influence of the different model components, we consider the following simple basic setup 1 and
several extensions 2 – 10. Thereby, in each of the extensions, either one additional feature is added
to the basic setup or one particular component of the basic setup is replaced by a different one. In
setup 11, we then consider the combination of several extensions. All setups are special cases of
the ALM model in Figure 2 and result from different choices of the input parameters.

1 Basic model We start with a basic model which corresponds to the model from [22] for
European-type participation contracts with conservative bonus declaration. Thereby, we consider
a homogeneous portfolio of 50, 000 pure savings policies, which are exactly represented by one
model point. The policyholders of this model point pay a constant monthly premium P ik = 50 and
receive the guaranteed interest z = 3%. The assets follow Equation C2 (Figure 2) with parameters
µ = 5% and σs = 10%. This case is represented in the model framework by setting m = 1, β = 1,
ω = 0 and qik ≡ uik ≡ 0. We assume that the two accounts Fk and Qk are merged into one single
account, also denoted by Qk, which is appropriate if the policyholders are also the owners of the
company, see [22], and which corresponds to the case α = 1. We further assume that the policies
have not received any bonus payments before the start of the simulation, i.e., Bi0 = 0. It is finally
assumed that the total initial reserves of the company are given by Q0 = γ0D0 with γ0 = 0.1. We
always choose a period length of ∆t = 1/12 years, but consider different numbers of periods in the
simulation.

2 Mortality and surrender As a representative for a more complex insurance product, we
consider an endowment insurance with death benefit and surrender option with surrender factor
ϑ = 90%. Thereby, the policyholders, which are assumed to be male with entry age 36, exit age
62 and current age 42, receive at maturity, with age 65, their guaranteed benefit Di

k and the value
of their bonus account Bik if they are still alive at this point in time. In case of death prior to
maturity, the sum of all premium payments and the value of the bonus account is returned. In
case of surrender, the policyholder receives ϑ(Di

k + Bik). We take the probabilities qik of death
from the DAV 2004R mortality table and choose exponentially distributed surrender probabilities
uik = 1− e−0.03∆t.

3 Non-homogeneous portfolio We consider a more complex representative model portfolio
with 50, 000 contracts which have been condensed into m = 500 equal-sized model points. The
data of each model point i is generated according to the distribution assumptions that entry and
exit age are normally distributed with mean 36 and 62 and variance 10 and 4, respectively. The
current age at the start of the simulation is uniformly distributed between entry and exit age. The
probability that the contracts of a model point belong to female policyholders is assumed to be
55%.

4 High volatility To illustrate the effect of more volatile capital markets, we here choose a
volatility of σs = 30% instead of 10%.

5 and 6 Moderate and aggressive bonus payments To illustrate the effect of the bonus
declaration mechanism, we choose ω = 25% and ω = 100%, which correspond to the neutral and
aggressive scenarios in [22], respectively. The target reserve rate is assumed to be γ = 15%.

7 Shareholder participation In this setup, we choose α = 0.9 which corresponds to a distribu-
tion of the surplus between free reserve Fk and equity Qk according to the 90/10-rule. We assume
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Q0 = 0 which means that the shareholders will not make additional payments to the company
to avoid a ruin. This way, E[QK ] serves as a direct measure for the investment returns of the
shareholders in the time interval [0, tK ]. The initial reserves of the company are collected in the
free reserve, i.e., F0 = 0.1D0.

8 CIR model In this setup, we assume that the capital is only invested into bonds (i.e. β = 0)
with a duration of τ = 1/12 years. The short interest rates follow Equation C1 (Figure 2),
where we use the parameters κ = 0.1, θ = 4% and σr = 5%. The bond prices then result from
Equation A1. The terms A(τ) and B(τ) in this equation involve the market price of interest rate
risk which we assume to be λ0 = −5%. At time t0, we assume a uniform bond allocation, i.e.,
nj = (1− β)C0/

∑τ−1
i=0 b0(i) for j = 1− τ, . . . , 0.

9 CIR + GBM As a representative for a more complex capital market model, we consider a
correlated system of geometric Brownian motion and square-root diffusion as in Equation C1 and
C2 (Figure 2) with a correlation of ρ = −0.1. The parameters of the geometric Brownian motion
and of the CIR model are as above, but with σs = 5%. The capital allocation is performed with
the target stock ratio β = 10%.

10 CPPI strategy In this setup, we again use the correlated system of geometric Brownian
motion and square-root diffusion as in the previous setup. In contrast to setup 9, we here replace
β(Ck−1 + Pk) in Equation M2 by β Fk−1 with β = 1 such that the proportion of funds invested in
stocks is linked to the current amount of reserves. This implements a CPPI (constant proportion
portfolio insurance) capital allocation strategy.

11 Compound model We finally consider the simulation of a more complex ALM model which
is obtained by a combination of the setups 1 – 3, 5 and 10. It models the development of a
portfolio of endowment insurances with death benefit and incorporates the surrender of contracts,
a reserve-dependent bonus declaration, a dynamic asset allocation and a two-factor stochastic
capital market.

4.2 Properties of the Model Components

We here focus on the distribution of the equity account QK at time tK in the setups 1 – 11. We
compute the expected value of QK , which is given by the integral (2) with fP (X) = QK , and the
variance of QK for all setups by numerical integration on a very fine simulation grid with 220 QMC
sample points.11 The results for K = 16 and K = 128 time steps are shown in Table 2 and Table
3, respectively.

An detailed assessment of the impact of the different model parameters on the expected value
of the equity account and on other performance figures such as, e.g., the default probabilities, can
be found in [16]. Here, we merely focus on results which have an impact on the performance of the
numerical methods. To this end, note that the small volatility and the mean-reverting property of
the short interest rates in the CIR model result in rather small variances in the setups 8 – 11. The
by far highest variance arises in the setup 4. A comparison of the cases K = 16 and K = 128 shows
that longer time horizons with more periods lead to higher variances in all considered setups as
expected. Setup 11 with K = 128 is of striking small variance as it combines several components
which reduce the variance of the basic setup such as the decrement of contracts (setup 2), the
bonus declaration (setup 5) and the CIR model (setup 10).

Note further that the integrands which correspond to the different setups not only differ in
their variance but are also contained in different smoothness classes. This is indicated in Table 2

11For the setups 1 – 4 these values can also be derived analytically. For setup 1 and setup 4 one obtains
E[QK ] =

PK
k=1 P

i
k

`
exp{µ(K − k + 1)∆t} − P i

k(1 + z)K−k+1
´

+ exp{µK∆t}C0 − (1 + z)KD0, which we used as
a first test to validate the correctness of the implementation and the accuracy of the numerical methods. The
closed-form solution of a similar model but with bonus payments can be found in [3].
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and Table 3 by the smoothness parameter s, which denotes the maximum number of continuous
derivatives of the equity QK as function of the vector Y ∈ Rd. While QK is a C∞-smooth function
in the setups 1–4, it is only a C0-smooth function in the other cases. This loss of regularity results
from the maximum and minimum operators in the management rules M2, M4 and M5 for the
capital allocation, the bonus declaration and the shareholder participation and from the absolute
value in the model equation C1.

In addition to the expected values and variances, we also computed the truncation dimension
of the function QK for all setups. We thereby used the Brownian bridge construction for the stock
prices and short interest rates. The path generation does not affect the distribution or smoothness
of QK , but has a significant influence on the truncation dimension as we will show in Section 4.4.
One can see in Table 2 and in Table 3 that the truncation dimensions dt are in all cases significantly
smaller than the nominal dimensions d. In the setups 9 – 11 with K = 128, the nominal dimension
is d = 256, while the truncation dimension is only dt = 15. The highest truncation dimension
appears in setup 6 where we have d = 128 and dt = 23. In the setups 1 – 4 and 8, we observe
that the truncation dimension is almost independent of the nominal dimension. It is in all cases
smaller than eight and even only one in the setups 1 – 4. In setup 11 one can finally see that the
combination of several extensions does not necessarily increase the effective dimension. It may even
be smaller than the maximum effective dimension of the individual components. This indicates
that also significantly more complex ALM models might be of low effective dimension.

Further numerical computations show that the considered ALM model problems are also of
very low effective dimension ds in the superposition sense. For d = 32 we obtain for almost all
setups that the integral (2) is ’nearly’ additive, i.e. ds = 1, independent of d and independent of
the chosen construction of the capital market paths.12 Only for setup 7 we get the superposition
ds = 2.

A partial explanation for the low effective dimensions and a common feature of ALM problems is
that the high nominal dimension mainly arises from the discretisation of an underlying continuous
time process. The corresponding integrals can thus be written as an approximation to some
infinite-dimensional integrals with respect to the Wiener measure. In these cases, the integrands
are contained in some weighted function spaces whose weights are related to the eigenvalues of
the covariance operator of the Wiener measure. The eigenvalues, sorted by their magnitude, are
decaying proportional to j−2 (where j is the number of the eigenvalue) which induces strong
tractability as shown in [40] and may explain the low effective truncation dimension.

In summary, one can see that the use of the different model components leads to comparably
small changes in the expected value but it significantly affects the variance, the smoothness and
the effective dimension of the function QK . A low effective dimension is thereby a property which
ALM problems in life insurance seem to have in common.

4.3 Impact of the Model Components

We now apply MC, QMC and SG methods to compute the integral (2) for all eleven setups.
Thereby, we compare

• MC simulation,

• QMC integration based on Sobol point sets (see [42]) and

• dimension-adaptive SG integration (see [15]) based on the Gauss-Hermite rule.

In various preliminary numerical experiments, the latter methods turned out to be the most efficient
representatives of several QMC variants (we compared Halton, Faure and Sobol low discrepancy
point sets and three different lattice rules13 with and without randomisation) and of several SG

12It is more difficult and expensive to compute the superposition than the truncation dimension so that we here
have to restrict the maximum dimension to d = 32.

13The lattice rules from [39] sometimes yield even more precise results than Sobol points if good weights are used
in their CBC construction. The selection of good weights is a priori not clear, however, and is thus not further
investigated here.
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no. 1 2 3 4 5 6 7 8 9 10 11
sample basic mort. non- high moder. aggr. share- CIR GBM+ CPPI comp.
setup setup surr. homog. vola. bonus bonus holder model CIR strat. model

E 5.9 6.1 6.6 5.9 5.8 5.6 5.8 4.6 4.9 4.7 5.7
σ 38 37 46 359 36 33 22 0.1 0.4 0.2 0.5
s ∞ ∞ ∞ ∞ 0 0 0 0 0 0 0
d 16 16 16 16 16 16 16 16 32 32 32
dt 1 1 1 1 1 1 4 7 7 9 7

MC method
rate 0.52 0.49 0.45 0.5 0.41 0.49 0.53 0.49 0.52 0.51 0.49

const 0.63 0.73 0.52 1.88 0.32 0.64 0.59 0.05 0.1 0.08 0.1

QMC method
rate 0.77 0.8 0.75 0.8 0.79 0.7 0.77 0.71 0.8 0.8 0.79

const 0.5 0.53 0.45 2.26 0.5 0.25 0.64 0.02 0.05 0.05 0.04

SG method
rate 3.01 2.33 2.37 2.26 0.35 -0.2 0.09 1.22 1.31 1.63 1.62

const 0.52 0.07 0.1 3.4 0.01 2e-3 0.11 2e-4 4e-3 0.01 0.01

Table 2: Results for the eleven setups with K = 16 periods: Expected values E, variances σ,
smoothness parameters s, nominal dimensions d and effective dimensions dt of the equity QK .
Moreover, convergence rates (rate) and constants (const) of the MC, QMC and SG method.

variants (we compared the trapezoidal, Clenshaw-Curtis, Gauss-Patterson, Gauss-Legendre and
Gauss-Hermite rules and different grid refinement strategies), respectively. The MC method is
applied without variance reduction techniques since good control variates or importance sampling
functions are difficult to obtain for complicated and recursively defined integrands as in our exam-
ples. Further preliminary numerical experiments, see also [12], indicate that significant variance
reductions can be achieved by the use of antithetic variates. In this way, the error constant of the
MC and the QMC method can be improved but not their convergence rates. Antithetic variates
have no effect on the SG method as sparse grids are antithetic by construction.

To demonstrate the impact of the nominal dimension d on the performance of the numerical
methods, we again distinguish the two cases K = 16 and K = 128. They correspond to integrals,
where the nominal dimension ranges from 16 to 256, see Table 2 and Table 3. Here, we again
use the Brownian bridge path construction for the stock prices and short interest rates to obtain
low effective dimensions avoiding the additional computational costs of the PCA and EVD con-
structions. To measure the accuracy of the three different numerical approaches we proceeded as
follows: We approximate the integral (2) with n = 1, 2, 4, . . . , 218 MC and QMC samples. As the
considered SG method determines the required number of nodes automatically, we here succes-
sively refine the approximation until the grid size exceeded 218 nodes. By a comparison of these
results with reference solutions, the convergence rates and the error constants of the numerical
methods are then computed using a least square fit. To eliminate the influence of the initial seed
in the MC method, we show the average convergence rates and constants which are obtained after
twenty independent runs of the MC method with different seeds.

For the eleven setups and the three numerical methods, the convergence rates and the constants
are displayed in Table 2 and Table 3 for the cases K = 16 and K = 128, respectively. One can see
that the MC method on average converges with the rate 1/2 independently of the selection of the
model parameters and of the number of time steps while the average constant of the approximation
significantly varies from setup to setup. This is explained by the different variances σ of the
considered setups and the fact that the expected MC error is proportional to the ratio σ/

√
n.

For instance, the constants in the setups 8 – 11, which are of comparably small variance, are
considerably smaller than, e.g., the constant in setup 4 which is of particular high variance. This
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no. 1 2 3 4 5 6 7 8 9 10 11
sample basic mort. non- high moder. aggr. share- CIR GBM+ CPPI comp.
setup setup surr. homog. vola. bonus bonus holder model CIR strat. model

E 26.5 26 22.8 26.5 14.2 6.6 24.2 10.9 15.3 12.7 10.2
σ 1233 937 791 16627 596 437 490 155 138 160 17
s ∞ ∞ ∞ ∞ 0 0 0 0 0 0 0
d 128 128 128 128 128 128 128 128 256 256 256
dt 1 1 1 1 8 23 16 8 15 15 15

MC method
rate 0.5 0.51 0.53 0.48 0.51 0.51 0.5 0.48 0.48 0.52 0.49

const 0.79 0.84 1.01 2.45 1.42 2 0.57 0.64 0.42 0.7 0.22

QMC method
rate 0.81 0.8 0.71 0.69 0.81 0.71 0.72 0.73 0.75 0.75 0.78

const 0.93 0.82 0.6 3.08 0.6 0.93 0.54 0.5 0.44 0.44 0.14

SG method
rate 1.65 1.64 1.56 1.5 0.14 0.21 0.1 0.63 0.29 0.33 0.15

const 2.5 1.58 0.99 70.7 0.28 3.31 1.36 0.07 0.37 0.04 0.01

Table 3: Results for the eleven setups with K = 128 periods: Expected values E, variances σ,
smoothness parameters s, nominal dimensions d and effective dimensions dt of the equity QK .
Moreover, convergence rates (rate) and constants (const) of the MC, QMC and SG method.

means that also the number of scenarios, which have to be simulated to obtain a prescribed
precision, varies from setup to setup according to its variance. Computational results not displayed
in Table 2 and Table 3 show that with 500 scenarios on average only one digit accuracy, i.e., a
relative error of about 10%, can be expected.14 For two digits precision, about 20, 000 sample
points are required on average. Three digits accuracy are only attained in very few cases with the
considered maximum number of sample points of 218.

One can further see that the QMC method outperforms MC simulation in all setups. It con-
verges faster with a convergence rate of 0.7 – 0.8 and has also smaller or comparably large error
constants. It is therefore also more accurate than MC even for small sample sizes. On average it
suffices to generate about 100 scenarios for one digit, 1, 000 scenarios for two digits and 10, 000
scenarios for three digits precision, i.e., low accuracy requirements of two digits precision are ob-
tained by the QMC method about twenty times faster than by MC simulation. For higher accuracy
requirements, the advantage of the QMC method is even more pronounced. Furthermore, an in-
spection of the high-dimensional case K = 128 shows that the QMC convergence rate as well as the
constant of the approximation is almost independent of the dimension. These results can not be
explained by the classical QMC convergence theory but by the low effective dimension of the ALM
problems, which we reported in Section 4.2. We further see that the fast convergence behaviour of
the QMC method is not affected by the smoothness parameter s. This shows on the other hand
that the QMC method can hardly profit from setups with a high degree of smoothness s =∞.

One can finally see that the performance of the SG method varies significantly from setup to
setup. We observe that it is the by far most efficient method with a very high convergence rate
of up to three for all setups which lead to smooth integrands with s = ∞. In the moderately
high dimensional case K = 16 also the constants (except in setup 4) are clearly lower than the
constants of the MC and QMC approximations. In these cases three digits precision (and more)
are already attained with only about 50 points if s =∞. The convergence rates and the constants
slightly deteriorate with rising dimensions, though, showing that the curse of dimension can not be
completely avoided by the SG method. Higher variances seem not to affect the convergence rates

14Note that we show the average results of 20 independent MC runs. Single runs of the MC method may be much
better as well as much worse than the reported results.
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of the SG method but lead to increasing constants of the approximation, see, e.g., setup 4. With
respect to the smoothness of the integrands, we see that the low degree of regularity has a much
more pronounced impact on the SG convergence in the setups 5 – 7 than in the setups 8 – 11. This
is explained by the fact that in the setups 8 – 11 the arising maximum and minimum operators in
the model equation M2 and the absolute value in the model equation C1 only apply in very rare
cases (e.g. if the discrete version of the CIR model produces negative interest rates). In the setups
5 – 7, the non-smooth model equations are of higher importance such that we consequently observe
only a very slow or even no convergence. To ensure a satisfactory performance of the SG method
in these cases, the smoothness must first be recovered by suitable smoothing transformations (e.g.,
by a smoothing of maximum and minimum operators or by a decomposition of the integration
domain into domains where the integrand is smooth), which are, however, not investigated in this
article.

4.4 Impact of the Path Generating Methods

We now demonstrate that the path generating method fB in (3) has a significant influence on
the effective dimension and on the performance of the deterministic numerical methods. We here
consider the most complex parameter setup, the compound model of setup 11.

We compare the component-wise application of the random walk (RW), the Brownian bridge
(BB), and the principal component construction (PCA) and, in addition, the eigenvalue decompo-
sition (EVD), see Section 3.5. The truncation dimensions dt which result from these four different
constructions of the short interest rates and stock prices are shown in Table 4 for different nominal
dimensions d.

Truncation dimension dt QMC convergence rates SG convergence rates
d RW BB PCA EVD RW BB PCA EVD RW BB PCA EVD
16 16 3 10 9 0.62 0.83 0.84 0.81 2.1 1.98 1.61 1.39
32 32 7 12 12 0.59 0.79 0.80 0.89 1.51 1.62 1.28 1.79
64 64 8 16 15 0.49 0.75 0.89 0.82 0.13 0.49 0.57 0.26
128 126 11 22 20 0.47 0.84 0.87 0.92 0.08 0.13 0.19 0.18

Table 4: Truncation dimensions dt of the ALM model in setup 11 and the convergence rates of the
QMC and SG method using different path constructions.

One can see that the BB, PCA and EVD path constructions all lead to effective dimensions
dt which are much smaller than the nominal dimensions d and are only slightly increasing with
increasing d. If instead the RW discretisation is used then the effective dimension is nearly equal
to the nominal dimension. PCA and EVD lead to almost the same results which is explained by
the rather small correlation ρ = −0.1 between the two underlying Brownian motions. The lowest
effective dimensions are achieved by the BB construction. Similar results hold for the setups 1–10.

We further show in Table 4 the impact of the path construction on the convergence rates of
the QMC and SG method. The convergence behaviour of the MC method is not affected by the
path construction since the total variance of the problems remains unchanged and is thus not
displayed. One can see that the QMC method achieves higher convergence rates than MC if the
paths are generated with BB, PCA or EVD. In these cases the rates are almost identical ranging
from 0.75 to 0.92 and show almost no dependence on the nominal dimension d. If the random
walk construction is used instead, then the convergence rates of the QMC method deteriorate with
increasing d and no longer outperform the MC rate of 1/2 for d ≥ 64. This effect illustrates the
importance of the path generating method if QMC methods are applied to ALM simulations. It
even more significantly affects other QMC points sets, like, e.g., the Halton sequence, whose points
are in higher dimensions not as uniformly distributed as the Sobol points. One can finally see
that the behaviour of the SG method is less clearly related to the truncation dimension dt and to
the path construction15 but is rather affected by the nominal dimension d. While the SG method

15The reason are two different interacting effects. The BB, PCA and EVD constructions lead to integrands of
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attains high convergence rates larger than one in the moderately high dimensional case d ≤ 32,
the rates deteriorate with increasing d and only a very slow or even no convergence is observed in
the higher dimensional cases.

4.5 Simulation of the Compound Model

We finally consider the simulation of the most complex parameter setup, the compound model
of setup 11 in more detail. To this end, we display the convergence behaviour of the MC, QMC
and SG method for this setup in Figure 5. There, the number of function evaluations is shown
which is required by each of the three numerical methods to obtain a fixed accuracy. We again use
the Brownian bridge path construction and consider the two cases K = 16 and K = 128 which
correspond to integration problems with nominal dimensions d = 32 and d = 256 and effective
dimensions dt = 7 and dt = 15, respectively, see Table 2 and Table 3.

Figure 5: Relative errors and required number of function evaluations of the different numerical
approaches to compute the expected value (2) with d = 32 (left) and d = 256 (right) for setup 11.

Here, the QMC method clearly outperforms MC simulation with a convergence rate close to
one and independent of the dimension. If 1, 000 function evaluations are used, the QMC method is
about 10 times as accurate as the MC method with the same number of scenarios. One can further
see that the convergence of the QMC method is also less erratic than the convergence of the MC
method. For d = 32, the SG method is the by far most efficient method for this setup. With 1, 000
function evaluations already an relative accuracy of 10−7 is achieved, which is 1, 000 times more
accurate than the result of the QMC method. The performance of the SG method deteriorates for
very high dimensions, though, and is not competitive to QMC for d = 256.

5 Concluding Remarks

In this article, we showed that deterministic integration schemes, such as quasi-Monte Carlo and
sparse grid methods can be very efficiently applied to the numerical simulation of ALM models in
life insurance. As a benchmark model for the different numerical approaches, we used a general
model framework for the asset-liability management of portfolios of life insurance products. The
model incorporates fairly general product characteristics, a surrender option, a reserve-dependent
bonus declaration, a dynamic capital allocation and a two-factor stochastic capital market model.
Numerical experiments with several different parameter setups demonstrate that Sobol quasi-Monte

low truncation dimension but with kinks which are not parallel to the coordinate axes. In the RW construction the
integrands are of high truncation dimension but some of the kinks are axis-parallel. SG profit from low truncation
dimension but suffer from kinks which are not axis-parallel.
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Carlo and dimension-adaptive sparse grid methods often significantly outperform Monte Carlo
simulation. The quasi-Monte Carlo method in combination with the Brownian bridge path con-
struction converges nearly independently of the dimension, converges faster and less erratic than
Monte Carlo and produces more precise results even for high dimensions and complex models.

The results further indicate that sparse grid integration is not suited as a black box method
for the numerical simulation of ALM models in life insurance as its performance is comparably
sensitive to different choices of model parameters and components which affect the smoothness
of the integrand. For ALM models which are sufficiently smooth or which can be transformed
such that they are sufficiently smooth, the sparse grid method constitutes an extremely efficient
simulation approach and can outperform Monte Carlo and quasi-Monte Carlo methods by several
orders of magnitude, though.

To explain the efficiency of the deterministic methods we computed the effective dimension of
various ALM problems with and without dimension reduction techniques. The results indicate that
a low effective dimension is a common feature of ALM problems in life insurance in the truncation
as well as in the superposition sense. We believe that this property is maintained also in more
complex ALM models and can be exploited to speed up the numerical simulation of such models
in practise. In this article, we focused on a reduction of the overall run times of ALM simulations
by the use of deterministic integration methods. Variance reduction techniques, different time
discretisation schemes and model approximations will be the topic of future research.
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