
Time-adaptive
Semi-Lagrangian
Approximation to

Hamilton-Jacobi-Bellman
Equation

Ilja Kalmykov

Geboren am 20. Juli 1986 in Prochladny (RU)

1st September, 2016

Bachelorarbeit Mathematik

Betreuer: Prof. Dr. Jochen Garcke

Zweitgutachter: Prof. Dr. Ira Neitzel

INSTITUT FÜR NUMERISCHE SIMULATION

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT DER

RHEINISCHEN FRIEDRICH-WILHELMS-UNIVERSITÄT BONN

моим бабушкам и дедушкам

Contents

1 Introduction 1

2 Preliminaries 4
2.1 Method of characteristics . 4
2.2 Hamilton-Jacobi equation . 5

2.2.1 Calculus of variations . 5
2.2.2 Hamilton-Jacobi equation . 6

2.3 Optimal control problem . 7
2.3.1 Controlled system . 7
2.3.2 Cost functional . 8

3 Semi-Lagrangian schemes 10
3.1 SL schemes for the optimal control problems 10
3.2 Examples of SL schemes . 11

4 Sparse grids 13

5 Error estimation and step size control for Semi-Lagrangian schemes 17
5.1 Approximation error of SL schemes . 17

5.1.1 Local and global error of numerical integration methods for ODEs 17
5.1.2 Error of quadrature . 18
5.1.3 Properties of collocation methods 18
5.1.4 Local error of SL scheme . 19

5.2 Step size control . 20
5.2.1 Estimation of error for step size control 21

6 High order time methods for Semi-Lagrangian schemes 22
6.1 Structure preserving numerical integration for the SL schemes 22
6.2 Complexity of SL schemes with high order time discretization 22

6.2.1 Explicit time integration . 23
6.2.2 Implicit time integration . 25
6.2.3 Reduction of complexity . 26

6.3 SL schemes with implicit midpoint rule 28
6.3.1 Composition methods . 28
6.3.2 Quadrature with implicit midpoint rule 31
6.3.3 High order SL schemes with implicit midpoint rule 32
6.3.4 Optimization of the control and time inversion 33

II

Contents III

7 Results of numerical experiments 34
7.1 Control of the harmonic oscillator . 34

7.1.1 Experiment parameters . 34
7.1.2 Parameters of test environment . 34
7.1.3 First experiments and modifications of test environment 36
7.1.4 Adaptive time steps . 44

7.2 Control of the semi-discrete wave equation 48

8 Software 50
8.1 SG++ . 50
8.2 Automatization of numerical tests . 50
8.3 OpenMP . 50

1 Introduction

This work investigates the application of Semi-Lagrangian (SL) approximation schemes
to the optimal control problems with emphasis on the time discretization aspects.

The basic idea of the SL schemes dates back to the work of Courant, Isaacson and
Rees in [CIR52] and has a strong connection to the method of characteristics. For a
given spatial node, the solution in each iteration is computed by searching for the foot
of the characteristic curve, which passes through this node. The new value is then
obtained by evaluating the solution from last time step at the calculated foot point.

Algorithms, which are based on the SL scheme, require an interaction of multiple ap-
proximation techniques. The most important building blocks are spatial reconstruction,
numerical integration and quadrature.

The numerical experiments in this work are based on optimal control problems. Ex-
amples are minimization of fuel consumption for aeroplanes or maximization of utility
of the spendings for a household. Another non-trivial example is the free kick in a
football game. An optimal control problem is aimed at finding control law for a given
system, which is sufficient with respect to some cost function.

The mathematical description of many optimal control problems can be formulated
in the framework of the Hamilton-Jacobi-Bellman (HJB) equation. This approach yields
a sufficient condition for the optimality of the control. The minimal costs can be char-
acterized as the unique viscosity solution of the HJB equation (see [FF11]).

In order to overcome the complexity of the spatial discretization for high-dimensional
control problems, the usage of an appropriate reconstruction technique is important.
This work is based on the publication [GK15], where SL schemes with sparse grids
were investigated. The sparse grids interpolation allows to reduce significantly the rise
of complexity due to the curse of dimension ([BG04, Gar13]).

The numerical experiments for the control of a harmonic oscillator respectively semi-
discrete wave equation in 4 dimension were adapted from [GK15] and analysed with
respect to the time discretization.

The ability of SL schemes to advance in time with larger steps (compared to e.g. finite
differences discretization, see [Bon04, FF11]) motivates the investigation of numerical
integrators with high order and step size control. [FF94] gives examples of SL approx-
imations based on Runge-Kutta methods up to order 4. The disadvantage of these
schemes is the high complexity of the optimization problem, which is exponential in
the number of stages.

To overcome this problem, SL schemes based on the diagonal implicit symplectic
Runge-Kutta (DISRK) methods were proposed and investigated in this work. This ap-
proach allows to utilize the Belmann’s Dynamic Programming Principle within the sin-
gle time step and leads to the complexity of the optimization for the control, which is
linear in the number of stages. The drawback is that the value function has to be tracked

1

Chapter 1. Introduction 2

within the Rungke-Kutta step. The reconstruction is required for each single stage.
The time-adaptive SL schemes in this work are based on the step size control meth-

ods for ordinary differential equations. The investigation is motivated by [FF06]. Ef-
fects of the adaptive time steps on the global approximation error and efficiency of the
controller have been analysed.

The structure of this theses is as follows. Chapter 2 recalls some concepts, which are
important for the understanding of the SL methods and the HJB equation. In addition,
the basic principles of the optimal control are briefly described. In the chapter 3, a de-
tailed presentation of the SL schemes with some examples is given. Chapter 4 provides
a short introduction to the sparse grids. Chapter 5 address the ideas of time step size
control for the numerical integration and discusses its application to the SL schemes. In
chapter 6 SL schemes based on DISRK methods are derived. Finally, chapter 7 presents
the results of numerical experiments. Some issues regarding implementation and soft-
ware being used are described in chapter 8.

Acknowledgements I would like to thank my supervisor for giving me a chance to
investigate such a challenging and interesting topic. In addition, my special thanks go
to my family and超级诗鹿 for their constant support, understanding and motivation.

Chapter 1. Introduction 3

Zusammenfassung Diese Arbeit untersucht die Auswirkung von der Zeitdiskretisierung
auf den globalen Fehler der Semi-Lagrange (SL) Approximation für die Lösung von
der Hamilton-Jacobi-Bellman Gleichung. Die Struktur der auf den Runge-Kutta Meth-
oden basierenden SL Verfahren wurde untersucht und neue Approximationschema mit
verbesserter Ordnung bzgl. der Zeitschrittweite und geringeren Komplexität vorgeschla-
gen. Darüberhinaus wurden Methoden mit einer adaptiven Zeitschrittweiten imple-
mentiert und getestet.

2 Preliminaries

The idea of the Semi-Lagrangian scheme is derived from the method of characteristics
for the solution of PDEs. Hence, some elementary aspects of this approach are recalled
in this chapter. In addition, an introduction to the Hamilton-Jacobi equation is pro-
vided. This equation can be considered as the basis for the optimal control problem
and the Hamilton-Jacobi-Bellman equation.

2.1 Method of characteristics

This section gives a brief introduction to the method of characteristics. For a more
detailed analysis see e.g. [Eva98].

Consider a first order non-linear PDE with a boundary condition:

F(Du,u, x) = 0 (2.1)
u = g on Γ ,

x ∈ Ω ⊂ Rn, Ω open, u : Ω → R and F : Rn × R×Ω → R, Γ ⊂ ∂Ω, g : Γ → R. F,g are
assumed to be smooth functions, i.e. F,g ∈ C∞.

The basic idea of the method of characteristics is to find the value u(x) of the solution
to eq. (2.1) by tracking a curve γ ⊂ Ω from x back to some point x0 ∈ Γ . In this context, γ
is called the characteristic and x0 the foot point of the characteristic. With this approach,
the problem eq. (2.1) transforms to an ODE w.r.t. γ(s) for some parameter s ∈ I ⊂ R
as a new variable. The hope is to achieve an easier representation for the solution u(x).
The challenge is however to calculate γ(s).

To choose γ(s) so, that we are able to transform eq. (2.1) to an ODE let us first define
some auxiliary variables

z(s)
def
= u(γ(s))

p(s) def
= Du(γ(s)),

Now, for ż and ṗ we can write

ż =

n∑
j=1

uγjγ̇j =

n∑
j=1

pjγ̇j (2.2)

ṗi =

n∑
j=1

uγiγj γ̇j , ∀i = 1, . . . ,n (2.3)

We are looking for an ODE for γ(s), which can be expressed in terms of u and Du,
respectively z and p. With eq. (2.2), we already have on ODE characterising z(s) as

4

Chapter 2. Preliminaries 5

a function of p and γ. But it is not the case for p(s), as eq. (2.3) depends on second
derivative of u. Now, the idea is to use eq. (2.1) with γ(s) as an independent variable to
obtain new expression for ṗi. The derivation of eq. (2.1) w.r.t. γi yields:

n∑
j=1

∂F

∂pj
(p, z,γ)uγjγi +

∂F

∂γi
(p, z,γ) +

∂F

∂z
(p, z,γ)uγi = 0

and

n∑
j=1

∂F

∂pj
(p, z,γ)uγjγi = −

∂F

∂γi
(p, z,γ) −

∂F

∂z
(p, z,γ)pi

Following the eq. (2.3) we can choose

γ̇j =
∂F

∂pj
(p, z,γ)

and obtain the following system of ODEs in vector notation(see [Eva98])

ṗ(s) = −DxF(p(s), z(s),γ(s)) −DzF(p(s), z(s),γ(s)) · p(s)
ż(s) = DpF(p(s), z(s),γ(s)) · p(s)
γ̇(s) = DpF(p(s), z(s),γ(s)) (2.4)

Equations (2.4) are called the characteristic system of the PDE (2.1). So, the solution
of eq. (2.1) along the curve γ(s) defined by the system (2.4) can be is defined by an ODE.

2.2 Hamilton-Jacobi equation

This sections introduces the Hamilton-Jacobi equation, some basic theoretical results
regarding this equation as well as details, which are important for the numerical anal-
ysis.

2.2.1 Calculus of variations

Consider a function w(s) ∈ A with A given by

A =
{
w(·) ∈ C 2([0, t];Rn)|w(0) = y,w(t) = x

}
and an action functional

I[w(·)] =
∫t
0
L(ẇ(s),w(s))ds

with L : Rn × Rn → R

L = L(q, x) = L(q1, . . . ,qn, x1, . . . , xn) (q, x ∈ Rn)

Chapter 2. Preliminaries 6

L is assumed to be smooth function and usually referred to as Lagrangian.
In the calculus of the variations (see e.g. [Eva98]) we are looking for a solution to

I[x(·)] = min
w(·)∈A

I[w(·)] (2.5)

Assuming the solution for the eq. (2.5) exists, it satisfies the Euler-Lagrange equations

−
d

ds
(DqL(ẋ(s), x(s))) +DxL(ẋ(s), x(s)) = 0 (0 6 s 6 t) (2.6)

Equation (2.6) is a system of n second-order ODEs. We can convert it into a first order
system of 2 · n equations. The resulting system is known as Hamilton’s equations. To
obtain this result we have to introduce new variables to substitute ẋ(s) and x(s)). The
following presentation is very similar to the method of characteristics. First set

p(s) def
= DqL(ẋ(s), x(s)) (0 6 s 6 t)

p(·) is called the generalized momentum.
Now, the Hamiltonian H associated to the Lagrangian L is defined by

H(p, x) def
= p · q(p, x) − L(q(p, x), x) (p, x ∈ Rn) (2.7)

where q(p, x) is a given by the equation

p(s) = DqL(q(p, x), x)

Please note that in this context q essentially represents ẋ(s).
Now, for 0 6 s 6 t, the functions x(s) and p(s) can be defined as solution of the

Hamilton’s equations

ẋ(s) = DpH(p(s), x(s))
ṗ(s) = −DxH(p(s), x(s)) (2.8)

which are a system of 2 ·n first-order ODEs. For the equivalence to the Euler-Lagrange
equations see [Eva98].

2.2.2 Hamilton-Jacobi equation

The Hamilton-Jacobi PDE is given by

ut +H(Du, x) = 0 (2.9)

with H defined by eq. (2.7). Following the notation from the section 2.1 with x̃ = (x, t),
p̃ = (p,ut) and z = u we obtain

p̃n+1 +H(p, x) = F(p̃, z, x̃) = 0

Chapter 2. Preliminaries 7

and

ż(s) = Dp̃F(p̃, z, x̃) = DpH(p(s), x(s)) · p(s) + p̃n+1

= DpH(p(s), x(s)) · p(s) −H(p(s), x(s))

for z(s). The ODEs for p(s) and x(s) are given by

ṗ(s) = −DxH(p(s), x(s))
ẋ(s) = DpH(p(s), x(s))

}
Hamilton’s equations

Note that the characteristics of the Hamilton-Jacobi equation for p(s) and x(s) are
the ODEs (2.8) derived from the calculus of variations problem (2.5). This indicates
a strong connection between the Hamilton-Jacobi equation and the minimization of
the action functional. An analogue relation can be obtained for the Hamilton-Jacobi-
Bellman equation and the optimal control problem.

The equation for z(s) can be computed straightforward from p(s) and x(s)

ż(s) = DpH(p(s), x(s)) · p(s) −H(p(s), x(s))

= p(s)

q(p, x) + p(s) ·Dpq(p, x) −DqL(q(p, x), x)︸ ︷︷ ︸
p(s)

·Dpq(p, x)

−H(p(s), x(s))

= L(q(p, x), x)

Therefore we obtain

min
w(·)∈A

I[w(·)] = z(t)

Consequently, the Hamilton-Jacobi equation provides a characterization of the min-
imization problem (2.5) in terms of a partial differential equation. See also [Eva98] for
more details.

2.3 Optimal control problem

This section provides the necessary background for the treatment of the optimal control
problems. The representation follows [FF11].

2.3.1 Controlled system

We consider a controlled dynamical system given by{
ẏ(s) = f(y(s), s,α(s))
y(t0) = x0

(2.10)

with x0,y(s) ∈ Rd, and

α : [t0, T]→ A ⊆ Rm, T ∈ R ∪ {+∞}, t0 < T

Chapter 2. Preliminaries 8

For a measurable α the existence of the solution for eq. (2.10) can be derived from
the Carathéodory theorem. Therefore, for every fixed control in the set of admissible
controls

α ∈ A
def
= {α : [t0, T]→ A, measurable}

the existence of unique trajectory is guaranteed. In general, there is a set of solutions
depending on α. For the sake of simplicity, let us consider autonomous dynamic in
eq. (2.10) with t0 = 0 and write x for x0, respectively yx(s,α) for the family of solutions
starting from x.

2.3.2 Cost functional

Similar to the approach of the calculus of variations (see section 2.2.1) to select an opti-
mal solution to eq. (2.10) we must provide some functional to compare the trajectories
yx(s,α). In the control theory this quantity is called cost functional and denoted by
J : A → R. The definition of J depends on the underlying control task. For an infinite
horizon problem we consider

Jx(α) =

∫∞
0
g(yx(s,α),α(s)) e−λs ds (2.11)

with a function g for the running cost and λ for the discount factor. The existence of
eq. (2.11) is guaranteed for a bounded g. A similar formulation for the finite horizon
problem is

Jx,t(α) =

∫T
t

g(yx,t(s,α),α(s)) e−λs ds+ e−λ(T−t)ψ(yx,t(T ,α)) (2.12)

with a function ψ, which represents the costs of the final state. The goal of the optimal
control problem is to determine the α? which minimizes the cost functional in eq. (2.11)
or eq. (2.12). It is reasonable to distinguish between open-loop and feedback system.
The open-loop architecture assumes the optimal control α? to be a function of t only.
The main tool for this kind of problems is the Pontryagin Maximum Principle. How-
ever this approach has some drawbacks. E.g. it cannot take into account measure errors
for the state of the system. Also different initial state requires new computation of the
control.

On the contrary, the feedback approach assumes the control to be a function of the
state. This allows to characterize the optimal feedback for each state and hence is more
robust. However, we have to take the complete state space into account, which yields to
higher computational costs. In the following we consider the optimal control problem
in the feedback form.

To characterize the solution to the optimal control problem the the value function is
introduced

v(x)
def
= inf
α∈A

Jx(α) (2.13)

Chapter 2. Preliminaries 9

We can interpret the value function as the optimal cost for a system starting from the
position x. An important property of eq. (2.13) is the Bellman’s dynamic programming
principle (DPP)

Proposition 2.1 Assume the solution to eq. (2.10) exists and is unique, then for all x ∈
Rd and τ > 0

v(x) = inf
α∈A

{∫τ
0
g(yx(s,α),α(s)) e−λs ds+ e−λτ v(yx(τ,α))

}
(2.14)

Proof See e. g.[FF11]. �

Please note that the DPP is essential for construction of Semi-Lagrangian schemes for
the optimal control problem (see chapter 3).

From eq. (2.14) we can derive a characterization of the value function in terms of a
non-linear PDE. Assume (y?,α?) to be an optimal pair. If we replace the inf by min, the
eq. (2.14) yields

v(x) − e−λτ v(y?x(τ,α
?)) =

∫τ
0
g(yx(s,α?),α?(s)) e−λs ds

and by adding and subtracting eλτ v(x), dividing by τ and passing to the limit for τ →
0+ we get

lim
τ→0+

e−λτ v(x) − v(y?(τ))τ︸ ︷︷ ︸
−Dv(x)·f(x,α?(0))

+
(1− e−λτ)v(x)

τ︸ ︷︷ ︸
λv(x)

=
1
τ

∫τ
0
g(yx(s,α?),α?(s)) e−λs ds︸ ︷︷ ︸

g(x,α?(0))

Thus, with α(0) = a, we can conclude

λv(x) −Dv(x) · f(x,a?) − g(x,a?) = 0

In this derivation we can replace α? by any other control α ∈ A and obtain the
Hamilton-Jacobi-Bellman (HJB) equation

λv(x) + sup
a∈A

{−Dv(x) · f(x,a) − g(x,a)} = 0 (2.15)

as a counterpart to the Hamilton-Jacobi equation in the calculus of variations.

3 Semi-Lagrangian schemes

The idea of the Semi-Lagrangian schemes was first proposed for the advection equation
in [CIR52]. A detailed derivation and survey can be found in [FF11]. This chapter gives
a brief introduction to the topic.

The SL discretization is performed on the representation formula for the solution of
a PDE, rather than on the equation itself. In the case of the HJB equation we can use the
eq. (2.14) representation for the value function.

The method of characteristics can be considered as a motivation behind the SL schemes.
As shown in section 2.2.2, for the first order HJ equation we can use characteristics to
derive a representation formula for the solution in the integral form. In contrast to
the PDE, which provides a characterization of the solution for infinitesimal small time
steps, this formulation has allows to use larger time steps in the numerical calculation.

3.1 SL schemes for the optimal control problems

To construct a Semi-Lagrangian approximation we need to solve two problems: find a
representation for the boundary data and solve the ODE for the characteristics. In the
case of the HJB equation this means to approximate the ODE eq. (2.10). We can replace
a trajectory from the set yx(s,α) by a one step approximation. Therefore consider a
discrete function, which is defined on the time grid {t0, . . . , tN}. We write yn+1 for
ytn+1 , respectively ∆ti for ti+1− ti. Thus, the approximated solution of the eq. (2.10) is
given by {

yn+1 = yn + ∆tiΦ(yn,An,∆ti)

y0 = x
(3.1)

In the section 5.1.1 An denotes the set of discrete control vectors An =
{
an0 , . . . ,a

n
s−1
}

for an approximation with s stages. Note that the controls are a part of the solution.
The next part of the time discretization is the approximation of the integral in the

eq. (2.14). Therefor we can use a quadrature formula with q nodes. Consider an index
set I = {0, . . . ,q− 1}. The approximation G∆(x,∆t) (we omit the e−λs) is given by∫t+∆t

t

g(yx(s,α),α(s))ds ≈ G∆(x,∆t,An)
def
= ∆t

∑
i∈I

ωig(y
τi
x ,ani) (3.2)

τi andωi are the nodes and weights of a quadrature formula

0 6 τ 6 1, ωi > 0,
∑
i∈I

ωi = 1

10

Chapter 3. Semi-Lagrangian schemes 11

The second problem is the approximation of the v(yx(tn+1,α)). We consider a finite
spatial grid composed of the points {x1, . . . , xn}. I[Vn+1](yx(tn+1,α)) denotes an inter-
polation of v(yx(tn+1,α)). We use a finite set of function values Vn+1

i = v(xi) for the
construction. Thus the spatial approximation is given by

v(yx(tn+1,α)) ≈ I[Vn+1](yx(tn+1,α))
def
= I[Vn+1](x,α)

Now the complete Semi-Lagrangian scheme can be composed to v
n
j = min

An

{
G∆(xj,∆tn,An) + I[Vn+1](xj,An)

}
vNj = u(xj)

(3.3)

3.2 Examples of SL schemes

[FF94] gives some examples for SL schemes of higher order in time. The simplest pos-
sible case for the approximation in time is the combination of the Euler method for the
ODE and rectangular rule for the quadrature. We get I = {0}, τ0 = 0 andω0 = 1

vnj = min
an0

[
∆tng(xj,an0) + I[V

n+1](xj + ∆tf(tn, xj,an0))
]

(3.4)

In this section I[V](xj + ∆tΦ(tn, xj,An)) states for I[V]((xj,An)) to bring out the nu-
merical integration scheme.

A more sophisticated approach is to use the Heun formula for the solution of the ODE
and the trapezoid rule for the integration. In this case we have I = {0, 1},ω0 = ω1 = 1/2
and τ0 = 0, τ1 = 1. The complete scheme is of the form

vnj = min
an0 ,a

n
1

[
∆tn

2
g(xj,an0) +

∆tn

2
g(xj + ∆tΦ(tn, xj,an0 ,a

n
1 ,∆t),a

n
1)

+ I[Vn+1](xj + ∆tΦ(tn, xj,an0 ,a
n
1 ,∆t))

]
(3.5)

with

Φ(tn, xj,an0 ,a
n
1 ,∆t) =

1
2
f(tn, xj,an0) +

1
2
f(tn, xj + ∆tf(tn, xj,an0),a

n
1)

Another example is the fourth order Runge-Kutta scheme. The parameters are I =
{0, 1, 2, 3}, ω0 = ω2 = 1/6, ω1 = ω3 = 1/3, τ0 = 0, τ1 = τ2 = 1/2, τ3 = 1. The resulting
scheme is

yτ0
x = x

yτ1
x = x+ ∆t

k0

2

yτ2
x = x+ ∆t

k1

2
yτ3
x = x+ ∆tk2

Chapter 3. Semi-Lagrangian schemes 12

with

k0 = f(tn + τ0, x,an0)

k1 = f(tn + τ1, x+ ∆t
k0

2
,an1)

k2 = f(tn + τ2, x+ ∆t
k1

2
,an2)

k3 = f(tn + τ3, x+ ∆tk2,an3)

Φ(tn, x,a0,a1,a2,a3,∆t) =
1
6
(k0 + 2k1 + 2k2 + k3)

vnj = min
an0 ,a

n
1 ,a

n
2 ,a

n
3

[
∆tn

6

(
g(yτ0

xj
,an0) + 2g(yτ1

xj
,an1) + 2g(yτ2

xj
,an2) + g(y

τ3
xj
,an3)

)
+ I[Vn+1](xj + ∆tΦ(tn, x,an0 ,a

n
1 ,a

n
2 ,a

n
3 ,∆t)

]
(3.6)

The approach corresponds to the Butcher tableau

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

As we can see in eq. (3.5) and eq. (3.6), the main drawback of the higher order schemes
is the increasing complexity of the minimization problem. In fact, for a simple dis-
cretization of the control space with dc samples and minimization through comparison
we get O(d2) evaluations of the trajectory for the eq. (3.5). The complexity for the RK4
discretization is O(d4) eq. (3.6). In general for an one-step method with s stages the
complexity for the minimization is O(ds). An approach to overcome this disadvantage
is presented in chapter 6.

4 Sparse grids

The derivation of SL schemes in the previous chapter (chapter 3) requires spatial ap-
proximation of the solution at the time points tk. In particular, for the discretization
of the Bellman’s DPP eq. (2.14) an interpolation of the value function must be used to
obtain the remaining running costs for a given trajectory.

In general every spatial approximation can be applied to the eq. (3.3) (e.g. Lagrangian,
ENO, WENO or FE interpolation, see [FF11]). The interpolation of the solution is also
referred to as reconstruction.

In this work, the spatial approximation is implemented with sparse grids. A detailed
presentation and introduction to this reconstruction technique can be found in [BG04]
and [Gar13] respectively. This chapter recalls main ideas of the sparse grids. The repre-
sentation follows [GK15].

In the following, the presentation is for a space domain of the formQ = [0, 1]d, d ∈ N.
For a multi-index

l = (l1, . . . , ld) ∈ Nd

consider a mesh Ql and a set of mesh parameters

hl = (hl1 , . . . ,hld) = (2−l1 , . . . , 2−ld)

which represents the spatial resolution in every dimension for a given l. Now, the
points of the mesh Ql can be denoted by

xl,j = (xl1,j1 , . . . , xld,jd), xlt,jt = jt · hlt , t = 1, . . . ,d.

l is also referred to as level and defines the resolution of the discretization, j defines
the position of the point xl,j.

The space of all d-dimensional piecewise d-linear hat functions is

Vl
def
= span

{
ϕl,j | jt = 0, . . . , 2lt , t = 1, . . . ,d

}
For Vl, the hierarchical difference space is given by

Wl
def
= Vl\

d⊕
t=1

Vl−et

(cf. fig. 4.1) with t-th unit vector et. Thus, Vl can be represented as

Vl =
⊕
k6l

Wk

13

Chapter 4. Sparse grids 14

W4,1 W4,2 W4,3 W4,4

W3,1 W3,2 W3,3 W3,4

W2,1 W2,2 W2,3 W2,4

W1,1 W1,2 W1,3 W1,4

Figure 4.1: Hierarchical spaces for V(4,4)

For n = (n, . . . ,n) ∈ Nd, every f ∈ Vn can be characterized as

f(x) =
∑

|l|∞6n

∑
j∈Bl

αl,jϕl,j(x) (4.1)

where x ∈ Q and

Bl
def
=

{
j ∈ N

∣∣∣∣ jt = 0, . . . , 2lt − 1, jt odd, t = 1, . . . ,d, if lt > 1
jt = 0, 1, 2, t = 1, . . . ,d, if lt = 1

}
The idea of a sparse mesh is to take out those basis function ϕl,j, which have a small

contribution to the representation of the interpolated function f. For this purpose, the
H2
mix norm and semi-norm are considered

‖f‖2H2
mix(Q) =

∑
06k62

∣∣∣∣∣ ∂|k|1f

∂xk1
1 , . . . , xkdd

∣∣∣∣∣
2

2

and |f|H2
mix(Q) =

∥∥∥∥∥ ∂2df

∂x21, . . . , x
2
d

∥∥∥∥∥
2

The function space

H2
mix(Q) =

{
f ∈ H | ‖f‖H2

mix(Q) 6 C for C > 0
}

Chapter 4. Sparse grids 15

has the property, that for f ∈ H2
mix(Q) it holds

‖fl‖2 6 C(d) · 2−2|l|1 |f|H2
mix(Q)

with constant C(d) > 0, which depends on the dimension d, and

fl
def
=
∑
j∈Bl

αl,jϕl,j(x) ∈Wl (4.2)

The estimation in eq. (4.2) motivates the replacement of |l|∞ 6 n in eq. (4.1) by

|l|1 6 n+ d− 1 (4.3)

The resulting sparse grid space has the dimension dimVsn = O(2n ·nd−1) in compar-
ison to dimVn = O(2nd) for regular grids. This fact leads to a significant reduction of
the computational complexity. The error estimate for a function f ∈ H2

mix(Q) is

‖f− fsn‖2 = O(h2n · log(h−1
n)d−1)

compared to

‖f− fn‖2 = O(h2n)

for a regular grid.

ϕ1,0 ϕ1,2ϕ1,1

ϕ2,1 ϕ2,3

ϕ3,1 ϕ3,3 ϕ3,5 ϕ3,7

(a) normal basis

ϕ̃1,1

ϕ̃2,1 ϕ̃2,3

ϕ̃3,1 ϕ3,3 ϕ3,5 ϕ̃3,7

(b) fold-out basis

ϕ2,3

x2,3 1

ϕ̃2,3

x2,3 1

ϕ̃2,3

x2,3 1

(c) last basis before the boundary is folded up and extrapolated linearly

Figure 4.2: Normal and fold out basis functions.

For increasing level and dimension, the rule in eq. (4.3) leads to a high number of
points on the boundary of the domain in comparison to the inner area. A different ap-
proach is to use the so-called fold out ansatz function. In this case, a sparse grid consists
only of inner nodes and the reconstruction is extrapolated to and over the boundary, cf.
fig. 4.2(c). An example of a sparse grid with fold out basis functions is given in fig. 4.3.

Chapter 4. Sparse grids 16

−1 1

−1

1

Figure 4.3: Sparse grid for level 6 on the domain [−1, 1]2 with fold out ansatz functions.

5 Error estimation and step size control for
Semi-Lagrangian schemes

The goal of this theses and the carried out numerical experiments in chapter 7 is to
investigate the error of the SL scheme w.r.t. ∆t. This analysis is the basis for the con-
trol of the time step. This chapter first gives an overview of basic aspects of the error
estimation for numerical schemes. The second part deals with the control of the step
size.

5.1 Approximation error of SL schemes

The common approach for the calculation of optimal ∆t for the ODEs uses the esti-
mation of the local error. However, the SL scheme consists of multiple approximation
steps. Besides the numerical solution of the ODE eq. (2.10), there are integration and
interpolation. This section describes the error estimates for the SL approximation of the
HJB equation.

5.1.1 Local and global error of numerical integration methods for ODEs

Recall the definition of the consistency error (see e.g. [FF11, DB02, Sha94])

eloc(t) =
1
∆t

[
U(t+ ∆t) − S(∆; t,U(t))

]
(5.1)

where U is the exact solution and S is the numeric approximation. A Runge-Kutta
method has order p if eloc(t) = O(∆tp). The consistency error is a measure for the
deviation of S from the exact solution after an iteration with ∆t. However, from the
practical viewpoint, it is important to know the global discretization error

em = U(tm) − Vm (5.2)

where Vm, the solution afterm iterations, is given by{
Vm = S(∆; tm−1,Vm−1)

V0 = U0

It is a well known result for ODEs (see e.g. [DB02, Sha94], that for a Lipschitz-
continuous increment function Φ the consistency error of order p is sufficient for the
convergence of order p. Please note that this result holds especially for the case of a
linear ODE with constant coefficients, which are investigated in chapter 7.

In the following, the convergence order is referred to as the order of Runge-Kutta
scheme.

17

Chapter 5. Error estimation and step size control for Semi-Lagrangian schemes 18

5.1.2 Error of quadrature

The error estimation for the quadrature formula eq. (3.2) is different from the one for
ODEs. There is no dependence on the state variable and no propagation of the local
errors. The only independent quantity is the integration variable. Thus, the global
error is the sum of local errors.

Recall, that the quadrature formulaG∆ has accuracy level k if all polynomials p ∈ Πk
(all polynomials of order at most k) are integrated exactly (see [SK09]). For a sufficiently
differentiable function, the error order of G∆ is O(∆tk+1) (or O(∆tk+2) in a case of non-
negative weights ωi). In general a quadrature formula with s nodes can achieve the
accuracy level of up to 2s − 1 and thus provide an error order O(∆t2s+1). Those are
the Gaussian quadrature methods. In the following, the order q of G∆ is referred to as
q = error order − 1. So for the Gauss method we obtain order 2s, where s is again the
number of nodes.

Please note that there is a strong connection between Runge-Kutta and quadrature
methods. We can apply any Runge-Kutta scheme to the initial value problem

ẋ(t) = f(t), x(0) = x0

obtaining a quadrature G∆ with

ωi = bi, τi = t0 + ciτ, g(yx(τi)) = f(t0 + ciτ), i = 1, . . . ,q

In this case the quadrature formula has at least order of the Runge-Kutta method, how-
ever not vice versa (see [Gar15]).

5.1.3 Properties of collocation methods

A special class of implicit Runge-Kutta methods are the collocation methods (every col-
location method is equivalent to an implicit Runge-Kutta sheme). It can be shown, that
by setting the collocation points to the nodes, which are defined by some quadrature
formula, one obtains a superconvergence: the corresponding Runge-Kutta method has
the same order as the underlying quadrature formula (see [HLW06, DB02]). Therefore,
the collocation methods based on the Gauss quadrature are of order 2s, where s is the
number of nodes. In particular the implicit midpoint rule is of order 2.

Another important property of the collocation methods is the implicit definition of
a collocation polynomial. In general, the approximation of the ODE by a Runge-Kutta
method provides a solution ytk at discrete time points tk. However, the calculation of
the quadratureG∆ in eq. (3.2) requires the evaluation of the trajectory at the time points
τi, i.e. yτix = yx(τi). These points can be obtained at the boundary of the time interval
tk and tk + ∆t. But, in general, the quadrature formula also uses interior points. Thus,
to preserve the order of the error estimates for the G∆, we have to provide an approx-
imation of yx(τ) of appropriate order (see [FF94]). This consideration is important for
the construction of high order SL schemes as in chapter 6 and can formulate in

Problem 5.1 To a given quadrature rule with order q and a numerical integration method
for the ODE section 5.1.1 find an approximation of the solution yx(τi) at the intermidi-
ate quadrature nodes τi, which is at least of the same order r > q.

Chapter 5. Error estimation and step size control for Semi-Lagrangian schemes 19

For the collocation polynomial u(t), it can be shown (see [HLW06])

|u(t) − y(t)| 6 C · hs+1 for t ∈ [tk, tk + ∆t]

where s is the number of stages of the collocation method. Although, the collocation
polynomial is not explicitly constructed, the evaluation is easy obtained for the implicit
midpoint rule (see section 6.3). This property will be used to construct SL scheme of
high order for the solution of the HJB equation.

5.1.4 Local error of SL scheme

With observations on the error estimates for the quadrature and numerical integration,
we can now consider the local error of the SL scheme.

Let Ir[Vn+1] be an interpolation operator of order r (i.e. the error is given by O(∆xr+1)
for the spatial discretization with ∆x = supi ‖xi+1 − xi‖). To compute the overall error
for the SL scheme consider eq. (2.14) for the exact optimal control α?. Further assume,
that the inf is a min and An is an approximation to a? of sufficient order. For the local
error we obtain

v(xj, tn) − vj(∆t, V̂n+1) = min
α∈A

{∫tn+∆t
tn

g(yxj(s,α),α)ds+ v(yxj(tn + ∆t,α))

}
−min
An

{
G∆(xj,∆t,An) + Ir[V̂n+1](xj,An)

}
=

∫tn+∆t
tn

g(yxj(s,α
?),α?)ds+ v(yxj(tn + ∆t,α?))

−G∆(xj,∆t,An) + Ir[V̂n+1](xj,An)

= O(∆tq+1) + v(yx(∆t,α)) − v(yt+∆tx)︸ ︷︷ ︸
O(∆tq+1)

+ v(yt+∆tx) − Ir[V̂
n+1](xj,An)︸ ︷︷ ︸

O(∆xr+1)

= O(∆tq+1 + ∆xr+1) (5.3)

where V̂n+1 is the exact value function for tn+1 and q is the order of quadrature for-
mula, respectively the Runge-Kutta method.

Please note that the assumption on the control approximation haven’t been validated
in this work. However, the numerical experiments shows comparable behaviour for
different optimization techniques (i.e. gradient and compare optimization). This result
is also observed in [GK15].

Up to now we have provided an upper bound on the error for I[V]. Though, the
interpolation error also depends on ∆t. Due to consistency of the Runge-Kutta method,
the trajectory of the controlled system yxj(∆t,α) converges to the point xj for ∆t →
0. At the same time, xj is a grid point for the interpolation I[V]. Therefore, the error
estimate can be improved to

|v(x) − Ir[V](x)| 6 C∆x
r+1 min

m∈M

x− xm

∆x

Chapter 5. Error estimation and step size control for Semi-Lagrangian schemes 20

where v ∈ Cr+1 andM is the set of spatial nodes (see [FF11]).
In the SL scheme, the grid point xm is approached on the trajectory yxm(∆t). Hence,

for a bounded f in eq. (2.10), we can set

Lf = max
x∈Ω,α∈Ωc

|f(x,α)|

whereΩ andΩc denote state space and control space respectively. Next, we can obtain
the following estimation

|yxm(∆t) − yxm(0)| 6 Lf∆t

The estimation for the interpolation error is now

|v(x) − Ir[V](x)| 6 C∆x
r+1Lf∆t

∆x
= Ĉ∆xr∆t

This bound is still global and the factor (x − xm)/∆x only takes into account the re-
duction of the error when approaching a node. For the complete SL scheme the eq. (5.3)
is now of the form

v(xj, t) − vj(∆t, V̂n+1) = O(∆tq+1 + ∆xr∆t) (5.4)

5.2 Step size control

There are many references for the control of the step size for ODEs. In this section the
representation is based on [DB08, Gar15]. On the one hand, the goal of the step size
adaptation is to set ∆t so, that

‖εn+1‖ 6 TOL

is guaranteed. Hereby εn+1 denotes the estimation of the local consistency error and
TOL is the accepted tolerance. On the other hand, too little time steps result in high
computational effort. Hence, the objective is to have the optimal error ε̂n+1

‖ε̂n+1‖ ≈ TOL

as close to the TOL as possible. From the analysis of the local error in section 5.1.1, we
know, that for a method of order p it holds

‖εn+1‖ ≈ C(tn)∆tp+1

and can now provide an expression for an optimal step size ∆t̂k

∆t̂n =
p+1

√
ρTOL

‖εn+1‖
∆tn

with a safety coefficient ρ. The optimal ∆t̂ can be used as a suggestion for the next time
step.

Chapter 5. Error estimation and step size control for Semi-Lagrangian schemes 21

The control approach also usually incorporates some limits on the step size ∆tmax
and on the increase of the ∆t. Thus, the complete formulation for the new step size is

∆tn+1 = min

q∆tn, ∆tmax, p+1

√
ρTOL

‖εn+1‖
∆tn

 (5.5)

Please note that the underlying model for this type of controller differs from the one,
derived in eq. (5.4) for the SL scheme. However, we can use eq. (5.5) at least for the
small values of the spatial discretization error ∆x.

5.2.1 Estimation of error for step size control

There exist different approaches to provide the estimation of the local error ε for eq. (5.5).
The approach of the Richardson interpolation is to repeat the computation of the solu-
tion with a time step ∆t/2. To illustrate this method, we consider an approximation
scheme y(h), which depends on a parameter h and has the error formula

y− y(h) = Ck0h
k0 + Ck1h

k1 + . . .

where y denotes the exact solution. Using different step sizes h and h/m we get

y = y(h) + Ck0h
k0 + Ck1h

k1 + . . .

y = y

(
h

m

)
+ Ck0

(
h

m

)k0

+ Ck1

(
h

m

)k1

+ . . .

and after multiplying the second equation withmk0 and building the difference

(
mk0 − 1

)
y = mk0y

(
h

m

)
− y(h) +mk0Ck1

(
h

m

)k1

− Ck1h
k1 + . . .

= mk0y

(
h

m

)
− y(h) + O(hk1)

These equations can be solved for y and we obtain an approximation of order k1 in h

y =
mk0y (h/m) − y(h)

mk0 − 1︸ ︷︷ ︸
z(h)

+O(hk1)

We can use the approximation z as the exact value and compute the error estimation
to

ε = z(h) − y(h)

6 High order time methods for
Semi-Lagrangian schemes

Some properties of the SL schemes regarding the time integration and the usage for the
HJB equation are discussed in this section. Based on these considerations, a SL scheme,
which uses the composition of implicit midpoint rules for the solution of the ODE and
the quadrature, is proposed.

6.1 Structure preserving numerical integration for the SL
schemes

One of the reasons for the development of SL schemes is the possibility to use large
time step sizes in the numerical integration (see [Bon04]). To be more precise, we can
consider the the linear advection equation. For the finite differences discretization, the
concept of numerical domain of dependence imposes the CFL condition. In contrast,
the SL discretization of the same equation calculates the foot of the characteristic (addi-
tional cost) for each grid node xj and thus follows the numerical domain of dependence
(see [FF11]).

This consideration motivates the usage of Runge-Kutta schemes which are appropri-
ate for the long time integration. These schemes usually take into account additional
properties of the underlying dynamical system, i.e. symmetry of symplecticity (see
[HLW06]).

The numerical experiments that are carried out in this theses are based on results
in [GK15], especially on the test case with controlled harmonic oscillator, which is
in fact symplectic (also the controlled system fulfils the symplecticity condition as in
[HLW06]). This suggests the usage of structure preserving Runge-Kutta schemes.

6.2 Complexity of SL schemes with high order time
discretization

The usage of high order Runge-Kutta methods and the compare approach for the op-
timization in the SL scheme is restricted by the exponentially rising complexity (see
section 3.2). E.g., for the SL scheme with a fourth order Runge-Kutta method (eq. (3.6)),
we have to calculate O(d4c) trajectories in each time step. This section provides some
suggestions to reduce the complexity.

The presented approach follows the idea of the Bellman’s DPP eq. (2.14). By consid-
ering the optimization problem backward in time, it is possible to significantly reduce
the amount of path evaluations for the controlled system. Similar approach can be used

22

Chapter 6. High order time methods for Semi-Lagrangian schemes 23

within a single time step of the numerical integration. However, this requires the sep-
aration of the impact of the control on the stages of the RK method. This seems not to
be impossible, as we can easy verify, that for a explicit, respectively diagonally implicit
RK scheme, the last element ans of the discrete control vector An affects only the last
stage ks. In fact, a condition on the coefficients of a RK method can be formulated, so
that the optimization of the control can be applied separately to each stage. A class
of RK methods, which fulfils this requirements are the diagonaly implicit symplectic
Runge-Kutta (DISRK) schemes. These methods were developed for the long time in-
tegration of Hamiltonian systems (see [HLW06]). The result is especially interesting in
the context of strong connections between the HJB and the HJ equations (cf. chapter 2).

6.2.1 Explicit time integration

Assume we have an explicit Runge-Kutta method with s stages given by the tableau

c A

b
=

0 0 0 . . . 0
c2 a21 0 . . . 0
...

...
. . .

...
cs as1 . . . ass−1 0

b1 b3 . . . bs

To prevent ambiguous notation between the coefficients aij of the RK scheme and the
control anj , which is applied in the stage j, let us write Anj for the anj . Following the
notation in chapter 3 we obtain An =

{
An0 , . . . ,A

n
s−1
}

. Then, the approximation of the
system ODE eq. (2.10) is given by

yn+1
x = x+ τ

s∑
j=1

bjkj

kj = f

(
tn + cj, x+ τ

j−1∑
i=1

ajiki,Anj

)
, j = 1, . . . , s

(6.1)

where τ denotes the step size. Applying eq. (6.1) to the SL scheme eq. (3.3) and splitting
off the terms with ks we get (τ = ∆t)

vnj = min
An

[
G∆(xj, τ,An) + I[Vn+1](xj,An)

]
(6.2)

= min
{An1 ,...,Ans }

[
τ

s−1∑
i=1

big(y
τi
x ,Ani) + I[V

n+1]

(
xj + τ

s−1∑
i=1

biki + τbsks

)]
(6.3)

= min
{An1 ,...,Ans }

[
τ

s−1∑
i=1

big(y
τi
x ,Ani) (6.4)

+I[Vn+1]

(
xj + τ

s−1∑
i=1

biki + τbsf

(
tn + cs, xj + τ

s−1∑
i=1

asiki,Ans−1

))]
(6.5)

Chapter 6. High order time methods for Semi-Lagrangian schemes 24

Next, to simplify the notation, consider auxiliary variables

γs−1
def
= xj + τ

s−1∑
j=1

bjkj

κs−1
def
= xj + τ

s−1∑
i=1

as−1iki (6.6)

Further, we assume, there exists an expression for yτix of the form

yτix = px(κi−1)

An example for such a function px is given in section 6.3.2. With these preliminary
remarks we can write eq. (6.5) as

vnj = min
{An1 ,...,Ans }

[
τ

s−1∑
i=1

big(px(κi−1),Ani) + τbsg (px(κi−1),Ans)

+ I[Vn+1] (γs−1 + bsf (κs−1,Ans))

]
(6.7)

Note, that in the eq. (6.7) Ans influences only ks. Therefore, analogue to the DDP (2.14),
we can write

vnj = min
{An1 ,...,A

n
s−1}

[
τ

s−1∑
i=1

big(px(κi−1),Ani)

+min
Ans

[
τbsg (px(κi−1),Ans) + I[V

n+1] (γs−1 + τbsf (κs−1,Ans))

]]
(6.8)

and minimize over Ans independent of An1 , . . . ,A
n
s−1.

The evaluation of the last stage in eq. (6.8) depends only on γs−1, κs−1 and Ans . To
simplify the notation we can define a function

ϑns (γs−1,κs−1)
def
= min

Ans

[
τbsg (px(κs−1),Ans) + I[V

n+1] (γs−1 + τbsf (κs−1,Ans))

]
ϑns is the part of the minimization problem, which depends on Ans only. Now, a new
representation for the value function is

vnj = min
{An1 ,...,A

n
s−1}

[
τ

s−1∑
i=1

big(px(κi−1),Ani) + ϑ
n
s (γs−1, κs−1)

]
Similar to the approach of the SL scheme, we can approximate ϑns with an interpola-

tion over the (γs−1,κs−1). The resulting scheme is of the form

vnj = min
{An1 ,...,A

n
s−1}

[
τ

s−1∑
i=1

big(px(κi−1),Ani) + I[θ
n
s](γs−1, κs−1)

]

Chapter 6. High order time methods for Semi-Lagrangian schemes 25

with the vector of node values

(θns)ij = ϑ
n
s ((γs−1)i, (κs−1)j) (6.9)

for some spatial grid
{
(γs−1)i, (κs−1)j

}
i,j.

Up to now, we have an expression, which separates the impact of the last control
sample Ans on the trajectory. The complexity of the minimization problem in eq. (6.9)
w.r.t control is O(ds−1

c + dc). A disadvantage of this form is, that we have to calculate
the discretization over the space (γs−1, κs−1) and the complexity to obtain or evaluate
I[θns] would be square of the complexity for the discretization of the state space.

Another simplification can be realized if a dependency between κs−1 and γs−1 is
assumed. In particular, we are interested in a representation of the form

γs−1 = r(κs−1)

for some function r. Given such relationship, the resulting SL scheme is

vnj = min
{An1 ,...,A

n
s−1}

[
τ

s−1∑
i=1

big(px(κi−1),Ani) + I[θ
n
s](κs−1)

]

Now, we can apply the same derivation to the stages s − 1, . . . , 1 of the RK scheme. In
each step a stage value function must be constructed. We can conclude

vnj = min
{An1 }

[
τb1g(px(κ0),An1) + I[θ

n
2](κ1)

]
(6.10)

where for l = 2, . . . , s

I[θnl]((κl−1)j) = ϑ
n
l ((κl−1)j)

ϑnl ((κl−1)j)
def
= min

Anl

[
τblg (px(κl−1),Anl) + I[θ

n
l] (κl−1)

]

Please note that this derivation assumes, that κi and γi are provided for all i =
1, . . . , s. A possible way to calculate this quantities will be illustrated in section 6.2.3.

6.2.2 Implicit time integration

Next, consider an implicit Runge-Kutta method with s stages given by the tableau

c A

b
=

c1 a11 a12 a1s
c2 a21 a22 a2s
...

...
...

.
...

cs as1 as2 ass
b1 b2 bs

Chapter 6. High order time methods for Semi-Lagrangian schemes 26

Analogue to eq. (6.1) we obtain
yn+1
x = x+ τ

s∑
j=1

bjkj

kj = f

(
tn + cj, x+ τ

s∑
i=1

ajiki,Anj

)
, j = 1, . . . , s

(6.11)

In general, the control Anj for some j = 1, . . . , s has impact on all the stages due to the
implicit character of the scheme. E.g. modification of Ans influences ks and therefore
all kj, which are functions of ks.

However, it is possible to apply the derivation of eq. (6.10) to the diagonally implicit
methods. These are the implicit Runge-Kutta schemes with aij 6= 0 only for j 6 i. In
this case the, calculation of the stages kj is implicit

ki = f

xn + τ

i∑
j=1

aijkj,Ani

 = f (κi−1,Ani) (6.12)

Specially, we have to solve a non-linear equation. Please note that in eq. (6.12) we
assume Ani to be constant w.r.t. ki. This is e.g. true for the comparison approach in the
minimization of the cost functional.

6.2.3 Reduction of complexity

Now let us examine the calculation of κi and γi that were defined in eq. (6.6). The SL
scheme is applied backward in time to the HJB equation. This means that the construc-
tion of the stage value function ϑnl (γl−1, κl−1) implicitly defines the values of κl−1 and
γl−1 for each l = 2, . . . , s. I.e., in the next step l − 1, the ϑnl−1(γl−2, κl−2) can be only
calculated if we provide γl−1 and κl−1. These can be plugged into the interpolation
operator I[θnl] to approximate the value of ϑnl (γl−1, κl−1).

However, the values of the stages kl−2, . . . , k1 are not known in the step l− 1. I.e. we
do not know the evolution of the exact trajectory up to some time point, we just assume,
the trajectory ends in some xj on the spatial grid. Then the remaining running costs
are calculated, starting from this point xj. This is the idea of the Bellman’s dynamical
programming principle (eq. (2.14)). For the sake of simplicity, in the following it is
assumed, that γs−1 = r(κs−1). Therefore we can write ϑns (γs, κs) = ϑnl (κl−1). This
simplification can be verified in following (see e.g. (6.13)).

The consideration up to now implies, that if we want to utilize the Bellman’s DPP,
then it is necessary to calculate κl−1 from κl−2 and kl−1. A trivial approach is e.g.

κl = xn

for all l = 1, . . . , s − 1. In this case, the resulting Runge-Kutta scheme would be in the

Chapter 6. High order time methods for Semi-Lagrangian schemes 27

form

c1 a11 0 0
c2 0 a22 0
... 0 0 a33

. . .
...

...
...

.
...

cs 0 0 ass
b1 b2 bs

Please note that already for κi, which is defined by

κi = x+ τaii−1ki−1

it is not possible to calculate κi given κi−1 and ki−1. I.e. we know

κi−1 = x+ τai−1i−2ki−2

and ki−1. However, to calculate κi we have to provide x explicitly (except for the last
stage). There is only one equation (κi−1) and two unknowns (ki−2 and x).

Further, to achieve the form ϑns (γs, κs) = ϑnl (κl−1), we can set b1, . . . ,bs−1 = 0. In
this case the resulting expression for γl are γs−1 = κs−1 and γl = 0 for l = 1, . . . , s− 2.
The Butcher tableau is now in the form

c1 a11 0 0
c2 0 a22 0
... 0 0 a33

. . .
...

...
...

.
...

cs 0 0 ass
0 0 bs

However, this Runge-Kutta method is not of great interest It is essentially equivalent to
a scheme with tableau

cs ass

bs

The requirement to utilize the DPP for the numerical integration can be more precise
formulated as

Problem 6.1 Find a Runge-Kutta scheme such that for i = 2, . . . , s ki can be expressed
in terms of κi−1 and the stage ki−1.

Chapter 6. High order time methods for Semi-Lagrangian schemes 28

Another solution to problem 6.1 is given by the tableau

c1
b1

2
0 0

c2 b1
b2

2
0 . . . 0

... b1 b2
b3

2
0

...
...

...
. . . 0

cs b1 b2 b3 . . .
bs

2
b1 b2 b3 . . . bs

(6.13)

We can verify, that (6.13) provides a solution to the problem 6.1. For a given

κi = xn + τ

i−1∑
j=1

bjkj

and ki, the expression for ki+1 is

κi+1 = xn + τ

i−1∑
j=1

bjkj + τbiki = κi + τbiki

ki+1 = f

(
κi+1 + τ

bi+1

2
ki+1

)

At the first sight, the condition (6.13) may seem rather strict. However, there are
actually Runge-Kutta methods which satisfy the tableau (6.13). Those are exactly the
diagonally implicit symplectic Runge-Kutta (DISRK) methods. With this result, we can
construct a SL scheme, which has O(dc · s) complexity for the minimization problem.

6.3 SL schemes with implicit midpoint rule

This section is based on the results from section 6.2.3. The derivation of a SL scheme
with the DISRK integration, especially the implicit midpoint rule, is illustrated in the
following section.

6.3.1 Composition methods

An important property of DISRK is that these methods are equivalent to a composition
of implicit midpoint schemes.

Theorem 6.1 If Φτ is a map of diagonally implicit Runge-Kutta scheme satisfying the
symplecticity condition

biaij + bjaji = bibj for all i, j = 1, . . . , s (6.14)

Chapter 6. High order time methods for Semi-Lagrangian schemes 29

and bi 6= 0, thenΦτ is equivalent to the composition

Φτ = ΦMbsτ ◦ . . . ◦Φ
M
b2τ
◦ΦMb1τ

where ΦMτ denotes the implicit midpoint rule.

Proof See [HLW06]. �

The condition in eq. (6.14) for a Runge-Kutta method to be symplectic is derived from
the requirement to preserve quadratic first integrals (see [HLW06]).

The equivalence of a composition of the implicit midpoint schemes to some DISRK
allows to construct methods of high order. Additional theorem states the condition on
the time steps biτ

Theorem 6.2 LetΦτ be a one-step method of order p and

Ψ = Φγsτ ◦ . . . ◦Φγ2τ ◦Φγ1τ

If γ1, . . . ,γs fulfil

γ1 + . . .+ γs = 1

γ
p+1
1 + . . .+ γp+1

s = 0 (6.15)

then the composition method is at least of order p+ 1.

Proof See [HLW06]. �

With theorem 6.2, the construction of higher order methods can be achieved by solv-
ing eq. (6.15). Different schemes of this kind are quoted in [HLW06] and references
therein. First recall that the implicit midpoint rule has the following Butcher’s tableau

1
2

1
2
1 (6.16)

The simplest DISRK scheme, which is obtained through the composition has order 4
and is of the form

γ1 = γ3 =
1

2− 21/(p+1), γ2 = −
2

2− 21/(p+1) (6.17)

Corresponding Butcher’s tableau is (see [FQ10])

1
2
a

1
2
a

1
2

a
1
2
− a

1−
1
2
a a 1− 2a

1
2
a

a 1− 2a a

(6.18)

Chapter 6. High order time methods for Semi-Lagrangian schemes 30

where a =
1

2− 21/(p+1)
(p=2)
= 1.35120719195966.

In the following, this method is referred to as DISRK3. Please note that it is not neces-
sary to calculate the Butcher’s tableau of the composition DISRK explicit. The construc-
tion of the scheme allows to apply the implicit midpoint methods Φγi with time steps
γiτ given by eq. (6.15) in a loop. Thus, the method in tableau 6.18 is equivalent to

ΦDISRK3τ = ΦMγ3τ
◦ΦMγ2τ

◦ΦMγ1τ

with γi from eq. (6.17).
Other examples for solutions to eq. (6.15) are

γ1 = γ7 = 0.78451361047755726381949763
γ2 = γ6 = 0.23557321335935813368479318
γ3 = γ5 = −1.17767998417887100694641568

γ4 = 1.31518632068391121888424973 (6.19)

and

γ1 = γ9 = 0.39216144400731413927925056
γ2 = γ8 = 0.33259913678925943859974864
γ3 = γ7 = −0.70624617255763935980996482
γ4 = γ6 = 0.08221359629355080023149045

γ5 = 0.79854399093482996339895035 (6.20)

which are both methods of order q = 6. However, the method 6.20 is constructed by
increasing the minimal number of stages and minimizing maxi |γi|. This derivation
yields smaller error coefficients (see [HLW06] and results of numerical experiments in
chapter 7). In the following, these two methods are referred to as DISRK7 (for 6.19) and
DISRK9 (for 6.20).

Please note that there are also other Runge-Kutta methods satisfying tableau 6.13.
Those can be for example derived by solving the order equation of the Runge-Kutta
methods subject to the special form of the tableau 6.13. An example can be found in
[FQ10]

γ1 = −2.70309412
γ2 = −0.53652708
γ3 = 2.37893931
γ4 = 1.8606818856

Other reference is [ZM15], where a DISRK method of order 5 has been constructed.
Essentially, the construction of a method with a composition according to theorem 6.2

provides a solution to the non-linear Runge-Kutta order equations. However, multiple
solutions can exist for a non-linear equation system. But note that the theorem 6.1
holds for every DISRK method. This fact will be used in section 6.3.3 to derive the an
algorithm for the SL scheme.

Chapter 6. High order time methods for Semi-Lagrangian schemes 31

6.3.2 Quadrature with implicit midpoint rule

It has been shown, that we can obtain diagonally implicit symplectic Runge-Kutta
methods of high order by composition and these methods fulfil problem 6.1. How-
ever the implicit midpoint scheme can also provide a solution to problem 5.1, if we also
use it for the quadrature G∆ in eq. (3.2). Recall that G∆ is defined by

G∆(x,∆t,An) = ∆tg(yx(∆t/2),an)

Now the collocation polynomial p(τ) of the implicit midpoint scheme for an autonomous
system is defined with the conditions

p(0) = x
ṗ(∆t/2) = f(p(∆t/2))

and is therefore a polynomial of order 1

p(τ) = x+ ατ = x+ f(p(∆t/2))τ

p(τ) provides approximation of order r = 2 to the solution yx(t). To calculate G∆ we
have to evaluate this polynomial at ∆t/2

p(∆t/2) = x+
∆t

2
f(p(∆t/2)) (6.21)

Now, for the implicit midpoint rule, it holds

y∆tx = x+ ∆tk ⇔ k =
y∆tx − x

∆t

and

k = f(x+ (∆t/2)k)

Thus x+ (∆t/2)k is a solution to eq. (6.21)

x+
∆t

2
f(x+ (∆t/2)k) = x+

∆t

2
f(x+ (∆t/2)k)

and the evaluation of the collocation polynomial p(∆t/2). This means, the quadrature
formula is now of the form

G∆(x,∆t,An) = ∆tg(x+ (∆t/2)k,an) (6.22)

with the error order q = 2 (see section 5.1.3).

Chapter 6. High order time methods for Semi-Lagrangian schemes 32

6.3.3 High order SL schemes with implicit midpoint rule

Next, based on section 6.3.1 and section 6.3.2, a SL scheme for the HJB equation is
proposed. To simplify the notation consider a state vector

Yx(t)
def
=

(
yx(t)
ηx(t)

)
=

(
yx(t)∫t

0 g(yx(t))dt

)
and the corresponding differential equation

Ẏx(t) =

(
Ayx

g(yx(t))

)
def
= F(t, Y) (6.23)

Implicit midpoint rule applied to eq. (6.23) yields

Y∆tx = Yx + ∆tF

(
∆t

2
,
Y∆x − Yx

2

)
eq. (6.22)

= Yx + ∆t

(
A(yx + (∆t/2)k)
g(yx + (∆t/2)k)

)
(6.24)

Altogether, application of the midpoint rule for the numerical integration and quadra-
ture in eq. (3.3) can be considered as a joint implicit midpoint scheme for the extended
state vector Yx. Therefore, it is possible to use the composition from section 6.3.1 for
the construction of higher order DISRK methods. Algorithm 1 illustrates the basic idea
of an SL scheme with a DISRK method. For the sake of simplicity let us assume the
optimal control α? to be known. X denotes the vector of grid points from the spatial
discretization, i.e. for X = {x1, . . . , xM}

YX =
(
Yx1Yx2 . . . YxM

)
with

Yx = Yx(0) =
(
x

0

)
, k =

y∆tx − x

∆t

Algorithm 1: SL scheme for the HJB equation with DISRK
Data: γ1, . . . ,γs - composition coefficients, T - end time, ∆t - time step

vT - value function at T, α? - optimal control
I - interpolation operator

Result: Approximation of the value function for t = 0
1 t = T
2 Vold = vT
3 while t > 0.0 do
4 for j = 1, . . . , s do
5 Y∆tX = ΦMγj∆t(YX,α

?(t))

6 V = (YX)2 + Vold((YX)1) /* (YX)2 = G
∆(X,∆t), (YX)1 = y

∆
X */

7 Vold = V

8 end
9 t = t− ∆t

10 end
11 return V

Chapter 6. High order time methods for Semi-Lagrangian schemes 33

The important part of the Algorithm 1 is the inner for-loop (lines 4 to 8), where the
composition is calculated for given γ1, . . . ,γs. Please also note, that the value function
V is updated after each step with γi∆t.

6.3.4 Optimization of the control and time inversion

Another important aspect of the SL scheme for the HJB equation is the approximation of
the optimal controlα?. One approach is to use the gradient of the value function. Recall,
that for a differentiable functions v the steepest slope is given by the ∇v. Therefore we
can set α? = h(∇v), where h is the feedback operator (see [GK15]). In the numerical
calculation,∇vmust be approximated by finite differences (e.g. central differences).

A more general approach is to generate a discretization of the control space and min-
imize by comparison.

Please note that complexity of both algorithms can be reduced for the SL schemes
based on DISRK methods. It is obvious for the comparison minimization. For the
gradient approach, the dimension of the stage value function ϑns from section 6.2.1 can
be reduced to the dimension of the state space.

The numerical experiments in this theses use both methods (see chapter 7).
In the construction of higher order DISRK methods the coefficients γi also become

negative. This is important from the viewpoint of the DPP eq. (2.14). Essentially this
means, that the evaluation of the system eq. (2.10) is considered in the reverse time
direction. Note that for a given dynamic function f(y(t),α(t)), i.e. known α(s), the
evaluation for negative time steps is straightforward. This was the assumption to apply
the algorithm 1.

In the case of the SL scheme, α is a part of solution. Therefore, for each evaluation of
the inner loop in the algorithm 1, we have to provide a control αnj , which is consistent
to the previous iterations. Essentially this means, that the controlled system can be
evaluated in both time direction. Note that this is important for the solution to achieve
a higher order in time.

The rule for the computation of such a control sequence could not be derived in
this work. Especially it is not clear how to calculate αnj with the comparison ap-
proach. Therefore the gradient minimization is used for the numerical experiments.
This means, that in each iteration j the gradient of the stage value function ϑnj is com-
puted and evaluated by the feedback operator. The results of the numerical experi-
ments for such a control sequence show a behaviour, which is consistent to the time
order of the DISRK scheme. However, the theoretical basis has to be investigated in
more details.

7 Results of numerical experiments

7.1 Control of the harmonic oscillator

This section presents the results of the approximation of the optimal control for a har-
monic oscillator.

7.1.1 Experiment parameters

The system dynamics is defined by the following equation

ẏ = Ay+ Bu, A =

[
0 1
−1 0

]
, B =

[
0
1

]
(7.1)

The cost function is of the form

Jx(u(t)) =
1
2
yTxQyx +

α

2
uTRu, Q =

[
1 0
0 0

]
, R =

[
1
]

(7.2)

In this special case there exists a solution for the infinite time horizon problem (see
e.g. [FF11]). Figure 7.1 shows the exact solution of the value function.

The carried out numerical experiments approximate the value function for a finite
time. In this case two reference solutions are considered. The fist one is computed with
a finite differences approximation. The second one by solving the Riccati differential
equation numerically (see section 7.1.3).

7.1.2 Parameters of test environment

The setting for experiment follows [GK15]. This means, the parameters are α = 0.1
and discretization of the control space for the comparison approach is dc = 40. The
boundary condition defined by setting the second derivative of the value function to
zero. This corresponds to a linear extrapolation of the values on innver nodes over the
boundary. The experiments estimate the global error of the SL scheme to the reference
solution.

34

Chapter 7. Results of numerical experiments 35

−1

−0.5
0

0.5

1−1
−0.5

0
0.5

1

0

0.2

0.4

0.6

y

ẏ

v
(y
,ẏ

)

Figure 7.1: Value function for the infinite horizon harmonic oscillator control problem.

Chapter 7. Results of numerical experiments 36

7.1.3 First experiments and modifications of test environment

The first numerical experiments were performed for the integration with Euler method
and rectangular rule for the quadrature. The main goal of these tests was the veri-
fication of the test environment. The corresponding SL scheme is presented in Equa-
tion (3.4). Following [GK15], the integration time is set to T = 1.0. All test in this section
use the compare optimization.

As we can see in fig. 7.2, the behaviour of the discretization error is in good agreement
with the properties of the Euler method, which has the order 1. However, the error
depends also on the spatial resolution.

Next test was performed for the SL scheme, which is based on the Heun method with
the trapezoidal rule, cf. eq. (3.5). The results are presented in fig. 7.3. Again, the order
of convergence is approximately 2.

The second experiment with the Heun integration scheme was performed with 20
CPUs in parallel. However, the overall computation time was approximately 1 week,
compared to 1 day for the Euler scheme. for the control space discretization of dc = 40.
This illustrates the rising complexity of the optimization for the SL schemes with high
order time methods.

The last test in this section was for the SL scheme with implicit Euler method for the
numerical integration and quadrature, cf. fig. 7.4. The purpose was to verify the solu-
tion of the implicit equations for the stages of the Runge-Kutta scheme. Corresponding
to the order of the underlying RK method, we can observe the convergence of order 1
w.r.t. the time step.

Subsequently, the first tests with SL schemes, which are based on the DISRK methods
were performed. The results for the DISRK1 method are presented in fig. 7.5. However,
especially for the higher order methods (DISRK7 and DISRK7) with high level spatial
discretization, it was notices, that the error doest not decrease below the level of ap-
proximately 10−4. This behaviour can also be observed in [GK15]. Therefore, a new
reference solution was constructed to verify the solution which was computed by the
FD scheme. For this purpose the differential Riccati equation was solved in time with
an explicit Runge-Kutta method (3/8 rule) to obtain the value function for a given time.
The convergence results for the new solution are presented in fig. 7.6. As we can see,
the behaviour changes significantly for high spatial resolutions.

Another modification was the extension of the I/O-operations for the solver and
postprocessor, as well as the scripts of the test environment (see chapter 8). For exam-
ple, the generation of the compare points in the original environment was performed
with the precision of 2 digits after the decimal point.

In the following, the modified test environment was used for the numerical exper-
iments. To reduce the computation time, the optimization was performed with the
gradient approach and the end time for the integration was set to T = 0.1.

Chapter 7. Results of numerical experiments 37

10−310−210−1100
10−3

10−2

10−1

∆t

‖v
−
v
?
‖ L

2

SG level 2
SG level 4
SG level 6
SG level 8
SG level 10
SG level 12

Figure 7.2: Error to the FD reference solution for explicit Euler and rectangular rule.
T = 1.0.

10−310−210−1100

10−3

10−2

10−1

∆t

‖v
−
v
?
‖ L

2

SG level 2
SG level 4
SG level 6
SG level 8
SG level 10
SG level 12

Figure 7.3: Error to the FD reference solution for Heun and trapezoid rule. T = 1.0.

Chapter 7. Results of numerical experiments 38

10−210−1100

10−2

10−1

∆t

‖v
−
v
?
‖ L

2

SG level 2
SG level 4
SG level 6

Figure 7.4: Error to the FD reference solution for implicit Euler. T = 1.0.

10−310−210−1100

10−3

10−2

10−1

∆t

‖v
−
v
?
‖ L

2

SG level 2
SG level 4
SG level 6
SG level 8
SG level 10
SG level 12

Figure 7.5: Error to the FD reference solution for DISRK1 and T = 1.0.

Chapter 7. Results of numerical experiments 39

10−310−210−1100
10−4

10−3

10−2

10−1

∆t

‖v
−
v
?
‖ L

2

SG level 2
SG level 4
SG level 6
SG level 8
SG level 10
SG level 12

Figure 7.6: Global error to the matrix reference solution for DISRK1 for T = 1.0.

Chapter 7. Results of numerical experiments 40

DISRK1

The results of the computation with DISRK1 method are presented in fig. 7.7. The global
error for the large values of ∆t (from 10−1 to 10−2) shows the convergence of approxi-
mately order 2. This result corresponds to the order of the DISRK1 scheme. However,
for small values of ∆t the error an interesting pattern. A possible explanation is the
interplay between spatial reconstruction and time integration, due to larger number of
interpolation operations.

10−410−310−210−1

10−7

10−6

10−5

10−4

∆t

‖v
−
v
?
‖ L

2

SG level 6
SG level 8
SG level 10
SG level 12
SG level 14

Figure 7.7: Error for DISRK1 and T = 0.1.

Chapter 7. Results of numerical experiments 41

DISRK3

The results for the DISRK3 scheme have some similarity to the DISRK1 method, cf.
fig. 7.8. Because of the time reasons it was not possible to obtain the complete the
experiments for the SG level 14. Again, the convergence of the error for large values
of ∆t is approximately of order 4. Another interesting aspect is the local minimum by
10−1.5.

10−410−310−210−1

10−6

10−5

10−4

∆t

‖v
−
v
?
‖ L

2

SG level 6
SG level 8
SG level 10
SG level 12
SG level 14

Figure 7.8: Error for DISRK3 and T = 0.1.

Chapter 7. Results of numerical experiments 42

DISRK7

The results of the experiments for the DISRK7 are presented in fig. 7.9. Again, because
of time reasons it was not possible to obtain all data. For the small time steps, the be-
haviour of the global error is similar to DISRK1 and DISRK3. Here, the convergence
seems to be dominated by the error from the spatial discretization. The expected con-
vergence order of p cannot be observed, due to small values of error for the ∆t = 10−1.
This is also a main difference to the DISRK1 and DISRK3. Approximately the same
error is obtained by the DISRK3 for the ∆t ≈ 10−1.5. For the DISRK3 this value of ∆
corresponds to 30 interpolations. On the contrary, for DISRK7, we achieve this value
already for 7 spatial reconstructions (i.e. 1 time step).

10−410−310−210−1

10−6

10−5

10−4

∆t

‖v
−
v
?
‖ L

2

SG level 6
SG level 8
SG level 10
SG level 12
SG level 14

Figure 7.9: Error for DISRK7 and T = 0.1.

Chapter 7. Results of numerical experiments 43

DISRK9

Figure 7.10 presents the results for the experiments with DISRK9 time discretization.
The behaviour is similar to the DISRK7, however, the second local minimum for the
error is obtained at slightly larger time steps (i.e., for the SG level 12, 10−2.8 for DISRK9
vs. approximately 10−3.0 for DISRK7).

10−410−310−210−1

10−6

10−5

10−4

∆t

‖v
−
v
?
‖ L

2

SG level 6
SG level 8
SG level 10
SG level 12

Figure 7.10: Error for DISRK9 and T = 0.1.

Chapter 7. Results of numerical experiments 44

7.1.4 Adaptive time steps

Due to the time reasons and modifications of the test environment, it was not possible
to verify the time-adaptive integration for the SL scheme. The obtained results are
presented in this section.

The parameters for the controller eq. (5.5) are ρ = 0.8 and q = 1.25. The initial time
step is set to ∆t = 10−3.

Essentially the same behaviour is observed for different methods cf. figure 7.11 to
7.13. This can be explained by the infeasibility of the harmonic oscillator example, at
least for the considered tolerances TOL for the local error. However, we can see the
adaptation of the step sizes w.r.t the TOL.

Chapter 7. Results of numerical experiments 45

10−410−310−2
10−5

10−4

10−3

‖v
−
v
?
‖ L

2

SG level 6
SG level 8

SG level 10
SG level 12

10−410−310−2

101.2

101.4

101.6

101.8

102

TOL

N
um

be
r

of
st

ep
s

Figure 7.11: Error and number of steps for DISRK1 and T = 0.1.

Chapter 7. Results of numerical experiments 46

10−410−310−2

10−4

10−3

‖v
−
v
?
‖ L

2

SG level 6
SG level 8

SG level 10
SG level 12

10−410−310−2

20

40

60

80

100

TOL

N
um

be
r

of
st

ep
s

Figure 7.12: Error and number of steps for DISRK3 and T = 0.1.

Chapter 7. Results of numerical experiments 47

10−410−310−2
10−5

10−4

10−3

‖v
−
v
?
‖ L

2

SG level 6
SG level 8

SG level 10
SG level 12

10−410−310−2

20

40

60

80

100

TOL

N
um

be
r

of
st

ep
s

Figure 7.13: Error and number of steps for DISRK7 and T = 0.1.

Chapter 7. Results of numerical experiments 48

7.2 Control of the semi-discrete wave equation

The second considered example is the control of the semi-discrete wave equation. The
setting again follows [GK15]. The system dynamics is defined by

ẏ = Ay+ Bu, A =

0 0 1 0
0 0 0 1

−0.49 0 0 0
0 −1.97 0 0

 , B =

0 0
0 0
1 0
0 1

 (7.3)

The cost function is

Jx(u(t)) =
1
2
yTxQyx +

α

2
uTRu, Q =

1 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , R =

[
1 0
0 1

]
(7.4)

The setting of the experiment follows [GK15]. The value of α is α = 0.1. The time
horizon is T = 0.1. The reference solution is constructed by solving the Riccati differen-
tial equation. The comparison to the reference solution was performed for an equidis-
tant mesh with 10 points in each dimension, i.e. 10(4) points.

The calculation of the solution for the 4 dimensional example is much more time
consuming. For this reason, it was only possible to obtain the computations for the SG
levels 6 and 8. The fig. 7.14 presents the results for the DISRK1. Again, we can observe
approximately 2nd order convergence for large values of ∆t. The results for DISRK3,
cf. fig. 7.15 also shows the expected convergence order for the larger time steps. The
behaviour for the small time steps cannot be explained without further investigation of
the interplay between spatial and time discretization.

Chapter 7. Results of numerical experiments 49

10−410−310−210−1

10−4

10−3

∆t

‖v
−
v
?
‖ L

2

SG level 6
SG level 8

Figure 7.14: Error for DISRK1 and T = 0.1. 4D example.

10−310−210−1

10−4

10−3

∆t

‖v
−
v
?
‖ L

2

SG level 6
SG level 8

Figure 7.15: Error for DISRK3 and T = 0.1. 4D example.

8 Software

This chapter describes important aspects of the implementation for the SL scheme in
this theses. The numerical experiments, which are presented in the chapter 7, are car-
ried out with a C++-solver and post-processor. The testing environment is developed
in PYTHON. Implementations are based on the RICAM-solver and PYTHON-scripts,
which were provided by the Institute for Numerical Simulation at the University of
Bonn and are used for numerical experiments in [GK15].

8.1 SG++

SG++ is an implementation of the sparse grids in C++, which is developed by the
SG++ project (see [Pfl10]). The goal of the project is to provide algorithms for spatially
adaptive sparse grids, which can be used straightforward for scientific computations.
This work is based on the version 1.1.0 of SG++ (the version 2.0.0 was published on
20th May, 2016).

Some adaptations to SG++ were made in this theses. The most important is the
extension for the data types DATAVECTOR and DATAMATRIX to provide additional
linear algebra operations as well as iterator support. In addition, an extrapolation for
the fold out grid class was implemented.

8.2 Automatization of numerical tests

The test environment in this work is based on PYTHON and especially the package
SCITOOLS.MULTIPLELOOP. This extension allows to define parameter ranges and in-
crements for the numerical experiments and then provides a discretization for the test
space. A loop over all configuration of the parameters can be used to start specific ex-
periments. A reference for the SCITOOLS.MULTIPLELOOP as well as PYTHON is [Lan04].

8.3 OpenMP

The optimization of the control for the HJB equation is rather time-consuming. How-
ever, the comparison algorithm is well suited for parallelization. OPENMP was used
for this purpose. The numerical experiments were performed with up to 25 CPUs in
parallel.

An important aspect of the implementation is the usage of the REDUCTION clause
(see [Ope]). This method defines the synchronisation rule for the threads after a parallel
code section.

50

Chapter 8. Software 51

From the version 4.0, the REDUCTION clause can be defined by the user. This is essen-
tial to work with SG++ data types like DATAVECTOR or DATAMATRIX (see section 8.1),
which are not C inherent.

Bibliography

[BG04] BUNGARTZ, H.-J. ; GRIEBEL, M.: Sparse grids. Cambridge Uni-
versity Press, 2004 http://wissrech.ins.uni-bonn.de/research/
pub/griebel/sparsegrids.pdf

[Bon04] BONAVENTURA, L.: An introduction to semi-Lagrangian methods for geophysical
scale flows. ERCOFTAC Leonhard Euler Lectures SAM-ETH Zurich, 2004

[CIR52] COURANT, R. ; ISAACSON, E. ; REES, M.: On the solution of nonlinear hyper-
bolic differential equations by finite differences. In: Comm. Pure Appl. Math.
5 (1952)

[DB02] DEUFLHARD, P. ; BORNEMANN, F.: Scientific Computing with Ordinary Differ-
ential Equations. Springer, 2002

[DB08] DEUFLHARD, Peter ; BORNEMANN, Folkmar: Numerische Mathematik 2.
Gewöhnliche Differentialgleichungen. de Gruyter, 2008

[Eva98] EVANS, L. C.: Partial Differential Equations. American Mathematical Society,
1998

[FF94] FALCONE, M. ; FERRETTI, R.: Discrete-time high-order schemes for viscosity
solutions of Hamilton-Jacobi equations. In: Numer. Math. 67 (1994)

[FF06] FALCONE, M. ; FERRETTI, R.: A time adaptive Semi-Lagrangian approx-
imation to mean curvature motion. In: Numerical Mathematics Advanced
Applications- ENUMATH2005 67 (2006)

[FF11] FALCONE, M. ; FERRETTI, R.: Semi-Lagrandgian Approximation Schemes for
Linear and Hamilton-Jacobi Equations. 2011

[FQ10] FENG, K. ; QIN, M.: Symplectic Geometric Algorithms for Hamiltonian Systems.
Springer, 2010

[Gar13] GARCKE, J.: Sparse Grids in a Nutshell. Version: 2013. http://dx.
doi.org/10.1007/978-3-642-31703-3_3. In: GARCKE, J. (Hrsg.)
; GRIEBEL, M. (Hrsg.): Sparse grids and applications Bd. 88. Springer,
2013. – DOI 10.1007/978–3–642–31703–3_3, S. 57–80. – extended ver-
sion with python code http://garcke.ins.uni-bonn.de/research/
pub/sparse_grids_nutshell_code.pdf

[Gar15] GARCKE, J.: Lecture Notes for the Introduction to Numerics. University of Bonn,
2015

52

http://wissrech.ins.uni-bonn.de/research/pub/griebel/sparsegrids.pdf
http://wissrech.ins.uni-bonn.de/research/pub/griebel/sparsegrids.pdf
http://dx.doi.org/10.1007/978-3-642-31703-3_3
http://dx.doi.org/10.1007/978-3-642-31703-3_3
http://garcke.ins.uni-bonn.de/research/pub/sparse_grids_nutshell_code.pdf
http://garcke.ins.uni-bonn.de/research/pub/sparse_grids_nutshell_code.pdf

Bibliography 53

[GK15] GARCKE, J. ; KRÖNER, A.: Suboptimal feedback control of PDEs by solving
HJB equations on adaptive sparse grids. (2015)

[HLW06] HAIRER, E. ; LUBICH, C. ; WANNER, G.: Geometric Numerical Integration.
Structure-Preserving Algorithms for Ordinary Differential Equations. Springer,
2006

[Lan04] LANGTANGEN, Hans P.: Python Scripting for Computational Science. Springer,
2004

[Ope] OpenMP Application Program Interface. : OpenMP Application Program Interface

[Pfl10] PFLÜGER, Dirk: Spatially Adaptive Sparse Grids for High-Dimensional Prob-
lems. München : Verlag Dr. Hut, 2010 http://www5.in.tum.de/pub/
pflueger10spatially.pdf. – ISBN 9783868535556

[Sha94] SHAMPINE, L. F.: Numerical solution of ordinary differential equations. Chapman
& Hall, 1994

[SK09] SCHWARZ, H. R. ; KÖCKLER, N.: Numerische Mathematik. Vieweg+Teubner
|GWV Fachverlage GmbH, Wiesbaden, 2009

[ZM15] Z.KALOGIRATOU ; MONOVASILIS, Th.: Diagonally Implicit Symplectic
Runge-Kutta Methods with Special Properties. In: Applied Mathematics &
Information Sciences 9, No. 1L, 11-17 (2015) (2015)

http://www5.in.tum.de/pub/pflueger10spatially.pdf
http://www5.in.tum.de/pub/pflueger10spatially.pdf

	Introduction
	Preliminaries
	Method of characteristics
	Hamilton-Jacobi equation
	Calculus of variations
	Hamilton-Jacobi equation

	Optimal control problem
	Controlled system
	Cost functional

	Semi-Lagrangian schemes
	SL schemes for the optimal control problems
	Examples of SL schemes

	Sparse grids
	Error estimation and step size control for Semi-Lagrangian schemes
	Approximation error of SL schemes
	Local and global error of numerical integration methods for ODEs
	Error of quadrature
	Properties of collocation methods
	Local error of SL scheme

	Step size control
	Estimation of error for step size control

	High order time methods for Semi-Lagrangian schemes
	Structure preserving numerical integration for the SL schemes
	Complexity of SL schemes with high order time discretization
	Explicit time integration
	Implicit time integration
	Reduction of complexity

	SL schemes with implicit midpoint rule
	Composition methods
	Quadrature with implicit midpoint rule
	High order SL schemes with implicit midpoint rule
	Optimization of the control and time inversion

	Results of numerical experiments
	Control of the harmonic oscillator
	Experiment parameters
	Parameters of test environment
	First experiments and modifications of test environment
	Adaptive time steps

	Control of the semi-discrete wave equation

	Software
	SG++
	Automatization of numerical tests
	OpenMP

