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Abstract. We develop an a posteriori analysis of C0 interior penalty methods for the dis-
placement obstacle problem of clamped Kirchhoff plates. We show that a residual based
error estimator originally designed for C0 interior penalty methods for the boundary value
problem of clamped Kirchhoff plates can also be used for the obstacle problem. We obtain
reliability and efficiency estimates for the error estimator and introduce an adaptive algo-
rithm based on this error estimator. Numerical results indicate that the performance of the
adaptive algorithm is optimal for both quadratic and cubic C0 interior penalty methods.

1. Introduction

Let Ω ⊂ R2 be a bounded polygonal domain, f ∈ L2(Ω), ψ ∈ C(Ω̄)∩C2(Ω) and ψ < 0 on
∂Ω. The displacement obstacle problem for the clamped Kirchhoff plate is to find

(1.1) u = argmin
v∈K

[1

2
a(v, v)− (f, v)

]
,

where

a(w, v) =

∫
Ω

D2w : D2v dx =

∫
Ω

2∑
i,j=1

( ∂2w

∂xi∂xj

)( ∂2v

∂xi∂xj

)
dx, (f, v) =

∫
Ω

fv dx,(1.2)

and

(1.3) K = {v ∈ H2
0 (Ω) : v ≥ ψ in Ω}.

The unique solution u ∈ K of (1.1)–(1.3) is characterized by the variational inequality

a(u, v − u) ≥ (f, v − u) ∀ v ∈ K,
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which can be written in the following equivalent complementarity form:

(1.4)

∫
Ω

(u− ψ) dλ = 0,

where the Lagrange multiplier λ is the nonnegative Borel measure defined by

(1.5) a(u, v) = (f, v) +

∫
Ω

v dλ ∀ v ∈ H2
0 (Ω).

Remark 1.1. Since u > ψ near ∂Ω, the support of λ is disjoint from ∂Ω because of (1.4).

Remark 1.2. We can treat λ as a member of H−2(Ω) = [H2
0 (Ω)]′ such that

〈λ, v〉 =

∫
Ω

v dλ ∀ v ∈ H2
0 (Ω).

Remark 1.3. The Lagrange multiplier λ represents the force acting on the plate by the
obstacle and it is important to approximate this force accurately.

C0 interior penalty methods [26, 14, 12, 10, 9, 29] form a natural hierarchy of discontinuous
Galerkin methods that are proven to be effective for fourth order elliptic boundary value
problems. The goal of this paper is to develop an a posteriori error analysis of C0 interior
penalty methods for the obstacle problem defined by (1.1)–(1.3). While there is a substantial
literature on the a posteriori error analysis of finite element methods for second order obstacle
problems (cf. [34, 22, 42, 39, 2, 40, 41, 8, 7, 30, 31, 21] and the references therein), as
far as we know this is the first paper on the a posteriori error analysis of finite element
methods for the displacement obstacle problem of clamped Kirchhoff plates. We remark that
there is a fundamental difference between second order and fourth order obstacle problems,
namely, that the Lagrange multipliers for the fourth order discrete obstacle problems can
be represented naturally as sums of Dirac point measures (cf. Section 2), which leads to a
simpler a posteriori error analysis (cf. Section 4 and Section 5).

The rest of the paper is organized as follows. We recall the C0 interior penalty methods in
Section 2 and analyze a mesh-dependent boundary value problem in Section 3 that plays an
important role in the a posteriori error analysis carried out in Section 4 and Section 5. An
adaptive algorithm motivated by the a posteriori error analysis is introduced in Section 6
and we report results of several numerical experiments in Section 7. We end the paper with
some concluding remarks in Section 8.

Finally we note that a posteriori error analyses for finite element methods for some other
fourth order variational inequalities were investigated in [28, 20, 32].

2. C0 Interior Penalty Methods

Let Th be a geometrically conforming simplicial triangulation of Ω, Vh be the set of the
vertices of Th, Eh be the set of the edges of Th, and Vh ⊂ H1

0 (Ω) be the Pk Lagrange finite
element space (k ≥ 2) associated with Th. The discrete problem for the C0 interior penalty
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method [15, 17] is to find

(2.1) uh = argmin
v∈Kh

[1

2
ah(v, v)− (f, v)

]
,

where Kh = {v ∈ Vh : v(p) ≥ ψ(p) ∀p ∈ Vh},

ah(w, v) =
∑
T∈Th

∫
T

D2w : D2v dx+
∑
e∈Eh

∫
e

({{∂2w

∂n2

}}[[∂v
∂n

]]
+
{{∂2v

∂n2

}}[[∂w
∂n

]])
ds

+
∑
e∈Eh

σ

|e|

∫
e

[[∂w
∂n

]][[∂v
∂n

]]
ds,

{{·}} denotes the average across an edge, [[·]] denotes the jump across an edge, |e| is the length
of the edge e, and σ ≥ 1 is a penalty parameter large enough so that ah(·, ·) is positive-definite
on Vh. Details for the notation and the choice of σ can be found in [14, 36].

The unique solution uh ∈ Kh of (2.1) is characterized by the variational inequality

ah(uh, v − uh) ≥ (f, v − uh) ∀ v ∈ Kh,

which can be expressed in the following equivalent complementarity form:

(2.2)
∑
p∈Vh

λh(p)
(
uh(p)− ψ(p)

)
= 0,

where the Lagrange multipliers λh(p) are defined by

(2.3) ah(uh, v) = (f, v) +
∑
p∈Vh

λh(p)v(p) ∀ v ∈ Vh

and satisfy

(2.4) λh(p) ≥ 0 ∀ p ∈ Vh.
We also use λh to denote the measure

∑
p∈Vh λh(p)δp, where δp is the Dirac point measure

at p. Equation (2.3) can therefore be written as

(2.5) ah(uh, v) = (f, v) +

∫
Ω

v dλh ∀ v ∈ Vh.

Remark 2.1. For second order obstacle problems, the discrete Lagrange multiplier cannot be
extended to H−1(Ω) as a sum of Dirac point measures since such measures do not belong
to H−1(Ω). Consequently there are different choices for extending the discrete Lagrange
multiplier to H−1(Ω) [42, 39, 40]. The fact that the Lagrange multiplier for the discrete
fourth order obstacle problem can be expressed naturally as a sum of Dirac point measures
leads to the simple a posteriori error analysis in Section 4 and Section 5.

Remark 2.2. We can also treat λh as a member of H−2(Ω) = [H2
0 (Ω)]′ such that

〈λh, v〉 =

∫
Ω

v dλh =
∑
p∈Vp

λh(p)v(p) ∀ v ∈ H2
0 (Ω).



4 S.C. BRENNER, J. GEDICKE, L.-Y. SUNG, AND Y. ZHANG

Let the mesh-dependent norm ‖ · ‖h be defined by

(2.6) ‖v‖2
h =

∑
T∈Th

|v|2H2(T ) +
∑
e∈Eh

σ

|e|
‖[[∂v/∂n]]‖2

L2(e).

Note that

(2.7) ‖v‖h = |v|H2(Ω) ∀ v ∈ H2
0 (Ω).

The following a priori error estimate is known [17, 15]:

(2.8) ‖u− uh‖h ≤ Chα,

where the index of elliptic regularity α ∈ (1
2
, 1] is determined by the interior angles of Ω and

can be taken to be 1 if Ω is convex.
Our goal is to develop a posteriori error estimates for ‖u− uh‖h.
Two useful tools for the analysis of C0 interior penalty methods are the nodal interpolation

operator Πh : H2
0 (Ω) −→ Vh and an enriching operator Eh : Vh −→ Wh ⊂ H2

0 (Ω), where Wh

is the Hsieh-Clough-Tocher macro finite element space [23].
The operator Eh is defined by averaging (cf. [9, Section 4.1]) and hence

(2.9) (Ehuh)(p) = uh(p) ∀p ∈ Vh.
The following estimate can be found in the proof of [9, Lemma 1]:

(2.10) h−4
T ‖v − Ehv‖2

L2(T ) ≤ C
∑
e∈ẼT

1

|e|
‖[[∂v/∂n]]‖2

L2(e) ∀T ∈ Th,

where ẼT is the set of the edges of Th emanating from the vertices of T , and the positive
constant C depends only on k and the shape regularity of Th.

From (2.10) and standard inverse estimates [24, 13], we also have

h−2
T ‖v − Ehv‖2

L∞(T ) ≤ C
∑
e∈ẼT

1

|e|
‖[[∂v/∂n]]‖2

L2(e) ∀T ∈ Th,(2.11)

∑
T∈Th

|v − Ehv|2H2(T ) ≤ C
∑
e∈Eh

1

|e|
‖[[∂v/∂n]]‖2

L2(e) ∀ v ∈ Vh,(2.12)

‖v − Ehv‖2
h ≤ C

∑
e∈Eh

σ

|e|
‖[[∂v/∂n]]‖2

L2(e) ∀ v ∈ Vh,(2.13)

where the positive constant C depends only on k and the shape regularity of Th.

3. A Mesh-Dependent Boundary Value Problem

Let zh ∈ H2
0 (Ω) be defined by

(3.1) a(zh, v) = (f, v) +

∫
Ω

v dλh = (f, v) +
∑
p∈Vh

λh(p)v(p) ∀ v ∈ H2
0 (Ω).

Then uh is the approximate solution of (3.1) obtained by the C0 interior penalty method.
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Remark 3.1. The idea of considering such mesh-dependent boundary value problems was
introduced in [6] for second order obstacle problems.

A residual based error estimator [11, 9] for uh (as an approximate solution of (3.1)) is
given by

(3.2) ηh =
(∑
e∈Eh

η2
e,1 +

∑
e∈Eih

(η2
e,2 + η2

e,3) +
∑
T∈Th

η2
T

) 1
2
,

where E ih is the set of the edges of Th interior to Ω,

ηe,1 =
σ

|e| 12
‖[[∂uh/∂n]]‖L2(e),(3.3)

ηe,2 = |e|
1
2‖[[∂2uh/∂n

2]]‖L2(e),(3.4)

ηe,3 = |e|
3
2‖[[∂3uh/∂n

3]]‖L2(e),(3.5)

ηT = h2
T‖f −∆2uh‖L2(T ).(3.6)

The following result will play an important role in the a posteriori error analysis of the
obstacle problem. Note that its proof is made simple by the representation of the discrete
Lagrange multiplier λh as a sum of Dirac point measures supported at the vertices of Th,
which allows the analysis in [9] to be used here.

Lemma 3.2. There exists a positive constant C, depending only on k and the shape regularity
of Th, such that

(3.7) ‖zh − uh‖h ≤ Cηh.

Proof. We have an obvious estimate

(3.8)
∑
e∈Eh

σ

|e|

∥∥∥∥[[∂(zh − uh)
∂n

]]∥∥∥∥2

L2(e)

=
∑
e∈Eh

σ

|e|

∥∥∥∥[[∂uh∂n

]]∥∥∥∥2

L2(e)

≤
∑
e∈Eh

η2
e,1,

and it only remains to estimate
∑

T∈Th |zh − uh|
2
H2(T ).

Let Eh : Vh −→ H2
0 (Ω) be the enriching operator. It follows from (2.12) and (3.3) that∑

T∈Th

|zh − uh|2H2(T ) ≤ 2
∑
T∈Th

[
|zh − Ehuh|2H2(T ) + |uh − Ehuh|2H2(T )

]
(3.9)

≤ 2|zh − Ehuh|2H2(Ω) + C
∑
e∈Eh

η2
e,1,

and, by duality,

(3.10) |zh − Ehuh|H2(Ω) = sup
φ∈H2

0 (Ω)\{0}

a(zh − Ehuh, φ)

|φ|H2(Ω)

.



6 S.C. BRENNER, J. GEDICKE, L.-Y. SUNG, AND Y. ZHANG

In view of (2.3) and (3.1), the numerator on the right-hand side of (3.10) becomes

a(zh − Ehuh, φ) =
∑
T∈Th

∫
T

D2(zh − Ehuh) : D2φ dx

= (f, φ) +
∑
p∈Vh

λh(p)φ(p)

+
∑
T∈Th

∫
T

D2(uh − Ehuh) : D2φ dx−
∑
T∈Th

∫
T

D2uh : D2(φ− Πhφ) dx

−
∑
T∈Th

∫
T

D2uh : D2(Πhφ) dx

= (f, φ) +
∑
p∈Vh

λh(p)φ(p)− (f,Πhφ)−
∑
p∈Vh

λh(p)(Πhφ)(p) + ah(uh,Πhφ)

+
∑
T∈Th

∫
T

D2(uh − Ehuh) : D2φ dx−
∑
T∈Th

∫
T

D2uh : D2(φ− Πhφ) dx

−
∑
T∈Th

∫
T

D2uh : D2(Πhφ) dx.

Since φ and Πhφ agree on the vertices of Th, the two terms involving λh cancel each other
and we end up with

a(zh − Ehuh, φ) =
∑
T∈Th

∫
T

D2(uh − Ehuh) : D2φ dx−
∑
T∈Th

∫
T

D2uh : D2(φ− Πhφ) dx

−
∑
T∈Th

∫
T

D2uh : D2(Πhφ) dx+ ah(uh,Πhφ) + (f, φ− Πhφ),

which is precisely the equation [9, (7.9)] (and which has nothing to do with either zh or λh).
It then follows from the estimates [9, (7.10)–(7.19)] that

(3.11) a(u− Ehuh, φ) ≤ Cηh|φ|H2(Ω).

The estimate (3.7) follows from (2.6) and (3.8)–(3.11). �

4. Reliability Estimates for the Obstacle Problem

We begin with a simple estimate.

Lemma 4.1. There exists a positive constant C, depending only on k and the shape regularity
of Th, such that

(4.1) ‖u− uh‖h + ‖λ− λh‖H−2(Ω) ≤ Cηh +

√∫
Ω

(ψ − Ehuh)+dλ .



A POSTERIORI ANALYSIS FOR THE OBSTACLE PROBLEM OF KIRCHHOFF PLATES 7

Proof. Let Eh : Vh −→ H2
0 (Ω) be the enriching operator. We can write

|u− Ehuh|2H2(Ω) = a(u− Ehuh, u− Ehuh)(4.2)

= a(u− zh, u− Ehuh) + a(zh − Ehuh, u− Ehuh),
and, in view of (2.7), (2.13), (3.3) and Lemma 3.2, the second term on the right-hand side
of (4.2) is bounded by

a(zh − Ehu, u− Ehuh) ≤ |zh − Ehuh|H2(Ω)|u− Ehuh|H2(Ω)

≤
(
‖zh − uh‖h + ‖uh − Ehuh‖h

)
|u− Ehuh|H2(Ω)(4.3)

≤ Cηh|u− Ehuh|H2(Ω).

By (1.3)–(1.5), (2.2), (2.4), (2.9) and (3.1), the first term on the right-hand side of (4.2)
can be bounded as follows:

a(u− zh, u− Ehuh) =

∫
Ω

(u− Ehuh) dλ−
∑
p∈Vh

λh(p)
(
u(p)− (Ehuh)(p)

)
(4.4)

=

∫
Ω

(ψ − Ehuh) dλ−
∑
p∈Vh

λh(p)
(
u(p)− ψ(p)

)
≤
∫

Ω

(ψ − Ehuh)+ dλ.

It follows from (2.7) and (4.2)–(4.4) that

‖u− Ehuh‖h ≤ Cηh +

√∫
Ω

(ψ − Ehuh)+dλ ,

which together with (2.13) implies

(4.5) ‖u− uh‖h ≤ Cηh +

√∫
Ω

(ψ − Ehuh)+dλ .

In order to estimate ‖λ− λh‖H−2(Ω), we observe that (1.5), (2.7) and (3.1) imply

‖λ− λh‖H−2(Ω) = sup
v∈H2

0 (Ω)

∫
Ω

v d(λ− λh)

|v|H2(Ω)

(4.6)

= sup
v∈H2

0 (Ω)

a(u− zh, v)

|v|H2(Ω)

= |u− zh|H2(Ω) ≤ ‖u− uh‖h + ‖zh − uh‖h.

The estimate for ‖λ− λh‖H−2(Ω) then follows from Lemma 3.2 and (4.5). �

We can also remove the inconvenient Eh in the estimate (4.1).

Theorem 4.2. There exists a positive constant C, depending only on k and the shape regu-
larity of Th, such that

‖u− uh‖h + ‖λ− λh‖H−2(Ω) ≤ C
(
ηh + λ(Ω)

1
2

√
max
T∈Th

hT

∑
e∈ẼT

|e|−1/2‖[[∂uh/∂n]]‖L2(e)

)
(4.7)
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+ λ(Ω)
1
2‖(ψ − uh)+‖

1
2

L∞(Ω),

where ẼT is the set of the edges in Th that emanate from the vertices of T .

Proof. We have

(4.8)

∫
Ω

(ψ − Ehuh)+ dλ ≤
[
‖(ψ − uh)+‖L∞(Ω) + ‖uh − Ehuh‖L∞(Ω)

]
λ(Ω),

and, by (2.11),

(4.9) ‖uh − Ehuh‖L∞(Ω) ≤ C max
T∈Th

hT

∑
e∈ẼT

|e|−1/2‖[[∂uh/∂n]]‖L2(e).

The estimate (4.7) follows from (4.1), (4.8), and (4.9). �

Remark 4.3. The estimate (4.7) is not a genuine a posteriori error estimate since λ(Ω) is not
known. But it is useful for monitoring the asymptotic convergence of adaptive algorithms
(cf. Lemma 6.1 and Lemma 6.2).

Remark 4.4. One can also obtain a genuine a posteriori error estimate by replacing λ(Ω)
with a computable bound. Indeed, for any w ∈ K, we have

1

2
|u|2H2(Ω) ≤

1

2
|w|2H2(Ω) − (f, w) + (f, u) ≤ 1

2
|w|2H2(Ω) − (f, w) + C‖f‖2

L2(Ω) +
1

4
|u|2H2(Ω)

by a Poincaré-Friedrichs inequality [38] and the arithmetic-geometric means inequality, and
hence

(4.10) |u|2H2(Ω) ≤ 2|w|2H2(Ω) − 4(f, w) + C‖f‖2
L2(Ω),

where C is a computable positive constant. Combining (4.10) with the Sobolev embedding
(cf. [1]) H2(Ω) ↪→ C0,γ(Ω) for any γ < 1, we see that there is a computable δ > 0 such that
u(x) > ψ(x) if the distance from x to ∂Ω is < δ. Therefore there is a computable φ ∈ C∞c (Ω)
such that φ = 1 on the support of λ.

We then have, in view of (1.5) and (4.10),

λ(Ω) = a(u, φ)− (f, φ) ≤ |u|H2(Ω)|φ|H2(Ω) + ‖f‖L2(Ω)‖φ‖L2(Ω) ≤ C,

where the positive constant C is computable.

5. Efficiency Estimates for the Obstacle Problem

Let the local data oscillation Osc(f ;T ) be defined by

Osc(f ;T ) = h2
T‖f − f̄T‖L2(T ),

where f̄T is the L2 projection of f in the polynomial space Pj(T ) with j = max(k − 4, 0).
The global data oscillation is then given by

Osc(f ; Th) =
( ∑
T∈Th

Osc(f ;T )2
) 1

2
.
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Theorem 5.1. There exists a positive constant C, depending only on the shape regularity of
Th, such that

ηe,1 ≤
σ

|e| 12
‖[[∂(u− uh)/∂n]]‖L2(e) ∀ e ∈ Eh,

ηe,2 ≤ C
[ ∑
T∈Te

[
|u− uh|H2(T ) + Osc(f ;T )

]
+ ‖λ− λh‖H−2(Ωe)

]
∀ e ∈ E ih,

ηe,3 ≤ C
[ ∑
T∈Te

[
|u− uh|H2(T ) + Osc(f ;T )

]
+ ‖λ− λh‖H−2(Ωe)

+
1

|e|
‖[[∂(u− uh)/∂n]]‖2

L2(e)

]
∀ e ∈ E ih,

ηT ≤ C
(
|u− uh|H2(T ) + Osc(f ;T ) + ‖λ− λh‖H−2(T )

)
∀T ∈ Th,

where Te is the set of the two triangles that share the edge e and Ωe is the interior of
⋃
T∈Te T̄ .

Proof. The estimate for ηe,1 is obvious. The other estimates are obtained by modifying the
arguments in [9, Section 5.3].

In the proof of the estimate [9, (5.17)] (with v = uh), we replace the relation∫
T

(f̄T −∆2uh)z dx =

∫
T

D2(u− uh) : D2z dx+

∫
T

(f̄T − f)z dx

by ∫
T

(f̄T −∆2uh)z dx =

∫
T

D2(u− uh) : D2z dx+

∫
T

(f̄T − f)z dx−
∫
T

z d(λ− λh)(5.1)

to obtain the estimate∫
T

(f̄T −∆2uh)z ≤ C
(
h−2

T |u− uh|H2(T ) + ‖f − f̄T‖L2(T ) + h−2
T ‖λ− λh‖H−2(T )

)
‖z‖L2(T ),

which then leads to the estimate for ηT . Note that (5.1) holds because the bubble function
z vanishes at the vertices of Th.

In the proof of the estimate [9, (5.26)] (with v = uh), we replace the relation∑
T∈Te

(
−
∫
T

D2uh : D2(ζ1ζ2) dx+

∫
T

(∆2uh)(ζ1ζ2) dx
)

=
∑
T∈Te

∫
T

D2(u− uh) : D2(ζ1ζ2) dx−
∑
T∈Te

∫
T

(f −∆2uh)(ζ1ζ2) dx

that appears in [9, (5.24)] by∑
T∈Te

(
−
∫
T

D2uh : D2(ζ1ζ2) dx+

∫
T

(∆2uh)(ζ1ζ2) dx
)
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=
∑
T∈Te

∫
T

D2(u− uh) : D2(ζ1ζ2) dx−
∑
T∈Te

∫
T

(f −∆2uh)(ζ1ζ2) dx(5.2)

−
∫

Ωe

(ζ1ζ2) d(λ− λh)

to obtain the estimate∑
T∈Te

(
−
∫
T

D2uh : D2(ζ1ζ2) dx+

∫
T

(∆2uh)(ζ1ζ2) dx
)

≤ C
[ ∑
T∈Te

(
h−2

T |u− uh|H2(T ) + ‖f −∆2uh‖L2(T )

)
+ h−2

T ‖λ− λh‖H−2(Ωe)

]
‖ζ1ζ2‖L2(Ωe),

which then leads to the estimate for ηe,2. Note that (5.2) holds because the bubble function
ζ1ζ2 vanishes at the vertices of Th.

Finally, in the proof of the estimate [9, (5.32)] (with v = uh), we replace the relation∑
T∈Te

(∫
T

D2uh : D2(ζ2ζ3) dx−
∫
T

(∆2uh)(ζ2ζ3) dx
)

=
∑
T∈Te

∫
T

D2(uh − u) : D2(ζ2ζ3) dx+
∑
T∈Te

∫
T

(f −∆2uh)(ζ2ζ3) dx

that appears in [9, (5.30)] by∑
T∈Te

(∫
T

D2uh : D2(ζ2ζ3) dx−
∫
T

(∆2uh)(ζ2ζ3) dx
)

=
∑
T∈Te

∫
T

D2(uh − u) : D2(ζ2ζ3) dx+
∑
T∈Te

∫
T

(f −∆2uh)(ζ2ζ3) dx(5.3)

+

∫
Ωe

(ζ2ζ3) d(λ− λh)

to obtain the estimate∑
T∈Te

(∫
T

D2uh : D2(ζ2ζ3) dx−
∫
T

(∆2uh)(ζ2ζ3) dx
)

≤ C
[ ∑
T∈Te

(
h−2

T |u− uh|H2(T ) + ‖f −∆2uh‖L2(T )

)
+ h−2

T ‖λ− λh‖H−2(Ωe)

]
‖ζ2ζ3‖L2(Ωe),

which then leads to the estimate for ηe,3. Again (5.3) holds because the bubble function ζ2ζ3

vanishes at the vertices of Th. �

We can also prove a global efficiency result under the following assumption:

The triangles (resp. interior edges) of Th can be divided into n disjoint groups

so that the ratio of the diameters of any two triangles (resp. interior edges) in(5.4)



A POSTERIORI ANALYSIS FOR THE OBSTACLE PROBLEM OF KIRCHHOFF PLATES 11

the same group is bounded above by a constant τ ≥ 1.

Remark 5.2. Let Th be obtained from an initial triangulation T∗ by a refinement process that
preserves the minimum angle condition. If we separate the triangles in Th into n disjoint
groups where two triangles belong to the same group if and only if they are generated by
the same number of subdivisions from T∗, then condition (5.4) is satisfied by this n. In other
words, we can take n to be the number of distinct generations that appear in Th.

Theorem 5.3. Under assumption (5.4), there exists a positive constant C depending only
on τ , k and the shape regularity of Th such that

(5.5) ηh ≤ C
(√

σ‖u− uh‖h +
√
n‖λ− λh‖H−2(Ω) + Osc(f ; Th)

)
.

Proof. We have a trivial estimate∑
e∈Eh

η2
e,1 ≤ C

∑
e∈Eh

σ2

|e|

∥∥∥∥[[∂(u− uh)
∂n

]]∥∥∥∥2

L2(e)

.

For the estimate involving ηT , we first write Th as the disjoint union Th,1 ∪ · · · ∪ Th,n so
that the ratio of the diameters of any two triangles in Th,j is bounded by τ . For 1 ≤ j ≤ n,
the subdomain Ωj is the interior of ∪T∈Th,j T̄ .

For any T ∈ Th,j, let zT be the bubble function in [9, Section 5.3.2] associated with T and
we define zj =

∑
T∈Th,j zT ∈ H

2
0 (Ωj). It follows from [9, (5.16)], (5.1) and a standard inverse

estimate that

‖f̄T −∆2uh‖2
L2(T ) ≤ C

∫
T

(f̄T −∆2uh)zT dx

≤ C
([
h−2

T |u− uh|H2(T ) + ‖f − f̄T‖L2(T )

]
‖zT‖L2(T ) −

∫
T

zT d(λ− λh)
)

and hence∑
T∈Th,j

‖f̄T −∆2uh‖2
L2(T ) ≤ C

( ∑
T∈Th,j

[
h−2

T |u− uh|H2(T ) + ‖f − f̄T‖L2(T )

]
‖zT‖L2(T )

−
∫

Ωj

zj d(λ− λh)
)

≤ C
[( ∑

T∈Th,j

[
h−4

T |u− uh|2H2(T ) + ‖f − f̄T‖2
L2(T )

]) 1
2
( ∑
T∈Th,j

‖zT‖2
L2(T )

) 1
2

+ ‖λ− λh‖H−2(Ωj)

( ∑
T∈Th,j

h−4
T ‖zT‖2

L2(T )

) 1
2
]

by a standard inverse estimate.
Therefore we have∑

T∈Th,j

h4
T‖f̄ −∆2uh‖2

L2(T ) ≤ C
( ∑
T∈Th,j

[
h4

T‖f − f̄‖2
L2(T ) + |u− uh|2H2(T )

]
(5.6)
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+ ‖λ− λh‖2
H−2(Ωj)

)
because (cf. [9, (5.16)])

‖zT‖L2(T ) ≈ ‖f̄ −∆2uh‖L2(T )

and the diameters hT are comparable for T ∈ Th,j.
It follows from (5.6) that∑

T∈Th

η2
T =

∑
T∈Th

h4
T‖f −∆2uh‖2

L2(T )

≤
n∑
j=1

∑
T∈Th,j

2h4
T

[
‖f̄T −∆2uh‖L2(T ) + ‖f − f̄T‖L2(T )

]2
≤ C

n∑
j=1

( ∑
T∈Th,j

[
h4

T‖f − f̄T‖2
L2(T ) + |u− uh|2H2(T )

]
+ ‖λ− λh‖2

H−2(Ωj)

)
≤ C

(
Osc(f ; Th)2 +

∑
T∈Th

|u− uh|2H2(T ) + n‖λ− λh‖2
H−2(Ω)

)
,

where we have also used the trivial estimate ‖λ− λh‖H−2(Ωj) ≤ ‖λ− λh‖H−2(Ω).
The estimates for ηe,2 and ηe,3 can be established by using (5.2), (5.3) and results in [9,

Sections 5.3.3 and 5.3.4]. Their derivations are similar to the derivation for ηT and hence are
omitted. �

6. An Adaptive Algorithm

In view of the efficiency estimates in Section 5, we will use ηh from (3.2) as the error
indicator in the adaptive loop

Solve −→ Estimate −→ Mark −→ Refine

to define an adaptive algorithm for the C0 interior penalty methods for (1.1)–(1.3).
In the step Solve, we compute the solution of the discrete obstacle problem (2.1) by a

primal-dual active set method [4, 33]. In the step Estimate, we compute ηe,1, ηe,2, ηe,3 and ηT

defined in (3.3)–(3.6). In the step Mark, we use the Dörfler marking strategy [25] to mark a
minimum number of triangles and edges whose contributions exceed θη2

h for some θ ∈ (0, 1).
In the step Refine, we refine the marked triangles and edges followed by a closure algorithm
that preserves the conformity of the triangulation.

In the adaptive setting the subscript h will be replaced by the subscript `, where ` =
0, 1, . . . denotes the level of refinements. The adaptive algorithm generates a sequence of
triangulations T` of Ω, a sequence of solutions u` ∈ V` of the discrete obstacle problems, and
a sequence of error indicators η`.
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According to Theorem 4.2, we can use the following result to monitor the asymptotic
convergence rate of the adaptive algorithm.

Lemma 6.1. Suppose η` = O(N−γ` ), where N` is the number of degrees of freedom (dof) at
the refinement level `. Then we have

(6.1) ‖u− u`‖` + ‖λ− λ`‖H−2(Ω) = O(N−γ` ),

provided that

Q`,1 =

√
max
T∈T`

hT

∑
e∈ẼT

|e|−1/2‖[[∂u`/∂n]]‖L2(e) = O(N−γ` ),(6.2)

Q`,2 = ‖(ψ − u`)+‖
1
2

L∞(Ω) = O(N−γ` ).(6.3)

In particular, the estimate (6.1) holds if Q`,1 and Q`,2 are dominated by η`.

Note that ‖λ − λh‖H−2(Ω) is not computable. However, we can test the convergence of
‖λ− λh‖H−2(Ω) indirectly as follows. Let φ ∈ C∞c (Ω) be equal to 1 on the supports of λ and
the λ`’s. Then we have

(6.4) λ(Ω)− λ`(Ω) =

∫
Ω

φ d(λ− λ`) ≤ |φ|H2(Ω)‖λ− λ`‖H−2(Ω),

which implies

λ`(Ω)− λ`+1(Ω) = (λ`(Ω)− λ(Ω)) + (λ(Ω)− λ`+1(Ω))(6.5)

≤ |φ|H2(Ω)

(
‖λ− λ`‖H−2(Ω) + ‖λ− λ`+1‖H−2(Ω)

)
.

Let Λ` be defined by

(6.6) Λ` = |(λ`(Ω)− λ`+1(Ω))|.
The following result is an immediate consequence of Lemma 6.1 and (6.5).

Lemma 6.2. Suppose η` = O(N−γ` ), where N` is the number of dof at the refinement level
`. Then we have

Λ` = O(N−γ` ),

provided that (6.2) and (6.3) are valid.

Remark 6.3. In view of (6.4), we can also replace λ(Ω) by λ`(Ω) in (4.7) to obtain a true a
posteriori error estimate that is asymptotically reliable under the assumptions of Lemma 6.1.

7. Numerical Experiments

In this section we report numerical results that demonstrate the estimate (4.7) and illus-
trate the performance of the adaptive algorithm for quadratic and cubic C0 interior penalty
methods. We choose the penalty parameter σ to be 6 (resp. 18) for the quadratic (resp.
cubic) C0 interior penalty method. We also take θ to be 0.5 in the Dörfler marking strategy.
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We will consider three examples. The first one concerns a problem on the unit square with
known exact solution. The second one is about a problem on a L-shaped domain with a two
dimensional coincidence set (where u = ψ) that has a fairly smooth boundary. The third
example is also about a problem on a L-shaped domain but with a coincidence set that is
one dimensional. For the second and third examples where the exact solution is not known,
we estimate the error ‖u−u`‖` by using a reference solution computed on the mesh obtained
by a uniform refinement of the last mesh generated by the refinement procedure.

In each of the experiments for the adaptive algorithm, we will present figures that display
the convergence histories for ‖u − u`‖` and η`, and for the quantities Q`,1 and Q`,2 defined
in (6.2) and (6.3). We also present tables that contain numerical results for the quantity Λ`

defined in (6.6) and examples of adaptively generated meshes.

Example 1. In this example we consider an obstacle problem on the unit square Ω =
(−0.5, 0.5)2 from [15, Example 1] with f = 0, ψ = 1 − |x|2 and nonhomogeneous boundary
conditions, whose exact solution is given by

(7.1) u(x) =

{
C1|x|2 ln(|x|) + C2|x|2 + C3 ln(|x|) + C4 r0 < |x|

1− |x|2 |x| ≤ r0

,

where r0 ≈ 0.18134453, C1 ≈ 0.52504063, C2 ≈ −0.62860905, C3 ≈ 0.017266401 and C4 ≈
1.0467463.

For this example the coincidence set is the disc centered at the origin with radius r0 whose
boundary is the free boundary, and we have λ(Ω) = 8πC1 ≈ 13.1957.

Due to the nonhomogeneous boundary conditions, we modify the discrete obstacle problem
(cf. [15]) to find

uh = argmin
v∈Kh

[1

2
ah(v, v)− F (v)

]
,

where Kh = {v ∈ Vh : v − Πhu ∈ H1
0 (Ω), v(p) ≥ ψ(p) ∀ p ∈ Vh},

F (v) = (f, v) +
∑
e∈Ebh

∫
e

({{∂2v

∂n2

}}
+

σ

|e|

[[∂v
∂n

]]) [[∂u
∂n

]]
ds,

and Ebh is the set of the edges of Th that are on the boundary of Ω. We also modify the
residual based error estimator:

ηh =
(∑
e∈Eih

η2
e,1 +

∑
e∈Eih

(η2
e,2 + η2

e,3) +
∑
T∈Th

η2
T +

∑
e∈Ebh

σ2|e|−1‖[[∂(uh − u)/∂n]]‖2
L2(e)

) 1
2
.

In the first experiment we solve the discrete problem with the P2 element on uniform
meshes and compute the quantity

Qh = C
(
ηh + λ(Ω)

1
2

√
max
T∈Th

hT

∑
e∈ẼT

|e|−1/2‖[[∂uh/∂n]]‖L2(e)

)
(7.2)
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+ λ(Ω)
1
2‖(ψ − uh)+‖

1
2

L∞(Ω)

that appears on the right-hand side of (4.7) with C = 0.29 and λ(Ω) = 13.196. The results
for ‖u − uh‖h/Qh (cf. Table 7.1) clearly demonstrate the estimate (4.7). For comparison
we have also computed ‖u − uh‖h/Qh where λ(Ω) is replaced by λh(Ω) and with the same
constant C = 0.29. The results are almost identical to those in Table 7.1.

h 2−1 2−2 2−3 2−4 2−5 2−6 2−7 2−8 2−9 2−10

‖u− uh‖h/Qh 0.53 0.51 0.56 0.63 0.67 0.73 0.78 0.85 0.91 1.00

Table 7.1. Numerical results for the estimate (4.7) for Example 1 with the
quadratic C0 interior penalty method on uniform meshes

In the second experiment we solve the obstacle problem with the cubic element on uniform
and adaptive meshes. We observe an optimal (resp. suboptimal) convergence rate for adap-
tive (resp. uniform) meshes in Figure 7.1(a) and also the reliability of η`. Furthermore the
optimal O(N−1

` ) convergence rate of ‖u−u`‖` is justified by Figure 7.1(b) and Lemma 6.1.

102 103 104 105
Nℓ

10-4

10-3

10-2

10-1

100

1

3/4

1

1
||u− uℓ||ℓ uniform
ηℓ uniform
||u− uℓ||ℓ adaptive
ηℓ adaptive

(a)

102 103 104 105
Nℓ

10-4

10-3

10-2

10-1

100

1

1

ηℓ
Qℓ,1

Qℓ,2

(b)

Figure 7.1. Convergence histories for the cubic C0 interior penalty method
for Example 1: (a) ‖u− u`‖` and η`, and (b) η`, Q`,1 and Q`,2

According to Lemma 6.2 and Figure 7.1(b), the magnitude of Λ` should be O(N−1
` ). This

is confirmed by the results in Table 7.2, where N` increases from N0 = 49 to N21 = 378652.
It can be observed that there is a rough correlation between the oscillations of Λ`N` in
Table 7.2 and the oscillations of Q`,1 and Q`,2 in Figure 7.1 (b).

An adaptive mesh with roughly 3000 nodes is depicted in Figure 7.2 and strong refinement
near the free boundary is observed.

In the third experiment we test the efficiency estimates for the error estimator in The-
orem 5.1 and Theorem 5.3. Since the true error for the approximation of the Lagrange
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` 0 1 2 3 4 5 6 7 8 9 10
Λ`N` 19.7 202.2 73.3 27.5 108.7 246.4 12.8 56.2 71.4 39.1 23.4

` 11 12 13 14 15 16 17 18 19 20 21
Λ`N` 19.6 2.7 19.4 6.1 0.2 1.4 1.1 2.4 15.8 107.5 48.9

Table 7.2. Λ`N` for the adaptive cubic C0 interior penalty method for Example 1

Figure 7.2. Adaptive mesh for the cubic C0 interior penalty method for Example 1

multiplier in ‖ · ‖H−2(Ω) is not available, we define the efficiency index using only the error
for the approximation of the displacement:

Ieff =
error estimator

error for the displacement in ‖ · ‖h
.

To better illustrate the efficiency of the error estimator we replace f by the function fk
defined by

fk(x) =

{
0 r0 < |x|
−10k |x| ≤ r0

,

for k = 0, . . . , 6. It is easy to check that the solution uk is given by (7.1) for all k and the
Lagrange multiplier λk is given by∫

Ω

v dλk =

∫
Ω

v dλ+

∫
|x|≤r0

10kv dx,

where λ is the Lagrange multiplier for f = 0.
For each k we compute the efficiency index for the quadratic and cubic C0 interior penalty

methods on uniform and adaptive meshes. We plot the histories of Ieff in Figure 7.3 and
Figure 7.4. It is observed that as |f | increases from 1 to 106, the efficiency indices increase
(asymptotically) by a factor less than 5, which is consistent with the estimates in Theorem 5.1
and Theorem 5.3.

Remark 7.1. Since the displacement does not change when k increases from 0 to 6, it may
appear that ηT will significantly overestimate the true error for the displacement when T is
inside the coincidence set and k is large. The results in Figure 7.3 and Figure 7.4 indicate
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102 103 104 105

N�

101

102
Ieff uniform f = −1
Ieff uniform f = −10
Ieff uniform f = −102

Ieff uniform f = −103

Ieff uniform f = −104

Ieff uniform f = −105

Ieff uniform f = −106

Ieff adaptive f = −1
Ieff adaptive f = −10
Ieff adaptive f = −102

Ieff adaptive f = −103

Ieff adaptive f = −104

Ieff adaptive f = −105

Ieff adaptive f = −106

Figure 7.3. Efficiency indices for the quadratic C0 interior penalty method
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Ieff uniform f = −1
Ieff uniform f = −10
Ieff uniform f = −102

Ieff uniform f = −103

Ieff uniform f = −104

Ieff uniform f = −105

Ieff uniform f = −106

Ieff adaptive f = −1
Ieff adaptive f = −10
Ieff adaptive f = −102

Ieff adaptive f = −103

Ieff adaptive f = −104

Ieff adaptive f = −105

Ieff adaptive f = −106

Figure 7.4. Efficiency indices for the cubic C0 interior penalty method

that this is not the case. This can be explained by the fact that for a given mesh the
error for the displacement over the coincidence set also increases as k increases because the
constant in the a priori error estimate for the displacement depends on λk(Ω). Note also that
the efficiency index defined in terms of the combined errors of displacement and Lagrange
multiplier would be closer to 1.
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Example 2. In this example we consider the obstacle problem from [15, Example 4] for a
clamped plate occupying the L-shaped domain Ω = (−0.5, 0.5)2 \ [0, 0.5]2 with f = 0 and

ψ(x) = 1 −
[(x1 + 1/4)2

0.22
+

x2
2

0.352

]
. The coincidence set for this problem is presented in

Figure 7.5(a).

(a)

(b) (c)

Figure 7.5. L-shaped domain for Example 2: (a) Coincidence set for the
obstacle problem (b) Adaptive mesh with ≈ 3000 nodes for the P2 element (c)
Adaptive mesh with ≈ 2600 nodes for the P3 element

In the first experiment we solve the discrete obstacle problem with the P2 element on
uniform and adaptive meshes. An optimal (resp. suboptimal) convergence rate for adaptive
(resp. uniform) meshes and the reliability of η` are observed in Figure 7.6(a), and the

O(N
−1/2
` ) convergence rate of ‖u− u`‖` is justified by Figure 7.6(b) and Lemma 6.1.

The O(N
−1/2
` ) bound for Λ` predicted by Lemma 6.2 and Figure 7.6(b) is observed in

Table 7.3, where N` increases from 65 to 827483. There is a rough correlation between the

oscillations of Λ`N
1/2
` in Table 7.3 and the oscillations of Q`,1 and Q`,2 in Figure 7.6(b).

An adaptive mesh with roughly 3000 nodes is displayed in Figure 7.5(b), where we observe
a strong refinement near the reentrant corner. In contrast the refinement near the free
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Figure 7.6. Convergence histories for the quadratic C0 interior penalty
method for Example 2: (a) ‖u− u`‖` and η`, and (b) η`, Q`,1 and Q`,2

` 0 1 2 3 4 5 6 7 8

Λ`N
1/2
` 2714 391 637 756 1454 654 613 467 411

` 9 10 11 12 13 14 15 16

Λ`N
1/2
` 360 149 255 105 144 70 71 51

Table 7.3. Λ`N
1/2
` for the adaptive quadratic C0 interior penalty method for Example 2

boundary is mild. This is due to the fact that away from the reentrant corner the solution
belongs to H3 (cf. [27, 5]) and we are using the P2 element.

In the second experiment we solve the obstacle problem with the P3 element on uniform and
adaptive meshes. We observe an optimal (resp. suboptimal) convergence rate for adaptive
(resp. uniform) meshes in Figure 7.7(a) and that η` is reliable in both cases. Moreover the
O(N−1

` ) convergence rate of ‖u− u`‖` is justified by Figure 7.7(b) and Lemma 6.1.
The results for Λ` are reported in Table 7.4, where the O(N−1

` ) bound for Λ` predicted
by Lemma 6.2 and Figure 7.7(b) can be observed. Here N` increases from N0 = 133 to
N23 = 489169. Note that there are large oscillations at the beginning before the coincidence
has been captured by the adaptive mesh. There is also a rough correlation between the
oscillations of Λ`N` in Table 7.4 and the oscillations of Q`,1 and Q`,2 in Figure 7.7(b).

An adaptive mesh with roughly 2600 nodes is displayed in Figure 7.5(c), where we observe
strong refinement near both the reentrant corner and the free boundary.

Example 3. In this example we consider the obstacle problem on the L-shaped domain
Ω = (−0.5, 0.5)2 \ [0, 0.5]2 with

ψ(x) = −[sin(2π(x1 + 0.5)(x2 + 0.5)) sin(4π(x1 − 0.5)(x2 − 0.5))]− 0.35
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Figure 7.7. Convergence histories for the cubic C0 interior penalty method
for Example 2: (a) ‖u− u`‖` and η`, and (b) η`, Q`,1 and Q`,2

` 0 1 2 3 4 5 6 7
Λ`N` 32355 7581 209 6308 967 14313 6745 6641

` 8 9 10 11 12 13 14 15
Λ`N` 10358 1563 3239 2923 598 18 850 42

` 16 17 18 19 20 20 21 22
Λ`N` 139 32 22 343 176 705 999 5972

Table 7.4. Λ`N` for the adaptive cubic C0 interior penalty method for Example 2

and

f(x) =


103
(

1
2
e(x1+0.25)2+(x2+0.25)2

)
x1 ≤ 0, x2 > 0

0 x1 ≤ 0, x2 ≤ 0

103
(

1
2

+ [(x1 − 0.25)2 + (x2 + 0.25)2]3/2
)

x1 ≥ 0, x2 ≤ 0

.

For this example, the coincidence set is one dimensional (cf. Figure 7.8(a)).
In the first experiment we solve the obstacle problem with the P2 element on uniform

and adaptive meshes. We observe an optimal (resp. suboptimal) convergence rate for adap-

tive (resp. uniform) meshes in Figure 7.9(a) and also the reliability of η`. The O(N
−1/2
` )

convergence rate of ‖u− u`‖` is confirmed by Figure 7.9(b) and Lemma 6.1.

The results in Table 7.5 agree with the O(N
−1/2
` ) bound for Λ` that follows from Lemma 6.2

and Figure 7.9(b). The number of dof increases from N0 = 65 to N12 = 134096. Again there

is a rough correlation between the oscillations of Λ`N
1/2
` in Table 7.5 and the oscillations of

Q`,1 and Q`,2 in Figure 7.9(b).
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(a)

(b) (c)

Figure 7.8. L-shaped domain for Example 3: (a) Coincidence set for the
obstacle problem (b) Adaptive mesh with 11062 dof for the P2 element (c)
Adaptive mesh with 12841 dof for the P3 element

` 0 1 2 3 4 5 6 7 8 9 10 11 12

Λ`N
1/2
` 1151 501 92 201 120 419 201 98 75 34 76 40 36

Table 7.5. Λ`N
1/2
` for the adaptive quadratic C0 interior penalty method for Example 3

An adaptive mesh with 11062 dof is depicted in Figure 7.8(b), where we observe that the
only strong refinement is around the reentrant corner. This is again due to the fact that
away from the reentrant corner the solution belongs to H3 and we are using the P2 element.

In the second experiment we solve the obstacle problem with the P3 element on uniform and
adaptive meshes. We observe an optimal (resp. suboptimal) convergence rate for adaptive
(resp. uniform) meshes in Figure 7.10(a) and also the reliability of η`. Furthermore the
O(N−1

` ) convergence rate for ‖u− u`‖` is justified by Figure 7.9(b) and Lemma 6.1.
The results in Table 7.6 agree with the O(N−1

` ) bound for Λ` predicted by Lemma 6.2 and
Figure 7.10(b). Here N` increases from N0 = 133 to N15 = 88699. The oscillations of Λ`N`
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Figure 7.9. Convergence histories for the quadratic C0 interior penalty
method for Example 3: (a) ‖u− u`‖` and η`, and (b) η`, Q`,1 and Q`,2
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Figure 7.10. Convergence histories for the cubic C0 interior penalty method
for Example 3: (a) ‖u− u`‖` and η`, and (b) η`, Q`,1 and Q`,2

in Table 7.6 also roughly correlate with the oscillations of Q`,1 and Q`,2 in Figure 7.10 (b).
The larger values of Λ`N` are due to the fact that λ(Ω) ≈ 471 is larger.

` 0 1 2 3 4 5 6 7
Λ`N` 11724 1782 1842 32888 1046 6439 2974 2588

` 8 9 10 11 12 13 14 15
Λ`N` 2781 25657 2215 3805 5177 2030 1092 2355

Table 7.6. Λ`N` for the adaptive cubic C0 interior penalty method for Example 3
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An adaptive mesh with 12841 dof is depicted in Figure 7.8(c), where we observe strong
refinement around the reentrant corner and the coincidence set.

8. Conclusions

We have developed a simple a posteriori error analysis of C0 interior penalty methods for
the displacement obstacle problem of clamped Kirchhoff plates by taking advantage of the
fact that the Lagrange multiplier for the discrete problem can be represented naturally as
the sum of Dirac point measures supported at the vertices of the triangulation. Numerical
results indicate that the adaptive algorithm based on a standard a posteriori error estimator
originally developed for boundary value problems also performs optimally for quadratic and
cubic C0 interior penalty methods for obstacle problems. However, the theoretical justifica-
tion of convergence and optimality for adaptive C0 interior penalty methods remains open
even in the case when the obstacle is absent.

The results in this paper can be extended to classical nonconforming finite element meth-
ods such as the Morley finite element method, where the a priori analysis for the obstacle
problem has been carried out in [16], and reliable and efficient residual based error estima-
tors for the boundary value problem can be found in [3, 35]. They can also be extended
to the displacement obstacle problem of the biharmonic equation with the boundary condi-
tions of simply supported plates or the Cahn-Hilliard type. In the case where Ω is convex,
such problems are related to distributed elliptic optimal control problems with pointwise
state constraints [37, 28, 18, 19] and can also be considered in three dimensional domains.
Adaptive finite element methods for these problems based on the approach in this paper are
ongoing projects.
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