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Abstract

In this paper we present the results of the numerical simulation of a three-dimensional
current-driven sediment transport process. In detail, the temporal evolution of a barcha-
noid dune is studied. Two phenomena are treated in this context. First, the three-
dimensional flow of a single phase fluid is considered. Second, the interaction of the flow
and the sediment bed with its morphological change of the sediment surface is taken into
account. Here, we numerically solve the instationary incompressible Navier-Stokes equa-
tions. The morphological change of the sediment bed is modelled by Exner’s bed level
equation. Furthermore, the suspended material is treated as a sediment concentration
and modelled by an advection-diffusion equation. Both models are discretised and ex-
plicitly coupled to the discrete fluid model. The typical sedimentary processes and the
sedimentary form of a barchanoid dune are well captured by our numerical simulation.

Keywords: Numerical Simulation, Sediment Transport, Barchanoid Dune, CFD

1. Introduction

Sediment transport processes and their effects on the morphology of the sediment bed
are significant issues in hydraulic engineering. Usually, the physical processes of the
formation of dunes and other sedimentary forms are studied in laboratory flumes or in
field experiments. These time-intensive and costly studies are not always easy to conduct.
At this point, a numerical simulation can help to reduce costs and to provide more insight
and therefore a better understanding of the relevant flow and transport phenomena.
There are different classifications of dunes in the aeolian regime as well as in the fluvial
regime. For example, linear dunes, crescent shaped dunes, e.g. parabolic or barchanoid
dunes, and star shaped dunes demonstrate the large diversity of dune forms. Here, the
availability of sand, its consistency, the predominant wind situation and many other
factors determine the dune type, compare Goudie (2014). In general, the sediment is
transported in the bed load layer over the dune body upwards the luvslope. When the
sand particles reach the top end of the dune, the particles slide down the leeslope, which
is limited by the angle of repose. In case of a barchanoid dune, the transport velocities
are higher near the lateral ends of the dune body. This fact leads to a faster transport
of the sand at the sides of the dune body and to the development of sand horns, which
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are transported further downstream. The resulting dune body and the involved processes
are strictly three-dimensional. We present a numerical approach for their simulation and
discuss the obtained results.
The remainder of this paper is organised as follows. In section two, we describe the full
fluid-sediment-model, which consists of the Navier-Stokes equations, a suspension load
model, and Exner’s bed level equation. In section three, we shortly discuss our numerical
discretisation and its properties. In section four, we present the results of our numerical
simulation for the temporal evolution of a barchanoid dune. A conclusion is given in
section five.

2. Model: Navier–Stokes & Sediment model

In the following the used model is presented. It consists of a three-dimensional fluid
model and the sediment equations, which realise the suspension load transport and the
morphological change of the sediment surface. Parts of the presented models were pre-
viously studied in the literature, e.g. Giri and Shimizu (2006), Kubatko et al. (2006),
Kubatko and Westerink (2007), Khosronejad et al. (2012), Nabi et al. (2013), and Doré
et al. (2016). Some authors already combined a two or three dimensional fluid solver
with a sediment model for the morphological change (Kubatko et al. (2006), Kubatko and
Westerink (2007), Burkow and Griebel (2016)) or the suspension load (Campos (2001),
Nabi et al. (2013)).
In this chapter, we introduce a novel full three dimensional coupling algorithm for all
three models.

2.1. Navier–Stokes equations

Due to the complex three-dimensional character of sedimentary bedforms and especially
dunes, it is necessary to apply a full three-dimensional model. Here, the instationary
incompressible Navier-Stokes equations in their dimensionless form read as

∂u

∂t
+∇ · (u⊗ u) =

1

Fr
g −∇p+

1

Re
∆u, (1a)

∇ · u = 0 on Ωf ∈ R3, (1b)

where u is the velocity, p is the pressure, g are the volume forces, and Ωf denotes the
domain of the fluid body. Moreover

Re =
u∞ · l
ν

(2)

denotes the Reynolds number and

Fr =
u∞√
g · l

(3)

denotes the Froude number. Both, Re as well as Fr, are dimensionless numbers which
characterise the flow conditions. The characteristic length and velocity are denoted by l
and u∞, respectively. As usual, ν stands for the kinematic viscosity of the fluid.
In this study, we solely concentrate on the realisation of a fully coupled fluid sediment
model. A qualitative comparison with an experimental work would require a turbulence
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model. But there are several issues why there is no turbulence model applied in this paper.
First, the suspended material would affect the turbulence structures. As far as we know
no reliable model to reproduce this effect in a numerical simulation was available in the
literature. Second, a turbulence model would need a wall model for the velocities, equally
the suspension load is not regarded in the standard wall models. Third, the diffusion
constant K would change in a turbulent regime. Here, a suitable model for the diffusion
coefficient K was not available in the literature. All this considerations do not lead to
a suitable choice of a turbulence approach and the related coefficients for the models.
Thus, a direct numerical simulation is employed for the fluid model and further modeling
approaches, e.g. turbulence models, are not taken into account.

2.2. Sediment surface and the Exner equation
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Figure 1: The sediment surface is described for each time point t by its height h(x1, x3), i.e. the distance
from a underlying plane P = (x1, x3). Thus, the fluid domain Ωf is bounded by h(x1, x3) from below.

The Navier–Stokes equations are solved on a time-dependent fluid domain Ωf . The bot-
tom of this domain is bounded for each time point by its sediment surface h(x1, x3).
This sediment surface h describes the height of the underlying sediment with respect to
a reference plane P = (x1, x3), compare Figure 1. To model the temporal change of the
sediment surface h, we use the bed level equation postulated by Exner (1925), i.e.

∂h

∂t
+∇(x1,x3) · qs(τ(u)) = 0 on P, (4a)

∂h

∂n
= 0 on ΓP , (4b)

where qs(τ(u)) is the transport rate function of the sediment and the gradient operator
with respect to (x1, x3) is denoted by ∇(x1,x3). It depends on the shear stress τ , which is a
function of the fluid velocity u, where τ(u) is here just needed on the sediment surface. In
the Neumann boundary condition (4b) the normal is denoted by n. The Exner equation
states that the net balance between gain and loss of mass in a certain control volume
results in a change of the sediment height h. It was sucessfully used in several studies
to investigate the evolution of geomorphological change, e.g. Parker (2004), Paola and
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Voller (2005), Kubatko et al. (2006), Kubatko and Westerink (2007). The presented
model results from the conservation of mass and therefore from first principles. Moreover,
Coleman and Nikora (2009) used a statistical averaging process of a granular bed over
time and space to derive the Exner equation.
The sediment surface determined by h denotes implicitly the fluid domain Ωf . Thus, a
change in h results in a change of the fluid domain Ωf . Several models for the shear stress
τ : R3 7→ R2 and the transport rate function qs : R2 7→ R2 are available in the literature,
see Chanson (1999). In the following, we choose the empirically derived models (5a) and
(5b)

qs =
√

(s− 1)gd3
50 ·
(

4τ(u)

ρf (s− 1)gd50

− τc

) 3
2

, (5a)

τ(u) =
1

8
ρs f |u|2, (5b)

where ρs denotes the sediment density, d50 is the median grain size, τc is the dimensionless
critical shear stress and s = ρs/ρf with ρf being the fluid density. The friction parameter
is set according to Chanson (1999) as

f =
64

Re
(6)

which is valid for flows with Re < 2000.
Chanson (1999) proposed formula (5b) as a modified version of the transport formula
from Meyer-Peter and Müller (1948), which has been validated by numerous experimental
studies. Wong and Parker (2006) gave a nice summary and analysis of (5a).

2.3. Suspension load model

The suspension load comprises all material which is transported in the whole fluid. An
advection-diffusion model is used to describe the transport of the suspended material.
Since only very fine grains are transported, the common approach is to model the entrained
material as a concentration c of mass in the fluid domain. Similar to the bed level
equation, the advection-diffusion model for the suspended material can be derived from
the conservation of mass and momentum. Malcherek (2004) presented a suspension model
as

∂c

∂t
+ u · ∇c+ wg

∂c

∂x2

= K∆c c(x, t) : Ωf × [0 : T ] −→ R, (7a)

∂c

∂n
= 0 x ∈ ΓΩf

, (7b)

c = cref x ∈ Γ, (7c)

where the fluid velocity is denoted by u, the sediment surface is given by

Ωs := {(x1, h(x1, x3), x3) | (x1, x3) ∈ P} , (8)

and the diffusion coefficient is described by K. Here, the values for K are typically very
small. Officer (1982) deduced values of the size 10−7m2/s from experimental studies.
To take the gravitational transport of particles into account a velocity wg is added as
an additional advection velocity component. On the one hand, the Neumann boundary
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condition in equation (7b) models a closed boundary of the fluid domain Ωf . On the other
hand, the boundary condition at the sediment surface Ωs reflects the idea that the layer
next to the sediment body has a concentration cref which is the maximum concentration
near Ωs. This model and similar forms were used to model the transport and the diffusion
of the suspended material in various applications and experimental approaches, compare
Campos (2001), Marek (2001), Wu et al. (2005), Yoon and Kang (2005), Sedimentation
& River Hydraulics Group (2006), Kantoush et al. (2008), Razmi et al. (2009), and James
et al. (2010).

2.4. Gravitational component

In the advection-diffusion equation (7a) the settling of single particles and its impact on
the transport is modelled by a velocity wg which results from gravitational forces. Here,
a particle is modelled as a falling sphere in a fluid. With Stokes’ law as stated in Daintith
(2009), a terminal velocity for fine spherical particles can be calculated from

wg =
(ρs − ρf )/ρfgd2

s

C1ν
, (9)

where ρf and ρs denote the material densities. The gravity, the viscosity, and the grain
size are denoted by g, ν, and ds. The theoretical constant C1 = 18 is only valid for perfect
spheres. Additionally, Stokes’ law is only valid in the low Reynolds number regime, i.e.
Re ≤ 1. Therefore, many authors developed experimental formulas for more general
shapes, roughnesses, and velocity regimes, see e.g. Hallermeier (1981), Dietrich (1982),
Van Rijn (1993), Cheng (1997), and Ferguson and Church (2004). In the following, a
semi-empirical formula presented by Ferguson and Church (2004) is used which reads as

wg =
(ρs − ρf )/ρf · g · d2

s

C1ν +
√

0.75 · C2 · (ρs − ρf )/ρf · g · d3
s

. (10)

This model is an extension of Stokes’ law and was fitted to real experimental data from
Raudkivi (1998) and Hallermeier (1981). The second constant C2 is an asymptotic value
for the drag coefficient of the particle. Furthermore, experiments showed that C2 can
range from 0.4 to 1.2 for shapes varying from spherical to naturally shaped particles.
Equation (10) was tested for different combinations of both constants and in regimes for
a higher Reynolds number, i.e. Re ≥ 1000. For natural sand grains Ferguson and Church
(2004) suggested C1 = 18 and C2 = 1.0 but also hint at a maximum limit of C1 = 24 and
C2 = 1.2 for extremely angular grains. With this approach the gravitational velocity is
constant in the whole fluid domain and the term ∂(wgc)

∂x2
reduces to wg

∂c
∂x2

as presented in
equation (7a).

2.5. Interchange between bed load and suspension load

In the complete sediment transport model the masses have to be conserved during the
interchange between the bed load and the suspension load depending on the velocity.
This interchange is modelled as a source term, i.e. a sink term, in the bed level model.
All details of these terms will be discussed in the following. For the advection-diffusion
equation (7a) the boundary conditions have to be thus modified properly.
The concept of a maximum concentration near the boundary is valid under the assumption
that only the surplus mass Qb can settle down from the fluid and this consequently results
in a height difference hset of the bedform. Vice versa the reference concentration prevails
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as long as the sediment bed Ωs is erodible. Thus, the Dirichlet boundary condition in
equation (7c) results. Furthermore, it is common to add a source term in the concentration
model for the mass flux Sb with the velocity vn in normal direction. Consequently, the
source and sink term for the model (7a) reads as

c = cref +
Sb
|vn|
−Qb x ∈ Γ. (11a)

The source term Sb/|vn| is motivated by calculating the mass entrained into the suspension
load by a velocity vn normal to the boundary Γ. A modified approach for the flux from the
sediment bed into the concentration model proposed by Malcherek (2004) is used here,
which reads as

Sb = M ·max(τ − τc, 0)
τ

(ρs − ρf )gd
(12)

where M = 2.2 · 10−3s/m denotes an empirical material parameter. Therefore, a mass
which is set as an source term in the suspension model causes a height loss in the bed
level model. This source term is only active if the shear stress τ is bigger than the critical
shear stress τc. The reverse direction is modelled from the idea that a maximum reference
concentration cref has adjusted in the layer near the boundary. Consequently, the sink
term Qb for the suspension model is defined as

Qb = max(c(x, t)− cref , 0). (13)

If the difference between the ambient concentration c(x, t) and the reference concentration
is positive, the height difference hset for the bed level equation due to settled or entrained
sediment results from the calculation

hset = Qb · dx1 · dx2 · dx3/(ρs · dx1 · dx3) = Qb · dx2/ρs, (14)

where the control volume is calculated by dx1 · dx2 · dx3.
In summary, an advection-diffusion equation is used to model the transport of the concen-
tration of suspended material. This advection- diffusion model is equipped with Neumann
boundary conditions at the non-sediment boundaries and modified Dirichlet boundary
conditions including sink and source terms at the sediment boundary. Within this model
the interchange between both transport stages is realised and the bed load and the sus-
pension load can interact properly. An empirically derived diffusion coefficient K, the
modelling of the settling velocity wg, and the empirical mass flux Sb reflect the empiri-
cal influence in this model which has to be taken into account for the simulation of the
transport process.

2.6. Slope stability and critical angle of repose

Granular media like sand or silt have the property that unstable slopes are formed, if
piled up. This instabiltity causes the surplus masses to slide down the pile until a stable
slope angle αc establishes. This characteristic critical slope angle is influenced by different
parameters, like shape, grain size, cohesion, moisture, and their interaction. This aspect
needs to be reflected in a numerical model as well. Table 1 summarises some slope angles
for different sediment types collected from the literature (Julien, 1995). To take this effect
into account, we use the slope limiter algorithm presented in Burkow and Griebel (2016).
Here, an iterative scheme is used to redistribute surplus masses and to limit the angle of
the slope. In detail, if a slope angle α = arctan (‖∇h‖2) is larger than the critical angle
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of repose αc, the surplus mass is transferred to the neighbouring cells. Here, weights
are introduced to distribute the masses equally. For the facing neighbours in the north,
south, west, and east a weight ωn,s,w,e = 1/6 and for the diagonal neighbours ωd = 1/12
are chosen. Iterating over this scheme results in a new surface hαc , which obeys all angles,
compare Burkow and Griebel (2016).

Table 1: Selection of values for the critical angle of repose αc (Möller et al. (2002), Julien (1995)). The
large variability of the material properties and the measuring of the values under water allows only rough
estimates. This fact has to be taken into consideration when validating the numerical experiments.

Size Properties Angle of repose
Sand dry to wet 20−−45◦

Gravel roundness 30−−50◦

Silt & clay shape and roughness 20−−60◦

2.7. Full fluid sediment model

In summary, all aspects of the fluid sediment interaction are now covered. The full model
reads as

∂u

∂t
+∇ · (u⊗ u) =

1

Fr
g̃ −∇p+

1

Re
∆u on Ωf ∈ R3, (15a)

∇ · u = 0 on Ωf ∈ R3, (15b)

∂h

∂t
= −∇ · qs(τ(u)) +Qb + Sb on P (15c)

∂c

∂t
+ u · ∇c+wg

∂c

∂x2

−K∆c = 0 on Ωf . (15d)

The aforementioned boundary conditions (12) and (13) are added to this model. Further-
more, a buoyancy term formulation is chosen in the momentum equation. By multiplying
the gravity force terms g in the Navier Stokes equations with (ρf + c)/ρf a Boussinesq
approximation for a buoyancy term

g̃ =
ρf + c

ρf
g. (16)

is incorporated into the Navier Stokes equations. This approximation was previously intro-
duced by Boussinesq (1903) for temperature-driven currents which resulted from density
differences due to temperature differences. The Boussinesq approximation assumes only
small differences between the density ρ̃ and the original density ρf , which is also a valid
assumption for the suspended material.

3. Numerical aspects: Discretisation and Solver

For the numerical treatment of (15a) and (15b), we employ the three-dimensional paral-
lel Navier-Stokes solver NaSt3D, see Griebel et al. (1998), with its recent improvements.
NaSt3D is under development by the Institute for Numerical Simulation at the University
of Bonn. It features finite differences schemes on staggered grids for the convective terms,
like VONOS, ENO and WENO of up to fifth order for spatial derivatives in combina-
tion with second and third order time discretisation schemes, like Adams-Bashforth and
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Runge-Kutta, compare Croce (2002). The size of the time step is adaptively determined
to fulfill a CFL condition, which is used for the whole spatial domain. Moreover, it uses
the projection approach by Chorin (1967), which reduces the equations (15a) and (15b)
in each time step to a Poisson problem. This Poisson problem is solved with a BiCG-
Stab solver. After the correction of the projected velocities with ∇p a divergence-free
velocity field is achieved, which enforces the incompressibility condition of the fluid. Do-
main decomposition with ghost cells is applied to parallelise the algorithm. For further
information see Croce (2002), Croce et al. (2009), and Adelsberger et al. (2014). Griebel
and Klitz (2013) and Griebel and Rüttgers (2014) studied the parallel performance of the
code and achieved nearly optimal scale up and speed up.

3.1. Exner’s bed level equation

The bed level equation and the transport equation are discretised on the same staggered
grid as for the Navier Stokes equations. The height h is approximated at the cell centres
and the sediment fluxes qs are situated on the faces of the cells. With this setting the
finite differences schemes from the fluid solver are easily applicable. The spatial schemes
are restricted to a two-dimensional setting. To this end, there are schemes like donor cell
(DC), SMART, QUICK, or VONOS available. Moreover, an Adams-Bashforth second
order (AB2) time stepping method is applied. For a detailed description of the applied
schemes implemented in the setting in NaSt3D compare Griebel et al. (1998) and Croce
(2002).
Whenever Ωf changes in time, we have to update the fluid domain to couple the Navier–
Stokes equations (15a) and (15b) with the Exner equation (15c) and the suspension model
(15d). Here, a loosely partitioned coupled approach is used, which couples the fluid solver
on a given fluid domain with the bed level equation. As a time step restriction for the
Adams-Bashforth scheme a CFL condition is used, such that

dt ≤ 2dx2

maxij ‖qs‖2

, (17)

where dx is the spatial grid size for an equidistant grid. This combination provides a
robust method for the bed level equation, which is second order in both, space and time,
compare Deriaz (2012). The new sediment height h is then treated by the first order
obstacle representation of NaSt3D, which is described in Griebel et al. (1998).

3.2. Suspension load model

As already mentioned in Section (2.3), the suspension load model is a modified advection-
diffusion equation with an additional settling term. For its discretisation, the techniques
from our Navier Stokes solver are again applicable. To this end, the full spectrum of
the convective schemes from NaSt3D can be used for the advection term. Moreover, the
diffusion term is discretised by the standard Laplacian for scalars. Again, the staggered
grid is employed in full three dimensions. Thus, the scalar concentration c is situated in
the cell centre, whereas the advection velocity u and the gravitational settling velocity
wg are located at the cell faces. Furthermore, the second order explicit Adams-Bashforth
scheme is applied for the time discretisation. This leads to the typical time step restriction
for an advection-diffusion equation extended by the time step induced by the gravitational
settling velocity wg, i.e.

dt = min
(
dtadv, dtdiff , dtwg

)
. (18)
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Here,

dtadv ≤
dx

maxij ‖u‖2

and dtwg ≤
dx

maxij ‖wg‖2

(19)

denote the CFL condition for the advection term and for the additional settling term,
respectively. The diffusive CFL condition with the diffusion coefficient K is denoted by

dtdiff ≤
dx2

6K
. (20)

Note that the time step restriction arising from the advection term dtadv is the same as
the CFL condition for the fluid velocity u from the Navier Stokes solver NaSt3D, compare
Griebel et al. (1998).

3.3. Algorithm and loosely coupling

Altogether, the coupling in each time step is realised as follows. First, the Navier-Stokes
equations are solved on a given domain Ωf . Second the computed velocity u, the shear
stress, the transport, and the new sediment height hαc are computed. Simultaneously, the
advection-diffusion equation model is solved to compute the new suspension concentration
c. Both, the sediment height and the concentration are used in the next time to determine
the new domain Ωf and the buoyancy term g̃ in the Navier-Stokes equations. Finally, the
sink and the source term for the Exner model as well as for the advection-diffusion model
are computed for the next time step.
Overall, the loosely partitioned coupling algorithm reads as follows:

1. Computation of fluid properties (NaSt3D) (15a, 15b)

2. Computation of the shear stress τ and transport qs
3. Solution of Exner’s equation (15c)

4. Solution of the suspension load model (15d)

5. Limiting the local slope angles iteratively

6. Mapping the new hαc to geometry and adapting computational grid

NaSt3D

Exner

Suspension

tn tn+1 tn+2

u u

Ωf

Sb

Qbg̃

u u

Ωf

Sb

Qbg̃

Figure 2: Flow chart of our loosely partitioned coupling algorithm in each time step. The velocities from
NaSt3D are used to compute the new sediment height h, which, after correcting to hαc due to the slope
limiter iteration, determines the new Ωf and therefore the new fluid domain.

A schematic view of the overall coupling is presented in Figure 2. Numerical tests con-
cerning the numerical convergence for the sediment surface in this setting were previously
performed in Burkow and Griebel (2016). There, a first order convergence for the sediment
surface h was observed.
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Table 2: Computational parameters and setting for the numerical simulation of a barchanoid dune presented
in Figure 3.

NaSt3D
Dimensions Tfin Re PoissonSolver itmax ε

20.0× 5.0× 10.0 250 1000 BiCGStab 1000 10−8

Exner + Suspension
Transp.Formula τc d50 ds αc K
Meyer-Peter-M. 0.047 2mm 0.01mm 40◦ 0

NaSt3D Exner Suspension
spatial temporal spatial temporal spatial temporal

QUICK AB2 DC AB2 DC AB2

4. Numerical results: The temporal evolution of a Barchanoid dune

In the following, the full model is applied to the simulation of a barchanoid dune evolving
from a symmetric pile of sand.

4.1. Experimental setting

The basic setting for this example is to use a channel with 20m × 5m × 10m and a
spatial resolution of 200 × 50 × 100, which results in a spatial grid size of dx = 0.1m.
On the left inflow face a velocity of u = 5m/s is set. A backward facing step is placed
at the inflow to avoid an unintended and uncontrollable sediment movement during the
initial phase of the simulation. At the right face a Neumann condition is employed. All
other walls are modelled as frictionless surfaces by imposing slip boundary conditions. We
assume fluid viscosity of ν = 10−5m2/s. For theinitial configuration a sand layer of 1m
is chosen for the sediment surface and a laterally extended conical pile of sand is placed
on top of it. Here, the pile acts as the bed base material from which the dune develops.
The top of this pile reaches up to 3.35m. Before the start of the simulation the slope
limiter algorithm is applied to ensure that the slope angle of the pile is below the critical
angle of repose (αc = 40◦). The particle size for the bed load transport is d50 = 0.002m
and for the suspension load ds = 0.00001m. For the bed load transport the Meyer-Peter
and Müller formula from Section (2.2) is used with τc = 0.047. Furthermore, a reference
concentration in the suspension load model of cref = 2.0 ·10−5kg/l is chosen. In this large
scale example, the diffusion of the suspension load is neglected, i.e. K = 0, and thus
solely transport is considered. To compute the Reynolds Number Re a reference length
of l = 0.002 is used. This corresponds to the particle size d50. For the linear solver a
BiCGStab is chosen, which iterates until the residual is less than ε = 10−8. The employed
parameters and further information on the initial data and our numerical method are given
in Table 2 and in Figure 3. For the computation of our numerical results, we used a HPC
cluster, which has 5 Dell PowerEdge R910 computing nodes with 160 Intel Xeon X7560
2.226 GHz CPU cores and a main memory of 2560 GB in total, i.e. one computing node
contains 32 CPU cores and has 512 GB main memory. Moreover a Mellanox ConnectX
Infiniband realises the MPI communication. A Linpack performance test of the system
resulted in 1349 GFlops/s with a parallel efficiency of 93%. The computational time for
our experiment was 144h.

4.2. Evaluation and discussion of the numerical result

In Figure 4 the result of our simulation after 250 s is presented. The morphology of a
barchanoid dune is obtained, i.e. the whole dune body is crescent-shaped and the luvside
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Figure 3: The starting configuration for the simulation of the development of the barchanoid dune. Flow
direction is from the left to the right and a constant velocity u = 5m/s is set at the left wall. In the
middle of the channel there is an initial laterally elongated sediment pile which is transported over time
and forms the dune in the channel (20m× 5m× 10m).

of the body is sloping upwards, whereas the leeside is dominated by the angle of repose.
In detail, the flow transports the particles over the dune body. After reaching the crest
of the dune, the particles slide down the lee slope and form the specific angle of repose.
Additionally, the lateral parts of the dune body, the horns, advance faster than the inner
parts, which results in the typical crescent shape with preceding dune horns. Due to the
uniform inflow profile in this example a barchanoid dune indeed develops.
The evolution of the dune from the initial pile of sand is demonstrated in Figure 5. Here,
the transition from a pile with symmetric slopes to a crescent-shaped dune is clearly
seen. The initial forming of the lateral horns is caused by the uniform velocity profile.
A steady bed transport leads to an asymmetric cross section of the dune body with a
slightly increasing luvslope and a leeslope limited by the angle of repose. Additionally,
the asymmetric cross profile of the dune is also well recovered.
Moreover, in Figure 5 the suspension load transport over time is additionally visualised
on a cross section in the middle of the domain. Furthermore, the suspension load and the
velocities are given on this cross section. The erosion of the material from the sediment
surface and the entrainment into suspension starts at the crest of the dune. At this point
the shear stress surpasses the critical value first, and therefore the material is eroded
and transported into the fluid body. At later times the interaction of the flow with the
sediment surface and the suspended material gets more complicated and becomes multi-
layered. On the one hand, the flow forms the moving sediment surface into a barchanoid
dune. On the other hand, the erosion of the material from the surface into the suspension
load interacts with the flow by the gravitational source term coupled by the Boussinesq
approximation.
In Figure 6 we depict the recirculation zone behind the dune in detail. In this recircula-
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Figure 4: Top: Visualisation of two perspectives of the final sediment surface (250 s) with height isocon-
tours indicating equal height levels. The typical crescent shape is well reproduced. Bottom: Illustration
of the velocity field on a cross section through the middle of the domain (left). Visualisation of the
suspended material on the same cross section as for the velocities (right). Here, the recirculation zone
behind the dune can be seen.

tion zone the transport capacity is high enough and sufficiently moderate to carry some
suspended material with the flow. When the velocities are high, the suspension load is
transported away. In contrast, in zones where the velocity and the transport capacity
decrease, e.g. in the wake of the dune, the suspension load is dispensed all over the fluid,
compare Figure 5.
The movement of natural dunes and their build-up is in the temporal range of days and
weeks. Due to computational limitations we can only give a qualitative comparison of
our simulated dune prototype with real dunes. Nevertheless, this comparison confirms
the realism of our simulated results, compare Figure 7. Here, the crescent shape and the
trailing horns are well recovered. From the visualised suspension load near the dune it can
be seen that the transport processes are in good agreement with the observations from field
experiments, compare Sauermann et al. (2000), Sauermann et al. (2001), and Schwämmle
and Herrmann (2003). Especially the temporal evolution follows the observation from
field experiments. The comparison of the suspension load blasting from the crest with
that from a field example qualitatively confirms the numerical simulation.

12



Figure 5: Temporal evolution of the flow field (left) and suspension load (right) at the time steps t =
{2 s, 5 s, 25 s, 75 s, 150 s}. The visualisation of the dune surface is enhanced by isocontours for the height
in both sequences.
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Figure 6: The recirculation zone and the vortex system behind the dune at the time steps t =
{20 s, 83.5 s, 250 s}.

Figure 8 presents four cross profiles of a classical dune from Groh et al. (2009) and four
cross profiles from our numerical simulation. Both experimental assemblies start at the
beginning with a symmetric pile of sand with identical leeside and luvside slope angles.
This symmetric sand body is transformed into an asymmetric dune body with a slightly
increasing luvside and a steep leeside slope. Our simulation of a prototype dune reproduces
the formation of the asymmetric shape over time. Despite the fact that the numerical
setting is different in size and physical time compared to the experimental data, the basic
features of the real experiments are recovered and comparable. A further quantitative
direct comparison in this case is not possible due to computational limitations.
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Figure 7: Top: A qualitative comparison between a barchanoid dune from a dune field in Namibia (Flood,
undated) (left) and the simulated dune (right). Bottom: Sand blowing off a real (Destefano, 2011) (left)
and a simulated (right) dune crest.

Figure 8: Lateral view of a dune profile from an experiment conducted by (Groh et al., 2009) (top) and
our numerical simulation (bottom). In both experiments the dune evolves from an initially symmetric
pile of sand over time. The classical dune geometry is visible. The leeside is limited by the angle of
repose and the luvside increases slightly.
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Figure 9: Temporal development of the minimum and maximum sediment height in the simulation. The
maximum denotes the height of the dune crest. Kinks in the plot are caused by abrupt slope correction by
the slope limiter to ensure the angle of repose. In contrast, a constantly smooth erosion of the sediment
bed is denoted by the minimum.

Figure 9 shows the maximum and minimum height over time. In both plots a decrease is
visible. The maximum denotes the crest height of the dune. There are several kinks in
the plots with a previous slight increase in the height. This behaviour can be explained by
the sediment transported upwards the dune which slides abruptly down when the critical
angle of repose is surpassed and the slope limiter corrects the slopes.

5. Conclusion

We presented a fully coupled three-dimensional fluid sediment model for current-driven
sediment processes and applied it to the temporal evolution of a barchanoid dune from a
symmetric pile of sand. Exner’s bed level equation, the suspension load model, and the
Navier–Stokes equations were discretised with a finite difference approach on a staggered
grid. A slope limiting iterative process was used to secure the slope angles of the sediment.
We applied a donor cell scheme in space and an Adams Bashforth discretisation scheme
in time. All equations were treated explicitly in each time step with a loosely coupled
overall algorithm, which resulted in an additional CFL condition. With this algorithm,
we computed the three-dimensional evolution of a dune. Our numerical simulation re-
produced the typical transport processes which lead to a classical barchanoid dune body.
The shape, the geometry, and the vortex systems were well recovered. The transport
of the suspended material as well as the morphological changes are sufficiently resolved.
Moreover the maximum and minimum height of the sediment surface were investigated
over time. These results were qualitatively in good agreement with data in the literature.
Altogether, our new fully coupled numerical approach showed the ability to reproduce
the evolution of a dune. This promises to also simulate the complex transport processes
leading to the formation of various other bedforms in future experiments. In a compar-
ative study of numerical simulations and real experiments a turbulence approach like in
Burkow and Griebel (2016) would be a possible extension of our model.

16



6. References

Adelsberger, J., Esser, P., Griebel, M., Groß, S., Klitz, M., Rüttgers, A., 2014. 3D incom-
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