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Deutsche Zusammenfassung

Der t-Distributed Stochastic Neighbor Embedding (t-SNE)-Algorithmus wird häufig zur
Visualisierung hochdimensionaler Daten in verschiedenen Bereichen eingesetzt, darunter
Einzelzellbiologie, natürliche Sprachverarbeitung und Computer Vision. Trotz seiner weiten
Verbreitung ist das theoretische Verständnis des Algorithmus vergleichsweise begrenzt.
In dieser Arbeit geben wir einen umfassenden Überblick über t-SNE und untersuchen
sowohl dessen theoretische Grundlagen als auch praktische Aspekte. Wir analysieren eine
Clustering-Garantie für t-SNE und untersuchen eine neu skalierte Variante, die für große
Datensätze eine konsistente Einbettung gewährleisten soll. Darüber hinaus betrachten wir
algorithmische Verbesserungen zur Beschleunigung des Verfahrens und zur automatischen
Bestimmung optimaler Stoppzeitpunkte. In Experimenten analysieren wir anhand von
realen Daten die Auswirkungen verschiedener Parametereinstellungen auf die Qualität der
Visualisierungen.
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1. Introduction

In our modern world, we are confronted with an ever-growing amount of data. Statista
estimated the amount of data created, captured, copied and consumed worldwide in 2023
to be a staggering 123 zetabytes (123 billion terabytes), up from just two zetabytes in 2010
[Pet24]. As the amount of data grows, it becomes much more complicated to analyze.
This is particularly evident in fields such as bioinformatics, where single-cell sequencing
technologies have enabled the generation of vast datasets that capture gene expression at
the resolution of individual cells. Analyzing large datasets becomes even more difficult due
to the fact that they often very high-dimenional. In computer vision, for instance, images
are represented by hundreds if not thousands of pixels and in natural language processing,
words are transformed into high-dimensional vectors, e.g. via word2vec [Mik+13]. Tradi-
tional data visualization methods, such as scatter plots or boxplots, are unable effectively
to visualize more than three dimensions.

To address this issue, various methods for embedding high-dimensional data into lower-
dimensional spaces have been developed. One particularly influential approach is t-Distri-
buted Stochastic Neighbor Embedding (t-SNE), introduced by van der Maaten and Hinton
in 2008 [MH08], building upon earlier work on Stochastic Neighbor Embedding (SNE)
[HR02]. Since its introduction, t-SNE has gained significant popularity across diverse
domains, particularly in bioinformatics [Cie+20; Pla13; TR16], where it is widely used in
single-cell transcriptomics [Mac+15; Tas+18; Cao+19], cancer research [DDP18; Gan+18;
Sha+21], and beyond. Moreover, t-SNE has also been used in areas like finance [Gre+20],
computer security [HS19; Xue+20; ZS21] and natural language processing [SS23; SR21;
Wan+18].

This widespread adoption of the algorithm can be explained by its ability to generate visu-
ally interpretable representations of high-dimensional data. Unlike classical dimensionality
reduction methods, t-SNE is specifically designed to retain local structures, which makes it
effective at revealing clusters within the data. Since t-SNE addresses the so-called crowding
problem, see Section 2.1, the embeddings it produces are often visually appealing.

At a high level, the t-SNE algorithm constructs probability distributions that measure
pairwise similarities between data points in both the original high-dimensional space and
the target low-dimensional space. It then iteratively adjusts the positions of the low-
dimensional representations such that the difference between these two distributions, as
measured by the Kullback-Leibler divergence, is minimized. This process can also be
understood through the lens of dynamical systems, as described by [LS22]. One can think
of every datapoint as a physical particle which experiences two types of forces: an attractive
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force to its nearest neighbors in the high-dimensional space and a repulsive force towards
all other particles [KB19].

Despite its success, t-SNE has notable limitations. One of the main challenges is its sensitiv-
ity to hyperparameter selection. While commonly used libraries [PSZ24; Bui+13] provide
default settings, practitioners often need to experiment with multiple parameter configura-
tions to achieve meaningful results. In particular, the perplexity parameter, which controls
the number of effective neighbors considered in the high-dimensional space, has been stud-
ied extensively [WVJ16; SS23; Skr+24; CW17] and is often perceived as being the only
parameter that needs to be tuned [KB19]. But “under the hood [...] there are also various
optimisation parameters (such as the learning rate, the number of iterations, early exag-
geration factor, etc.)”, which have been shown to also have a great impact on the quality
of the embedding [KB19]. The necessity of tuning multiple parameters makes it difficult
to ensure reproducibility and interpretability and is impractical for users unfamiliar with
the algorithm’s inner workings.

Secondly, the theoretical foundations of t-SNE remain an active area of research. As is
the case for many machine learning methods, empirical studies have demonstrated t-SNE’s
effectiveness, while rigorous mathematical analyses of its properties are still developing.
Recent work has explored clustering guarantees and asymptotic behavior in the large-
data limit, yet many theoretical insights rely on assumptions that may not always hold in
practical applications. Bridging the gap between real-world usage and theoretical research
remains challenging.

Objective of This Work

The goal of this thesis is to provide an overview of the current state of research on both
the theoretical and practical aspects of the t-SNE algorithm. In particular, we aim to
investigate how well the theoretical research on t-SNE carries over to practical applications
with real-world data. We also want to explore the purely practical and algorithmic aspects,
with a focus on examining how t-SNE can be accelerated via automatic stopping [Bel+19]
and running experiments on a range of different hyperparameters.

Structure of the Thesis

We start by giving an overview of dimensionality reduction methods in Chapter 2 before
discussing the t-SNE algorithm in detail in Chapter 3. In Chapter 4, we present the current
state of theoretical research on t-SNE, focusing on clustering guarantees and behavior
in the large-data limit. In Chapter 5, we then consider the practical aspects of t-SNE,
including techniques to accelerate the algorithm and hyperparameter optimization. Finally,
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in Chapter 6, we run experiments using different datasets, testing various hyperparameter
settings and suggestions from theory.

Contributions

• After an introduction to t-SNE, we summarize the existing theoretical literature on
t-SNE, including results on clustering guarantees and asymptotic behavior in the
large-data limit.

• We investigate the practical aspects of t-SNE, offering an overview of current guide-
lines for selecting hyperparameters and discussing their impact on embedding quality.

• We implement the automatic stopping strategy outlined in [Bel+19] on top of the
openTSNE library [PSZ24].

• We empirically test the claims in [MP24] regarding the limitations of standard t-SNE
in the large-data regime and assess the proposed rescaled t-SNE variant.

• We conduct a hyperparameter study across datasets of varying sizes.
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2. Dimensionality Reduction

This chapter provides context for t-SNE as a nonlinear dimensionality reduction method.
Dimensionality reduction is an important tool in machine learning and data analysis, used
to reduce computational complexity, for feature engineering, or to find substructures in the
data [Gar21]. Beyond data visualization, it is widely used as a preprocessing step before
applying downstream algorithms.

Dimensionality reduction aims to map high-dimensional data to a lower-dimensional space
while preserving as much meaningful structure as possible. For instance, it is often assumed
that the high-dimensional data lies on a lower-dimensional manifold, giving it a lower
intrinsic dimensionality. The goal of dimensionality reduction is often to attempt to reduce
the dimensionality of the data down to this intrinsic dimensionality, although this is not
explicitly the case for data visualization, where we instead always aim for embeddings in
up to three dimensions.

It is important to keep in mind that a lower-dimensional embedding can never fully pre-
serve the structure of data with higher intrinsic dimensionality. For example, consider a
tetrahedron in R3. It is impossible to flatten this shape onto R2 while exactly maintaining
all pairwise distances.

2.1. The Curse of Dimensionality

High-dimensional spaces exhibit several counterintuitive phenomena, which are collectively
known as the curse of dimensionality. These phenomena complicate data analysis in high-
dimensional settings.

The first notable problem is that Euclidean distances become less meaningful as the number
of dimensions increases due to the concentration of measure or concentration of norms.
This becomes evident, for example, when we sample standard Gaussian distributions of
increasing dimensionalities and compute the distribution of pairwise Euclidean distances
between points drawn from each Gaussian, see [LCD22] for a visualization. We observe
that the mean of these distributions grows at a rate of

√
d whereas the variance of the

distributions stays constant. As explained in [LCD22], the distribution of distances arising
is a χ distribution with d degrees of freedom. This means that small distances very rarely
occur in high dimensional datasets and, most importantly, that we lose relative contrast
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2.2. Linear and Nonlinear Methods

between small and high distances as d increases. In fact, given a set of points in d dimensions
with pairwise Minkowski distances Dij where Dd,max denotes the minimal distance and
Dd,min denotes the maximal distance, the following holds [PGW24]:

lim
d→∞

|Dd,max − Dd,min|
Dd,min

= 0.

Another phenomenon that can be observed is an exponential increase in volume of a space
associated with an increasing number of dimensions. Consider, for instance, the tesselation
of a d-dimensional hypercube [LCD22]. If we want to regularly sample each dimension
with N points, the total number of points required grows as Nd. This implies that for
increasingly high-dimensional datasets, the points occupy an increasingly small fraction of
the space, leaving a lot of empty space.

This is also important in the context of data visualization. Say we are given points on a
d-dimensional manifold that are approximately uniformly distributed in a hypersphere with
radius r around a point xi. We cannot accurately model the pairwise distances between the
points and xi in R2 since the hypersphere around xi only has a volume of r2 compared to
rd in the original data [Gar21]. This is called the crowding problem: in a lower-dimensional
representation, there is insufficient space to accommodate all the nearest neighbors of a
point while preserving their relative distances. As a result, points that are moderately
distant in the high-dimensional space must be mapped much farther apart in the low-
dimensional representation [MH08]. This discrepancy introduces small attractive forces
between these moderately distant points, causing the entire embedding to contract toward
the center of the map. Without an appropriate balancing mechanism, all points would
cluster too closely together in the middle of the embedding.

2.2. Linear and Nonlinear Methods

Dimensionality reduction techniques can be broadly categorized into linear and nonlinear
methods. Different dimensionality reduction methods aim to preserve different aspects of
data structure, with some focusing on a preservation of global structure and others on
preserving local structure [MH08].

Some desirable characteristics of dimensionality reduction methods include:

• Reproducibility: The method should involve minimal randomness to ensure consistent
outcomes.

• Out-of-sample extension: It should facilitate the embedding of new points without
necessitating a complete recomputation.

• Parameter robustness: The technique should exhibit low sensitivity to variations in
parameter choices.
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2.2. Linear and Nonlinear Methods

• Interpretability: The resulting low-dimensional representation should lend itself to
meaningful interpretation.

• Computational efficiency: A fast runtime is essential, particularly for large datasets.

In this section, we provide a brief overview of representative methods before explaining
t-SNE in detail in Chapter 3.

Linear Dimensionality Reduction

Linear methods assume that the primary variability in data occurs only along a few di-
rections. The most widely used linear technique is Principal Component Analysis (PCA),
which projects data onto the directions of maximum variance while minimizing the recon-
struction error [Gar21].

Given a dataset represented as a matrix X ∈ RN×d, PCA finds an eigenbasis of the covari-
ance matrix and selects the eigenvectors corresponding to the k largest eigenvalues. These
then define a new basis for a lower-dimensional representation of the data.

Algorithm 1: Principal Component Analysis (PCA)
Input: Data matrix X ∈ RN×d, target dimension p ≤ d
Output: Lower-dimensional representation Z ∈ RN×p

1 Center the data:

Xc = X − µ, with µ = 1
N

N∑
i=1

Xi

where Xi denotes the ith row of X
2 Compute the covariance matrix:

C = 1
N

(Xc)T Xc

3 Solve the eigenproblem Cvi = λivi via an eigendecomposition or SVD
4 Sort the eigenvalues λi in descending order and select the top p corresponding

eigenvectors
Vp = [v1, v2, . . . , vp] ∈ Rd×p

5 return Z = XcVp

The advantages of PCA include a linear runtime, high interpretability and the fact that
it is a parametric method, making embedding new points easy. However, PCA and other
linear methods are limited in their ability to capture complex, nonlinear structures in data,
see [Gar21].
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2.2. Linear and Nonlinear Methods

Nonlinear Dimensionality Reduction

Many real-world datasets do not lie in a simple linear subspace but instead on a low-
dimensional manifold within the high-dimensional space. In such cases, nonlinear methods,
which try to discover the underlying manifold the data has been sampled from, are more
effective.

Apart from t-SNE, one example of a nonlinear method is UMAP (Uniform Manifold Ap-
proximation and Projection), which builds on concepts from topological data analysis
[McI+18]. It constructs a weighted graph representation of the high-dimensional data and
then optimizes a low-dimensional embedding that preserves the fuzzy topological structure
of this graph. It is often used as an alternative to t-SNE.

Spectral methods, including spectral clustering and diffusion maps [CL06], utilize the eigen-
decomposition of a similarity or Laplacian matrix derived from the data. By analyzing the
spectrum of these matrices, one can extract lower-dimensional representations that capture
both local and global properties of the data.
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3. The t-SNE Algorithm

This chapter follows the descriptions of t-SNE in [MH08], [Maa14] and [CM22].

3.1. Computing Similarities

Let X = {x1, . . . , xN } ⊂ Rd with be a set of high-dimensional points that we wish to
visualize and let Y(0) = {y

(0)
1 , . . . , y

(0)
N } ⊂ R2 be the initial low-dimensional representation.

For now, we sample each y
(0)
i from N (0, 10−4I), see more on initialization in Section 5.2.

One may also consider embeddings into R or R3, but for the purpose of the thesis, we focus
on two-dimensional embeddings.

High-dimensional Affinities

Instead of using the Euclidean distances between the data points, which, as pointed out
in Section 2.1, are unreliable in high dimensions, t-SNE measures pairwise similarities via
probabilities. Starting out with the high-dimensional affinities, we define a joint probability
distribution over all pairs of data points {(xi, xj)}1≤i ̸=j≤N via

pj|i = exp(−∥xi − xj∥2/2σ2
i )∑

k∈{1,2,...,N}\{i} exp(−∥xi − xk∥2/2σ2
i )

.

In order to obtain symmetric probabilities, we define

pij =
pi|j + pj|i

2N
.

Since we are only interested in the pairwise similarities between points, we set pii = 0 for
all i. In matrix form, we write P = (pij)1≤i,j≤N . Note that while we use the Euclidean
norm here, any norm and even precomputed distances will work.

Intuitively, one can think of pj|i as follows: if neighbors for the point xi are chosen from X \
{xi} according to a Gaussian centered at xi with bandwidth σi, then pj|i is the probability
that the point xj is chosen. Thus, large pij values indicate that the points xi and xj are
close to each other, while small values suggest they are far apart.
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3.1. Computing Similarities

Perplexity

Let us return to the variance σi of the Gaussian centered at each datapoint xi. What is
a good value to choose? If we fixed a single value σ to be the same for every datapoint,
this is likely not a good choice because real-life data often does not have a constant density
everywhere but instead has sparser and denser regions. Given that we want to consider
approximately the same number of nearest neighbors for each xi, we opt to choose larger
values of σi for sparse regions and smaller bandwidths for dense regions.

As described in [MH08], for a fixed datapoint xi, choosing a particular value of σi induces
a probability distribution Pi over all other datapoints. The entropy of this distribution
increases as σi increases. The user can specify a so-called perplexity

κ = Perp(Pi) = 2H(Pi)

where H(Pi) = −
∑

j pj|i log2 pj|i denotes the Shannon entropy of Pi.

One can then determine the bandwidth to be used for a specific datapoint by performing
a binary search for the value of σi that produces the user-specified perplexity κ.

Perplexity is essentially a smooth measure of the effective number of neighbors being con-
sidered in the calculation of the pij . This aligns with the common interpretation of the
Shannon entropy as a measure of surprise. If we choose higher perplexity values, we essen-
tially allow for more surprise with how we choose neighbors, i.e. not only the closest points
will be considered but also points further away.

Low-dimensional Affinities

In order to measure similarities between points in the low-dimensional embedding, a first
approach would be to also use a Gaussian distribution to convert pairwise distances into
probabilities, as above. In fact, this is the approach taken originally in SNE [HR02].

However, to address the crowding problem outlined in Section 2.1, we instead use the
more heavy-tailed Student t-distribution, with one degree of freedom, also called a Cauchy
distribution, see Figure 3.1. As we aim to minimize the difference between pij and qij , using
a heavier-tailed distribution for calculating Q means that points need to be pushed further
away from each other for similarities to decrease. This way we can allow for moderate
distances in the high-dimensional space being modeled by much larger distances in the
low-dimensional embedding.

Using the Student t-distribution, we thus compute affinities for points in the low-dimension-
al embedding as follows:

qij = (1 + ∥yi − yj∥2)−1∑N
k,l=1,k ̸=l(1 + ∥yk − yl∥2)−1
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3.2. Optimizing the Embedding

where we again define qii = 0 for all 1 ≤ i ≤ N . We can collect all pairs of similarities in a
symmetrical matrix Q = (qij)1≤i,j≤N .

Figure 3.1.: Probability density functions of a standard Gaussian versus a Student t-distribution with one
degree of freedom.

3.2. Optimizing the Embedding

Once we have computed the probabilities P and Q, the goal of the algorithm is to get these
affinities to be as similar to each other as possible. A common choice for quantifying the
similarity between two distributions is the Kullback-Leibler divergence.

Definition 3.1 (Kullback-Leibler Divergence). The Kullback-Leibler (KL) divergence be-
tween two discrete probability distributions P and Q over the same probability space is
defined as

DKL(P ∥ Q) :=
∑
x∈X

P (x) log P (x)
Q(x)

where X is the domain of the distributions.

The t-SNE algorithm searches for the low-dimensional representation Y = (y1, . . . , yN ) that
minimizes the KL divergence between the similarity matrices P and Q, with loss function
given by

C(Y) := DKL(P ∥ Q) =
N∑

i,j=1
i ̸=j

pij log pij

qij
.
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3.2. Optimizing the Embedding

This leads to the following optimization problem:

arg min
y1,...,yN

C(Y) = arg min
y1,...,yN

N∑
i,j=1
i ̸=j

pij log pij

qij
.

Note that the Kullback-Leibler divergence is, in fact, not a metric since it is not symmetric.
One can observe that a large pij being modeled by a small qij leads to a bigger summand
than using a large qij to model a small pij . This means that our loss function places a large
cost on using far-apart points to model points that are close in the original dataset. On
the other hand, there is only a small cost to model points that are actually far apart as
nearby in the embedding. This shows that, as intended, we can expect a bigger focus on
the preservation of local structure, which is important to keep in mind.

Minimizing the loss function can be achieved using gradient descent, with an updating
equation of the form

y
(t+1)
i = y

(t)
i − η

∂C

∂yi

(t)
+ m(t+1)(y(t)

i − y
(t−1)
i )

for i = 1, . . . , N , where t denotes the current iteration, η > 0 is a prespecified step size
parameter, also called learning rate, and m(t) ≥ 0 is an optional momentum parameter
used to speed up the convergence.

The gradient of our loss function with respect to yi at iteration t is given by

∂C

∂yi

(t)
= 4

∑
1≤j≤n

j ̸=i

(pij − q
(t)
ij )q(t)

ij Z(t)(y(t)
i − y

(t)
j )

where Z(t) is a global normalization constant:

Z(t) =
∑
k ̸=l

(1 + ∥y
(t)
k − y

(t)
l ∥2)−1.

Details of the derivation can be found in [MH08]. For reasons of computational efficiency,
stochastic gradient descent with momentum and an adaptive learning rate determined by
Jacob’s scheme [Jac88] is used.

One may observe that the loss function is non-convex. This means that t-SNE embeddings
may differ from run to run due to random initialization and the inherent randomness of
stochastic gradient descent. This is a drawback for the interpretability and reproducibility
of t-SNE embeddings. We also point out that t-SNE is a non-parametric method, making
out-of-sample extensions thus very difficult.
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3.3. Early Exaggeration

Algorithm 2: Basic Version of t-SNE
Input: data set X = {x1, x2, . . . , xN }, perplexity κ, number of iterations T ,

learning rate η, momentum m(t)
Output: Low-dimensional representation Y(T ) = {y1, y2, . . . , yN }

1 Compute pij with perplexity κ

2 Sample initial solution Y(0) = {y
(0)
1 , y

(0)
2 , . . . , y

(0)
N } ∼ N (0, 10−4I)

3 for t = 1 to T do
4 Compute low-dimensional affinities qij

5 Compute gradient δC
δY(t)

6 Update the low-dimensional embedding:
7

Y(t) = Y(t−1) − η
δC

δY
+ m(t)(Y(t−1) − Y(t−2))

8 return Y(T )

3.3. Early Exaggeration

Early exaggeration, from now on also abbreviated as EE, was first proposed as a method
of optimizing t-SNE in [MH08]. The idea is to multiply all pij by a value α > 0 for the first
few iterations of the algorithm. Since our loss function encourages the qij to model the pij

as closely as possible, we achieve artificially large qij values this way. One thereby allows
relatively tight clusters to form during the early stages of the optimization, which can then
move around more easily in space. This makes it easier to find a good global organization
of the clusters.

We can also understand early exaggeration from a dynamical systems viewpoint, cf. [LS22].
Notice that we can split the gradient (3.2) into two parts

∂C

∂yi

(t)
= 4

∑
j ̸=i

pijq
(t)
ij Z(t)(y(t)

i − y
(t)
j ) −

∑
j ̸=i

(q(t)
ij )2Z(t)(y(t)

i − y
(t)
j )

 = 4(Fattr + Frep)

where Fattr denotes the sum of all attractive forces and Frep the sum of all repulsive forces.

Why does it make sense to call these attractive and repulsive forces? Since we want to
minimize the cost function, we perform gradient descent and step in the direction of the
negative gradient, so we consider the term

−1
4

∂C

∂yi

(t)
=
∑
j ̸=i

pijq
(t)
ij Z(t)(y(t)

j − y
(t)
i ) −

∑
j ̸=i

q2
ijZ(y(t)

j − y
(t)
i ).

The first term is considered the attractive term since it moves the point y
(t)
i towards a

weighted average of the other yi. The weights pijq
(t)
ij Z(t) are bigger if the two points are
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3.3. Early Exaggeration

close to each other, both in the low- and high-dimensional space. The second term has the
opposite sign and thus pushes y

(t)
i away from a weighted average of the other points. This

time, however, the weights only depend on the closeness of points in the low-dimensional
space. Put together, this means that the attractive term attracts points that are meant
to be next to each other based on their similarity in the high-dimensional space, and the
repulsive term pushes points apart that get too close in the embedding space, regardless of
their real similarity.
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4. Theoretical Results

While t-SNE has been widely used in practice, the theoretical understanding of the algo-
rithm remains relatively underdeveloped. However, theoretical results might improve our
understanding of how and why t-SNE works, and may guide new directions for the algo-
rithm. This chapter will first provide an overview of recent theoretical work on t-SNE and
then examine a few results in detail.

4.1. Literature Review

An overview of the theoretical literature on t-SNE can be found in [MP24] and [LS22].

Early theoretical work has been focused on establishing guarantees that t-SNE clusters well-
clusterable data. Shaham and Steinerberger started this line of research with their paper
“Stochastic Neighbor Embedding Separates Well-Separated Clusters” [SS17]. They prove
a clustering guarantee for the precursor algorithm SNE, which has since been criticized as
it is nontrivial only when the number of clusters is significantly larger than the number of
points per cluster. This is an unrealistic assumption for most datasets t-SNE is commonly
used on, see [AHK18].

Linderman and Steinerberger use a dynamical systems approach to prove that t-SNE suce-
ceds in clustering clustered data in “Dimensionality Reduction via Dynamical Systems:
The Case of t-SNE” [LS22]. We will dedicate Section 4.2 to discuss their result in de-
tail. Building on [LS22], [AHK18] give a first formal framework for the problem of data
visualization and formulate an improved clustering guarantee for some other definition of
spherical and well-separated clusterable data.

In [CM22], a range of theoretical results on t-SNE are established, notably an asymptotic
equivalence of the EE phase with power iterations in spectral embeddings. This means
that for strongly clustered data, one can replace the EE phase with a spectral embedding,
thereby speeding up the process. They also prove that embeddings remain localized within
the initial range during EE. Furthermore, they separate the embedding phase (the phase
with no exaggeration) into an amplification phase, where the embedding expands rapidly
and a stabilization phase, during which the speed of the expansion slows notably.

Practical implications of their work include:
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• Stopping EE early for noisy data to avoid overfitting. They suggest using only
⌊(log N)2⌋ iterations of EE.

• The observation that t-SNE is reliable in terms of cluster membership but not relative
positions of clusters.

• The observation that false clustering may occur, see also [WVJ16]. One should thus
run t-SNE multiple times if possible.

More recently, the focus of theoretical research on t-SNE has shifted to include the question
of equilibrium distributions and convergence in the large data limit N → ∞. A first work
exploring this question is [AF23]. More specifically, the authors investigate the behavior
of t-SNE when the input dataset consists of independent, identically distributed random
variables and prove that, under certain conditions, the empirical measure of the output
converges to an equilibrium distribution as the number of data points grows. We will focus
on another work focused on large data limits, namely “Large data limits and scaling laws for
tSNE” by Murray and Pickarski [MP24], which will be explored in detail in Section 4.3.

4.2. Clustering Guarantees

In this section, we analyze the theoretical clustering guarantees presented in [LS22]. Using
a discrete dynamical systems viewpoint on t-SNE, the authors establish conditions under
which the algorithm provably contracts clusters in the low-dimensional embedding. We
summarize their assumptions, state the main theorem and evaluate its limitations.

Assumptions

The theorem is built on three assumptions regarding the dataset, the choice of parameters
in the t-SNE optimization process, and the initialization of the embedding:

(i) Clustered data. We assume that there exists a number of clusters k ∈ N and a
map π : {1, . . . , N} → {1, . . . , k} which maps each point to a cluster, such that the
following holds: if π(xi) = π(xj), then

pij ≥ 1
10N |Ω(i)| (4.1)

where Ω(i) is the cluster in which xi and xj lie. This ensures that points within the
same clusters have high similarities, but it does not require inter-cluster affinities to
be small.
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(ii) Parameter choice. Learning rate η and exaggeration parameter α are chosen such
that for some 1 ≤ i ≤ N ,

1
100 ≤ αη

∑
j ̸=i

π(i)=π(j)

pij ≤ 9
10 .

(iii) Localized initialization. The initial embedding satisfies Y ⊂ [−0.01, 0.01]2.

Main Theorem

Theorem 4.1 (Shrinkage of Clusters [LS22]). Under assumptions (i)-(iii), the diameter the
embedded cluster containing yi, {yj : π(i) = π(j)}, decays exponentially until its diameter
satisfies, for some constant c > 0,

diam{yj : π(i) = π(j)} ≤ c · η

α
∑

j ̸=i,π(i)̸=π(j)
pij + 1

N

 .

To prove this theorem, the authors use the dynamical systems viewpoint on t-SNE and
employ stability of the convex hull and a contraction inequality to show the exponential
shrinkage of the cluster.

This result is applicable to a single cluster, but it can be applied to every cluster of a given
dataset separately, given that (i) holds. It is important to note that this theorem does
not rule out the possibility of multiple clusters merging into one in the embedding since
it only makes a statement about the behavior of a single cluster. This was pointed out
by [AHK18], who also suggest a different version of this theorem which solves the issue of
cluster separation.

While Definition 4.1 establishes an important property of t-SNE, which would justify its
usage as a means to cluster data, its assumptions can be criticized. Assumption (iii) can
be easily realized in practice, but the parameter choices of α ∼ N/10 and η ∼ 1 suggested
by the authors in line with assumption (ii) do not align with settings that have proven to
generate good empirical results. Furthermore, as pointed out in the paper itself, assumption
(ii) only holds for datasets with at most 20, 000 points, a smaller size than most datasets
on which t-SNE is commonly used.

Concerning the assumption of clustered data, the authors of [LS22] claim that their “as-
sumptions on what it means to be clustered are so weak that a given data set does not
necessarily have a unique decomposition into different clusters”. However, this claim was
criticized in [YCC21], who found that this supposedly weak condition still does not hold in
many cases since even within a cluster, very small pij values can occur. We will investigate
this claim on a real-world dataset in Chapter 6.
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4.3. Large Data Limits

In the past, theoretical literature on t-SNE has not focused much on what happens when
we let the number of data points go to infinity. After all, real-world datasets consist of a
finite number of points. It is, however, an interesting question that allows us to get deeper
insight into the inner workings of t-SNE. In this section, we will look into the analysis done
on this topic in [MP24]. They first show that standard t-SNE embeddings do not have
a consistent limit as N → ∞ and then propose a rescaled model with a consistent limit
which mitigates the asymptotic decay of the attractive forces.

Setup

For this section, instead of assuming a given dataset, we assume a probability distribution
µ ∈ P(Ω) on Rd which is supported on a bounded and C2 domain Ω. We further assume
that µ has a bounded density function ρ(x) with respect to the Lebesgue measure. Our
points X1, . . . , XN are then drawn from µ independently, and the pij and qij values are
calculated as before. In matrix form, we write PN = (pij)N

i,j=1 and QN = (qij)N
i,j=1. As

our loss function, we do not consider the KL divergence between PN and QN directly but
instead define a functional similar to the KL divergence:

KLN (T ) =
∑
i,j

pij log pij

qij(T )

where
qij(T ) := (1 + |T (Xi) − T (Xj)|2)−1∑

k ̸=l(1 + |T (Xk) − T (Xl)|2)−1

and T : Rd → R2. Note the slight abuse of notation since this is no longer a KL divergence
when considered a function of T . However, it is only a small reformulation of the original
problem, where we minimized the KL divergence over all possible Y. Here, we instead
minimize the loss over all maps T .

Building on the view of t-SNE in terms of attraction-repulsion dynamics, [MP24] split up
the t-SNE objective function into an attractive term AN [T ], a repulsive term RN [T ] and a
purely data-dependent term DN , which plays no role during gradient descent.

These terms are defined via

AN [T ] := 1
N

N∑
i=1

∑N
j=1 exp(−|Xi − Xj |2/2σ2

i ) log(1 + |T (Xi) − T (Xj)|2)∑N
j=1 exp(−|Xi − Xj |2/2σ2

i )

and

RN [T ] := log

 1
N2

N∑
i,j=1

1
1 + |T (Xi) − T (Xj)|2

 .
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We can then write KLN (T ) = AN [T ] + RN [T ] + DN . This definition of attractive and
repulsive terms makes sense since the attractive term is minimized when T → 0 and the
repulsive term is minimized when T → ∞. Thus, we obtain the following optimization
problem:

arg min
T : Rd→R2

KLN (T ) = arg min
T : Rd→R2

AN [T ] + RN [T ].

Regarding perplexity, our first thought would be to keep it constant as N → ∞. However,
theoretical analysis based on results in adaptive kernel density estimation shows that main-
taining a fixed perplexity as the number of data points increases forces the bandwidths σi,N

to scale as O(N−1/d) [MP24]. Results from adaptive kernel estimation indicate that this
is bad for the consistency of the estimator, so one instead allows perplexity to grow slowly
with the number of samples, at a rate of Nβ with β > 0.

Repulsive Forces Dominate in the Large Data Limit

From now on, we write the bandwidths as σi,N = hN σi, isolating the stochastic part in σi

with hN being deterministic and write perplexity as

PerpN (Xi|hN σi) = exp

−
N∑

k ̸=i

pk|i(σi,N ) log(pk|i(σi,N ))

 .

If we let perplexity grow at a rate faster than log(N) and slower than N , we get the
following limiting bandwidth.

Theorem 4.2 ([MP24]). Let hN be a sequence for which Nhd
N

log(N) → ∞ and hN → 0. Let
ρ(x) be a uniformly continuous density that is bounded above and below. If σ̂N (x) is chosen
so that PerpN (x|hN σ̂N (x)) = κNhd

N , then for Ω̃ ⊂⊂ Ω we have almost surely

lim
n→∞

∥∥∥∥∥σ̂N (x) − 1√
2πe

(
κ

ρ(x)

)1/d
∥∥∥∥∥

L∞(Ω̃)
= 0.

We denote the limiting object from the theorem above as σκ(x) from now on. Note that
we see that bandwidths shrink to zero in this regime since hN → 0 and σ̂N (x) converges to
a fixed number.

In order to simplify the proofs, [MP24] now replace the stochastic σi,N with the determin-
istic hN σκ(x) and define an averaged version of the energies

ÃN [T ] :=
∫

Ω

∫
Ω exp

(
−|x−x′|2
2h2σ2

κ(x)

)
log(1 + |T (x) − T (x′)|2)ρ(x′) dx′∫

Ω exp
(

−|x−x′|2
2h2σ2

κ(x)

)
ρ(x′) dx′

ρ(x) dx
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and
R̃N [T ] := log

(∫∫
Ω×Ω

1
1 + |T (x) − T (x′)|2 ρ(x)ρ(x′) dx dx′

)
.

It can be shown that E[AN [T ]] → Ãh[T ] and E[RN [T ]] → R̃[T ] as N → ∞. With this, we
can state that the averaged t-SNE loss function does not have a limiting solution:

Theorem 4.3 ([MP24]). Let TN be a sequence of minimizers of the energies ÃhN
[T ]+R̃[T ].

Then TN does not converge pointwise to any T ∗ ∈ L∞(Ω,R2).

For details of the proof, we refer to [MP24]. However, the main idea is again to consider
how attraction-repulsion dynamics change as the number of samples grows. Since the
bandwidths of our Gaussian kernels go to zero, the attractive term will also shrink to zero
as N → ∞. This means that for increasing sample sizes, the repulsive force dominates,
resulting in embeddings that expand without bounds.

Note that this also gives us further intuition into why we perform early exaggeration. It is
not only an optimization trick, but also a means to strengthen attractive forces, which is
asymtotically consistent with the behavior of the algorithm.

A Rescaled, Consistent t-SNE

Taking the above theorem as motivation, [MP24] propose a rescaled version of t-SNE, where
we not only apply exaggeration in the early iterations of the algorithm but instead multiply
the entire attractive force by a sequence 1/h2

N , with hN → 0 and Nhd
N

log(N) → ∞ as N → ∞.
The rescaled model for N samples thus minimizes the loss function

K̂LN (T ) = AN [T ]
h2

N

+ RN [T ].

This energy will then, for a fixed T , converge towards the limiting energy

KL(T ) := κ2/d

2πe

∫
Ω

m∑
i=1

|∇Ti(x)|2ρ1−2/d(x) dx + log
(∫∫

Ω×Ω

ρ(x)ρ(x′)
1 + |T (x) − T (x′)|2 dx dx′

)
,

which behaves consistently, as shown by the following theorem.

Theorem 4.4 ([MP24]). Let µ be a distribution supported on a compact, C1 domain
Ω ⊂ Rd with Lebesgue density ρ(x) bounded above and below on Ω. Then, for every
T ∈ C2(Ω;R2) we have limN→∞ K̂LN (T ) → KL(T ). If we assume Ω to be connected,
then there exists T ∗ ∈ H1(Ω, ρ) for which KL(T ∗) = infT : Ω→R2 KL(T ).

The hope is that this new approach may provide more stable and consistent embeddings
in practice as well, which we will investigate in Section 6.10.

26



5. Practical and Algorithmic Aspects

5.1. Accelerating t-SNE

The original t-SNE algorithm is computationally expensive, requiring O(N2) operations to
compute the pairwise similarities pij and qij . The primary computational bottleneck arises
from the normalization we use when computing these probabilities since it involves sums
over N(N − 1) pairs of points. To address this, various acceleration techniques have been
developed. This section provides an overview of two widely used approaches to accelerating
t-SNE.

Barnes-Hut t-SNE

The first significant advancement in accelerating t-SNE was the Barnes-Hut approxima-
tion, proposed by van der Maaten in 2014 [Maa14]. This method leverages hierarchical
space-partitioning structures to approximate the repulsive forces efficiently, reducing the
computational complexity to O(N log N).

Computing the attractive forces, as defined in Section 3.3, is computationally feasible if
input similarities are approximated using a sparse representation. Recall that the input
similarities pij are computed based on a Gaussian kernel, where dissimilar points yield very
small similarity values. Instead of computing all N(N − 1) pairwise similarities, Barnes-
Hut t-SNE focuses on a subset by considering only the ⌊3κ⌋ nearest neighbors of each data
point. The set of nearest neighbors for a point xi is denoted as Ni.

The similarities are thus given by

pj|i =


exp(−∥xi−xj∥2/2σ2

i )∑
k∈Ni

exp(−∥xi−xk∥2/2σ2
i ) if j ∈ Ni

0 otherwise

which are subsequently again symmetrized.

To efficiently determine the nearest neighbor sets Ni, a vantage-point tree is constructed,
enabling nearest neighbor search in O(κN log N) time. For further implementation details,
see [Maa14].
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For the repulsive forces, the approach outlined above is not feasible since the low-dimensio-
nal similarities qij change during the optimization. Instead, we use the Barnes-Hut algo-
rithm to approximate the repulsive forces efficiently. The key observation underlying this
method is that the influence of a distant cluster of points on a given point can be approxi-
mated by treating the cluster as a single entity. More precisely, if we consider points yi, yj

and yk with ∥yi − yj∥ ≈ ∥yi − yk∥ ≫ ∥yj − yk∥, then the contributions of yj and yk to Frep,i

will be roughly equal.

To take advantage of this fact, the Barnes-Hut algorithm constructs a quadtree (for two-
dimensional embeddings) or an octree (for three-dimensional embeddings) to hierarchically
partition the embedding space. The algorithm then traverses the tree via a depth-first
search, deciding at each node whether the entire cell can be used as a summary of the
contributions to Frep of all points in the cell.

A cell of the quadtree, centered at ycell, can be used as an approximation if the following
condition holds:

rcell
∥yi − ycell∥

< θ,

where rcell is the cell’s diagonal length and θ is a user-defined threshold that balances
speed and accuracy. If this condition is met, the contribution of all points within the cell
is approximated using the center of mass. Otherwise, the algorithm recursively explores
smaller subregions of the tree. This approach allows for efficient computation of the repul-
sive forces in O(N log N) time while maintaining high accuracy in the embedding. For a
visualization of the quadtree structure, we refer to [Maa14].

Fast Interpolation-Based t-SNE

As observed in [KB19], the Barnes-Hut implementation of t-SNE, while significantly faster
than the originally proposed algorithm, still becomes prohibitively slow for datasets with
n ≫ 100, 000. The FFT-accelerated, interpolation-based version of t-SNE proposed by
Linderman et al. [Lin+19] further speeds up the computation of t-SNE embeddings.

Again, we focus on accelerating the computation of the repulsive forces since this is the
most expensive step. The key idea is to use interpolation. We define p interpolation nodes
that “mediate the interaction” between all points [Lin+19]. Using these, we can calculate
the interaction of every point with the nodes in pN computations. Then, we compute
the interaction of all the mediation nodes with each other. Naively, this would take p2

computations, but using the Fast Fourier Transform (FFT), we can speed this step up to
p log(p). At the end, we can interpolate for the interpolation nodes to all original points.
This again requires pN computations. Overall, we end up with a runtime of O(pN), with
p being much smaller than N .

We will now discuss how the algorithm works in detail, cf. Algorithm 3. Firstly, note that
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at every step of gradient descent, the repulsive forces are

Frep,k(m) =
∑

l ̸=k
yl(m)−yk(m)

(1+∥yl−yk∥2)2∑N
j=1

∑
l ̸=j(1 + ∥yl − yj∥2)−1

.

where k = 1, . . . , N , m = 1, 2 and yi(m) denotes the mth component of yi. Observe that
these can be expressed via sums of the form

ϕ(yi) =
N∑

j=1
K(yi, yj)qj

with either
K1(y, z) = 1

1 + ∥y − z∥2 or K2(y, z) = 1
(1 + ∥y − z∥2)2 ,

both of which are smooth and translation-invariant kernels, making the kernel matrix
K̃ij = K(ỹi, ỹj), i, j = 1, . . . , Nintp Toeplitz.

Algorithm 3: FFT-accelerated Interpolation-based t-SNE (FIt-SNE, [Lin+19])
Input: embedding points {yi}N

i=1, weights {qi}N
i=1, number of intervals Nint,

interpolation points per interval p
Output: φ(yi) =

∑N
i=1 K(yi, yj)qj for i = 1, . . . , N

1 For every interval Il, form p equispaced nodes ỹj,l = 1/(2Nintp) + j−1+(l−1)p
Nintp for

j = 1, . . . , p.
2 for l = 1 to Nint do
3 Compute the coefficients wm,l given by
4

wm,l =
∑

yi∈Il

Lm,ỹl(yi)qi, m = 1, . . . , p

with Lagrange polynomial Lm,ỹl .
5 Use FFT to compute values of vm,n given by
6

[v1,1, v2,1, . . . , vp,Nint ]T = K̃[w1,1, w2,1, . . . , wp,Nint ]T

where K̃ is the Toeplitz matrix given by K̃ij = K(ỹi, ỹj), i, j = 1, . . . , Nintp.
7 for l = 1 to Nint do
8 Compute φ(yi) at all points yi ∈ Il via
9

φ(yi) =
p∑

j=1
Lj,ỹl(yi)vj,l

For the interpolation, we subdivide the embedding space into a number of intervals (in the
one-dimensional case) or squares (in the two-dimensional case). In each interval, we choose
a fixed number p of equispaced interpolation nodes. We then approximate each kernel by
its low-order polynomial interpolant. This replaces the direct kernel evaluation between
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every pair of points with an evaluation on a much coarser grid. Since the kernel matrix is
Toeplitz, we can use FFT to speed up the calculation of the pairwise interactions between
the interpolation nodes.

As pointed out in [PSZ24], FIt-SNE scales linearly with the number of samples, but it in-
troduces additional computational overhead for each embedding. This is often unnecessary
for smaller datasets, which is why openTSNE uses Barnes-Hut t-SNE for datasets with
fewer than 10, 000 samples and FIt-SNE for data sets with at least 10, 000 datapoints.

5.2. Choosing Hyperparameters

Here, we collect guidelines for choosing t-SNE parameters and look at which parameters
are standard in scikit-learn and openTSNE. After this overview, we will go into more detail
with regard to an early stopping strategy.

Perplexity. Van der Maaten initially suggested κ = 40 [MH08] and later κ = 50 [Maa14].
Belkina et al. find that the exact value of perplexity does not greatly impact the embed-
ding when choosing values between 30 and 50 [Bel+19]. By default, the scikit-learn and
openTSNE libraries use κ = 30.

If one wants to increase the global consistency of t-SNE, one way to do it would be by
increasing perplexity since this increases the sizes of the neighborhoods considered for
constructing the probabilities pij [PSZ24]. However, this often leads to a loss in local
structure. For instance, small, isolated clusters of points may get sucked into larger ones
when using a very large perplexity. To remedy this effect, [KB19] propose to use a mixture
of Gaussians with different bandwidths when constructing the pij . Instead of using the
standard Gaussian kernel exp(−d2/2σ2

i ), where d denotes distances, they use the multi-
scale kernel

1
σi

exp
(

− d2

2σ2
i

)
+ 1

τi
exp

(
− d2

2τi

)

where the bandwidth of the first kernel σi is chosen such that the perplexity of this compo-
nent is 30, and τi such that the perplexity of the second component is N/100. This achieves
a combination of different perplexities. However, it is worth bearing in mind that using a
perplexity of N/100 can get very expensive computationally and is only feasible for smaller
datasets.

Initialization. The standard t-SNE algorithm starts with an initization of y
(0)
i which are

drawn independently from N (0, δ2I) for some small δ > 0, see [MH08] and [Maa14]. How-
ever, [KL21] show that informative initialization leads to embeddings that better preserve
large-scale structures within the data. At times, this attempt to preserve global geometry
of data can fail if the macroscopic structure is not adequately captured in the first two
principal components. One could, for example, imagine a small isolated cluster that might
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not appear isolated in the first two principal components because it simply does not have
enough cells to contribute much to the explained variance.

In [KB19], it is argued that PCA initialization makes t-SNE more reproducible since it
removes at least part of the randomness by introducing a deterministic initialization for
the low-dimensional embedding.

Indeed, modern implementations of t-SNE in libraries like openTSNE [PSZ24] or Scikit-
learn now all use PCA initialization by default. This means that we perform a principal
component analysis on the input data x1, . . . , xN and use the output y1, . . . , yN as the
initial points for the low-dimensional embedding.

Learning Rate. Van der Maaten [MH08] suggests η = 100 and using an adaptive learning
rate scheme, the Jacob’s scheme [Jac88]. Later on, an initial learning rate of η = 200 and
an additional momentum term of weight 0.5 during EE and with weight 0.8 after EE are
also suggested [Maa14]. In the theoretical paper [LS22], a learning rate of η = 1 is used,
which is very small in comparison with all other guidelines. Empirical papers suggest rather
larger learning rates, for example η = N/α in [Bel+19] and η = max(N/α, 200) in [KB19].
By default, openTSNE uses a learning rate of η = N/α, following [Bel+19]. Scikit-learn
used to have a learning rate of η = 800, but in version 1.2, the default was changed to
η = max(N/α, 50).

Number of Iterations. [MH08] suggest a total number of T = 1000 iterations. [Bel+19]
test t-SNE on large datasets and point out that a higher number of iterations is needed,
see Section 5.3. This value T = 1000 is used in scikit-learn, whereas openTSNE only uses
500 iterations after EE, leading to a total of T = 750 iterations.

Early Exaggeration. In the original t-SNE paper, an exaggeration value of α = 4 is
proposed for the first 50 iterations of the algorithm [MH08]. In [Maa14], it is mentioned that
EE is increasingly important for large datasets, and the recommended value is α = 12 for
250 iterations. [Bel+19] compare embeddings with different values for EE and recommend
using values between 4 and 12, suggesting that the exact value does not impact the quality
of the embedding too much. In [LS22], α = N/10 is used, the only time where an adaptive
EE factor based on dataset size has been suggested. Both in openTSNE and scikit-learn
implementations of t-SNE, α = 12 is used for 250 iterations.

It has been proposed by [BBK22] that stronger attractive forces, through higher α values,
result in a better representation of continuous manifold structures, whereas a smaller α
value or no exaggeration altogether leads to a better recovery of discrete cluster structures.
[KB19] also experiment with keeping exaggeration on for the entirety of the embedding.
They suggest using an exaggeration factor of 4 after the EE phase is over for especially
large datasets.

The amplification of the attractive force via exaggeration is also studied in [BBK22]. They
point out that, by design, t-SNE tries to use all available space for the low-dimensional
embedding. This means that clusters are sometimes only separated by thin boundaries, a
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feature that can turn into a problem for particularly large datasets. Using exaggeration
throughout the entire t-SNE run can lead to embeddings with more space between clusters.
It was even shown that t-SNE with α = 4 after EE produces UMAP-like embeddings and
an even higher exaggeration leads to embeddings similar to the ones obtained when using
Laplacian eigenmaps, which highlights the extreme flexibility of t-SNE.

Degrees of Freedom. [Kob+20] suggests that we can vary the degrees of freedom in
the t-distribution used. Heavier-tailed distributions than the Cauchy distribution lead to
smaller clusters and sub-clusters being visible.

5.3. Automated Stopping

One problem of standard software packages for t-SNE is that there is a default number of
iterations, both for the early exaggeration phase as well as for the overall embedding, see
Section 5.2. This is beneficial for practitioners who do not have a lot of experience with
the details of the algorithm, but it does suggest that there is a “one size fits all” solution.
However, Belkina et al. [Bel+19] find that for very large datasets, the standard number of
iterations does not suffice.

In order to solve this problem, [Bel+19] propose an automated approach to stopping both
the EE phase and the entire algorithm once satisfactory values are reached. They observed
the change in KL divergence (our loss function) to plateau after a certain number of itera-
tions, suggesting that the embedding does not change much after this point. So they track
the relative rate of KL divergence change

KLDRCt = KLDt−1 − KLDt

KLDt−1

where t is the current iteration. The idea then is to identify the local maximum of this KL
divergence relative change and stop the EE phase after it has been reached, since the change
in the embeddings starts decreasing from this point onwards. This is computationally
inexpensive since we already compute the value of the KL divergence at every iteration for
the gradient descent update.

They suggest stopping the algorithm entirely once

KLDt−1 − KLDt < KLDt/X (5.1)

where X = 5000 is suggested for cytometry data.

We implement and analyze the results of this strategy in Section 6.8.
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In this chapter, we present a range of experiments which build on the earlier chapters.
We first describe the datasets used in Section 6.1 and present several different metrics we
use to evaluate our embeddings in Section 6.2. Our first experiment investigates the effect
of initialization on simulated datasets, see Section 6.3. Then, we test a range of hyper-
parameters (perplexity, learning rate, number of iterations and EE-related parameters) in
Section 6.4 to Section 6.7. In Section 6.8, we replicate the automatic stopping procedure
from [Bel+19]. The last two sections are concerned with experimental investigations of
theoretical results.

6.1. Experimental Setup

We use the openTSNE library [PSZ24] for all of our experiments. Unless otherwise specified,
we always use the default openTSNE settings, which are described in Section A of the
appendix.

We want to perform our experiments on a variety of different datasets, namely two typically
used benchmark datasets, Macosko and MNIST, one very small (Iris) and one very large
dataset (Flow18):

• Iris flower dataset [Fis36]. This small dataset contains 50 samples from three different
species of Iris flowers, thus 150 points in total. Datapoints are comprised of four
features, namely the length and width of sepals and petals.

• Macosko mouse retina cells dataset[Mac+15]. This is a common benchmark dataset
for single-cell data. It contains a total of 44,808 datapoints. The features are given by
the high-dimensional gene-expression profiles outlined in [Mac+15]. Here, we apply
PCA to reduce the dimensionality of the dataset to 50 before performing t-SNE, as
suggested in [Maa14].

• MNIST [Den12]: A classic computer vision dataset, contains N = 70, 000 gray
scale images of handwritten digits 0 through 9 (i.e. 10 classes). Each image has
dimensionality D = 28 · 28 = 784. Before applying t-SNE, we rescale the entries to
values in the interval [0, 1] and reduce the dimensionality of data points to 50 using
PCA as before.
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6.2. Quality Evaluation Metrics

• Flow18 cytometry dataset [Bel19]. One million datapoints, samples are human
PBMC (peripheral blood mononuclear cells), for example different types of T cells,
white blood cells or B cells. The dataset consists of 16 different classes of cells. For
each cell, 18 parameters are recorded, of which we use 11 for our visualization, just
as in [Bel+19].

6.2. Quality Evaluation Metrics

Measuring the quality of t-SNE embeddings is challenging. Of course, since the point of
t-SNE is primarily visualization, we will look at the scatter plots the algorithm produces
first and foremost.

However, we will also use several other quality evaluation metrics in order to get a broader
understanding of the quality of our results:

• KLD: As in [Bel+19], we measure Kullback-Leibler divergence throughout the algo-
rithm and compare endpoint KLD values; the smaller the better. It should be noted
that KLD is not a good measure when comparing t-SNE embeddings with different
perplexity values since this directly affects KLD. The same is true to some extent for
early exaggeration.

• KNN: For every data point, we measure the fraction of k-nearest neighbors in the
high-dimensional space that are preserved as k-nearest neighbors in the low-dimen-
sional embedding space. We set k = 10. Typically KNN is used to measure how well
local structures are preserved.

• KNC: This measures the percentage of k-nearest class means preserved in the low-
dimensional embedding, averaged across all classes. We use k = 3. This “quantifies
perservation of the mesoscopic structure” [KB19].

• CPD: We calculate the Spearman correlation between high and low-dimensional
distances across 1000 randomly chosen pairs of distances, with values ranging from
−1 to 1. This is repeated 10 times, we take the averaged result, as suggested by
[Web23]. This is a measure to quantify the global structure of our data.

The KNN, KNC and CPD measures are used in [KB19], from which we also use their
Python implementation.

34



6.3. Initialization

6.3. Initialization

As mentioned in Section 5.2, the benefits of PCA initialization are well-studied. We thus
do not perform comparisons of t-SNE with and without PCA initialization across all of
the above mentioned datasets. Instead, we want to focus on a small proof-of-concept
example: [KL21] show that t-SNE is able to approximately recover a synthetic 2D circle
when initialized with PCA, but not without a PCA initialization. Building on this work,
we test this on other geometric structures: a triangle and a square.

To do this, we sample N = 7000 points and add some Gaussian noise. We use the code
provided in [KL21], only changing the geometric shape of the data and setting perplexity
to 40. We also use two different seeds for each of the embeddings with random and PCA
initialization in order to evaluate how much PCA initialization reduces the variance between
embeddings, see Figures 6.1 and 6.2.

Figure 6.1.: t-SNE on an equilateral triangle in R2.

Figure 6.2.: t-SNE performed on a two-dimensional square.

As expected, we see much more variance in the embeddings when we use random initializa-
tion. While using PCA initialization eliminates some of this variance between embeddings,
we can still observe small differences between the embeddings, especially of the triangle.

The embeddings also provide a nice visualization of PCA initialization, improving global
structure. Take, for example, the red and green points in the triangle. These are far apart
in the original data, so one would expect them to also be far apart in the embedding.
But, in the embedding with random initialization and seed 12, we see that, in fact, the
embedding lines cross each other. The PCA-initialized embeddings notably improve upon
this.
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6.4. Perplexity

As one of the key parameters of t-SNE, we want to study its impact on the embedding across
datasets. We consider perplexity values in the standard range κ = {20, 30, 40, 50}, as well as
adaptive ones based on the dataset size, as suggested by [KB19]. We compare two different
adaptive perplexities κ = {N/1000, N/100} with the standard value of κ = 30. Here, we
want to test whether a higher perplexity leads to a better capture of global structure. For
the adaptive perplexity comparison, we only use the Macosko and MNIST datasets since
perplexities of N/1000 do not make sense for the small Iris dataset and computing a t-SNE
embedding with perplexity N/100 for Flow18 would be very expensive computationally.

We see that the impact of perplexity on the embedding when choosing values from the
common range is not very significant, see Appendix Figure 1. If anything, we observe a
slight trade-off between local and global structure. The KNN values in Appendix, Figure 2
suggest that smaller perplexities lead to embeddings that preserve local structure slightly
better. On the other hand, larger perplexity values lead to a better preservation of global
structure. This makes sense when we think back to perplexity being a measure of the
number of neighbors we consider when constructing the high-dimensional affinities.

Figure 6.3.: Standard versus adaptive perplexity values on Macosko (first row) and MNIST (second row)
datasets.

We observe the same phenomenon when using adaptive perplexities, see Figure 6.3. Since
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6.5. Learning Rate

N/1000 has the same order of magnitude as 30 for the datasets considered, we do not see
big differences between these embeddings. But the comparatively large adaptive perplexity
N/100 suggested by [KB19] produces embeddings where clusters are not as well visualized.
It does, however, preserve global structure better, see Figure 6.4. But, as expected, a
better global structure comes at a cost: for perplexity 30, the MNIST embedding took 183
seconds to run. Using N/100, it takes 1045 seconds.

Figure 6.4.: Quality of t-SNE embeddings with different (adaptive) perplexities on the Macosko and MNIST
datasets.

6.5. Learning Rate

In this section, we consider the effect of different learning rates on the embedding since
different suggestions for the optimal η exist. We try η = 1 ([LS22]), η = 200 ([Maa14]),
η = 800 ([Bui+13]) and η = N/α and the auto learning rate used in openTSNE, which
adapts according to the current exaggeration used.

Choosing η = 1 does not lead to a good visualization of the different clusters for the larger
datasets, as can be observed both in the scatter plots in Figure 6.6 and in the KNN measures
Figure 6.5. The best results are achieved with the “auto” setting across the board, with
the difference being most pronounced with the larger datasets, see Figure 6.7.

Figure 6.5.: Quality measures of t-SNE embeddings with different learning rates across all four datasets.
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6.5. Learning Rate

Figure 6.6.: Comparison of t-SNE embeddings using different learning rates on the Iris (first row), Macosko
(second row), MNIST (third row) and Flow18 datasets (last row).
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6.6. Number of Iterations

As for the Iris KL divergence plot, we see that quickly oscillating lines occur when using
too large learning rates on the small Iris dataset, see Figure 6.7. This is a commonly seen
phenomenon in machine learning and indicates the need for a lower learning rate.

Figure 6.7.: Comparison of KLD values plotted throughout all iterations of the t-SNE runs on four datasets
with different learning rates.

6.6. Number of Iterations

To test the hypothesis that bigger datasets profit from a longer t-SNE run [Bel+19], we
ran t-SNE with a different number of iterations on the four datasets above. We use the
following values in our experiments: T = {100, 750, 1500, 3000}. The EE length was kept
at 25 percent of the total number of iterations.

We can observe that using only 100 iterations is enough on the small Iris dataset Figure 6.8.
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6.6. Number of Iterations

Figure 6.8.: Comparison of t-SNE embeddings using a different number of iterations on the Iris (first row),
Macosko (second row), MNIST (third row) and Flow18 datasets (last row).
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6.6. Number of Iterations

With 100 iterations, the Iris embedding took 0.55 seconds to run, whereas the standard
number of 750 iterations took 2.42 seconds.

We also see that the largest dataset, Flow18, profits the most from the largest number of
iterations since its KLD and KNN values drop most with more iterations Figure 6.9, which
is also expected, see [Bel+19].

In general, our experiments seem to confirm our hypothesis that the larger the dataset, the
more it profits from more iterations. Nevertheless, when looking only at the embedding grid
Figure 6.8, we do not see very big differences between the embeddings from 750 iterations
onward.

Figure 6.9.: Quality measures including endpoint KLD values of t-SNE embeddings with a different number
of iterations across the four datasets.
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6.7. Early Exaggeration

We analyze both the early exaggeration factor α and the length of EE. For the parameter
α, we try out the values {4, 12, N/10}, in line with suggestions from the literature, as well
as no exaggeration.

Figure 6.10.: Comparison of t-SNE embeddings using different EE factors α on the Iris (first row), Macosko
(second row), MNIST (third row) and Flow18 datasets (last row).

Regarding the EE factor, we can see in Figure 6.10 that values 4 and 12 work best, co-
inciding with the consensus. For α = 1, some of the clusters are split up in the Macosko
dataset, for example, the light green one. This is also the case for the MNIST dataset: the
blue and brown clusters are separated in the α = N/10 case.
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6.7. Early Exaggeration

We now examine the length of EE, using endpoints of 125, 250, 500 and 750, the latter
coinciding with the end of the algorithm. In general, we observe better KNN values for
a smaller number of iterations with early exaggeration, see Figures 6.11 and 6.12. KNN
significantly drops when we never transition to a post-EE phase and keep EE on for all 750
iterations. In a similar way to results from experiments above, CPD benefits from longer
EE and we do not observe significant differences across the KNC values.

Figure 6.11.: Comparison of t-SNE embeddings using different lengths of the early exaggeration phase on
the Iris (first row), Macosko (second row), MNIST (third row) and Flow18 datasets (last row).
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Figure 6.12.: Quality measures of t-SNE embeddings with different EE lengths across the four datasets.

6.8. Automated Stopping

Instead of fixing a certain number of iterations and a certain EE phase length, we can
instead implement the automated stopping strategy outlined in Section 5.3.

In order to track KLD and KLD relative change, we implement trackers that record KLD
values every 3 iterations during EE and every 5 iterations after the EE phase using the
Callback functionality in openTSNE. We do not start the tracking right away but instead
use a buffer of at least 15 iterations of EE and at least 150 iterations after EE, following
[Bel+19].

To locate the stopping point for EE, we need to find the maximum of KLDRC. We stop
the EE phase once KLDRC has decreased two times in a row. For the X value in (5.1), we
choose X = 5000. These are all the same settings as used in the original C++ implemen-
tation of opt-SNE, see [Bel+19].

From looking at the embeddings in Figure 6.13, it seems like the standard version of t-SNE
outperforms the version with automated stopping. In particular, some of the clusters are
split up in the optimized plots, for example, the green cluster in the Macosko dataset or the
yellow cluster in MNIST. While it is hard to know why exactly this happens, it might be
the case that stopping the EE phase this early is not as benefitial and that more iterations
are needed for tight clusters to form. It would be interesting to try out the same strategy
with different parameters, e.g. an X > 5000 or requiring KLDRC to decrease three times
in a row in order to be able to pinpoint possible improvements.

When we take a look at the runtimes in Table 6.1, we see that t-SNE with automated
stopping is consistently faster than standard t-SNE. The relative difference is especially
pronounced the smaller the dataset, which is interesting since this automated stopping
strategy was designed in order to be able to deal better with large datasets. Our results
indicate that, in fact, automated stopping could also be useful not only for large datasets,
but across all dataset sizes.
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6.8. Automated Stopping

Figure 6.13.: t-SNE embeddings with (opt) and without automated stopping (normal) on the Iris, Macosko,
MNIST and Flow18 datasets. Results shown for three different seeds.

Figure 6.14.: Quality measures of t-SNE embeddings with and without automated stopping across the four
datasets. We plot quality measures averaged across the three runs as well as the results for
each individual seed (in a lighter color).

Figure 6.15.: KLD and KLD relative change of t-SNE embeddings with automated stopping plotted by
iteration on the four datasets.
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6.9. Clustering Guarantees in Practice

Iris Macosko MNIST Flow18
Standard t-SNE 26.1 183.4 254.4 1436.5
Using automated stopping 1.0 89.8 205.5 1223.1

Table 6.1.: Runtime in seconds of t-SNE embeddings averaged across three runs with different seeds, rounded
to the nearest 0.1 seconds.

6.9. Clustering Guarantees in Practice

Here we investigate if assumptions made for the clustering result in [LS22] hold in practice,
by looking at the Iris dataset. The reason that we use Iris as an example is that it is very
small, which makes it feasible to look at all N2 = 1502 affinities pij individually. It is also
relatively well-clustered, as t-SNE embeddings of the dataset above show. At least the dark
blue cluster is very clearly separated from the other two across all parameter selections.

Recalling 4.1, we make the assumption that the data we perform t-SNE on is clustered:

pij ≥ 1
10N |Ω(i)|

must hold for all pairs of points xi, xj that lie in the same cluster Ω(i). The question we
now aim to answer is: is this condition fulfilled for a small, real-world dataset like Iris,
where t-SNE is consistently able to visualize at least some clusters?

Ordering the Iris data points in terms of cluster membership (there are 50 points of each
of the three clusters), we can visualize what the high-dimensional similarity values pij look
like, see Figure 6.16. The three clusters are all visible, the first one more clearly than the
other two.

So, we would expect that at least the first cluster satisfies the condition that

pij ≥ 1
10N |Ω(i)| = 1

10 · 150 · 50 ≈ 1.3 · 10−5.

However, when we analyze all pij values of the first cluster (excluding, of course, the diag-
onal elements, since they are always zero), we notice that the smallest pij value we observe
is approximately 2.8 · 10−7, lower than the supposed minimum bound above. Furthermore,
there are a total number of 354 pij values between points in this first cluster are smaller
than the lower bound required for it to be a cluster. Now, while [LS22] do mention that
there is some flexibility with respect to the exact constant being used - we would have to
increase it by two orders of magnitude for this result to hold.

For the other two clusters, we also observe an interesting phenomenon. Say we consider
them as the same cluster, since they are often embedded close to each other with t-SNE.
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Figure 6.16.: All pairwise affinity values pij of the Iris dataset visualized. Points are ordered by cluster.
The affinity matrix was generated using the standard perplexity value of 30.

Then we observe that the smallest pij between two points in this cluster is zero. This
makes it virtually impossible to consider as a cluster, no matter how far we would scale
the constant. One might argue that clusters 2 and 3 should be considered separately, but
we also observe a minimal pij = 0 for one of them. This could be because not all points
within the clusters are amongst the 3κ nearest neighbors of each other, at which point the
pij are set to zero, see Section 5.1.

In any case, we see that even for a relatively well-clusterable and small dataset like Iris,
we run into issues with the requirements of the clustering guarantee. At the very least, it
cannot be claimed that the clustered data assumption is weak.

6.10. Rescaled t-SNE in Practice

We test the hypothesis that the rescaled t-SNE proposed in [MP24] is consistent in the
large data limits. For this, we first have to find a sequence hn with nhd

n/ log(n) → ∞ and
hn → 0 for n → ∞, where d is the dimensionality of our input data. We suggest a sequence
of the form hn = n−b, where 1/d < b < 1. We can quickly check that the requirements are
fulfilled. For n → ∞, we have

nhd
n/ log(n) = nn−b·d/ log(n) > nn−1/d·d/ log(n) = 1/ log(n) → ∞ and n−b → 0.

We also have to choose values for κ, the base perplexity, and β, which determines how fast
the perplexity grows. We use β = 0.05 and κ = 15 for all experiments.
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For our experiments, we then test on data growing in size, sampled from the same distri-
bution. We want to see whether the rescaled t-SNE proposed in [MP24] outperforms the
standard algorithm, especially with respect to a consistent limit.

For our first experiment, we sample from a Gaussian Mixture Model with five components,
uniformly weighted. Each Gaussian component follows a multivariate normal distribution
in 50 dimensions. For every component, each element of the mean vector is sampled from
N (0, 25). The covariance matrices are chosen as the identity matrices.

Figure 6.17.: Standard t-SNE embeddings on data generated from a mixture of five Gaussian distributions
with increasing sample size. Rows show embeddings with different seeds.

We also explore how well this rescaled t-SNE works on real data, using MNIST as an
example Figures 3 and 4. For this, we sample an increasing amount of points from the
MNIST dataset.

We conclude that the rescaled t-SNE version does indeed seem to be more consistent in
the large data limit. It especially seems to be expanding less in the simulated data case in
Figure 6.18. We can also observe that there is less variation between the different t-SNE
runs when using the rescaled version (Appendix Figure 6.18) when compared to standard
t-SNE, see Appendix Figure 6.17.

However, it should be noted that this method does not reduce the amount of parameters we
need to use. One can think of b as controlling the exaggeration, with a larger b leading to
a more amplified attractive force But we have replaced the perplexity parameter with two
parameters κ (the base perplexity) and β, the perplexity scaling factor. It is not obvious
how to choose all these, and using the rescaled method does not eliminate the need for
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Figure 6.18.: Rescaled t-SNE embeddings with b = 0.03 on data generated from Gaussian Mixture Model
with increasing sample size. The rows show embeddings with different seeds.

fine-tuning parameters. See, for instance, Appendix Figure 5. A smaller value of b leads to
very localized embeddings, but visibility of the cluster structure decreases.
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7. Conclusion

In this thesis, we explored both theoretical and practical aspects of the t-SNE algorithm
with a focus on how different parameter settings influence the quality of the resulting
embeddings. We were especially interested in understanding t-SNE’s behavior on real-
world datasets and investigating different suggested parameter settings and improvements
of the algorithm.

Through small examples, we demonstrate that initializing t-SNE with PCA leads to a bet-
ter preservation of a range of geometric structures. We thereby contribute to the existing
evidence that PCA initialization provides the best starting point for the embedding pro-
cess. Our investigation of the perplexity parameter also confirms previous findings: larger
perplexity values tend to enhance global structure preservation while incurring higher com-
putational costs and reducing the preservation of local structures. Similarly, the adaptive
auto setting for the learning rate, as implemented in openTSNE, consistently performed
well across various datasets. This demonstrates the efficacy of adaptive parameter choices.
Moreover, our results indicate that larger datasets benefit from longer iteration lengths,
which is also something that has been suggested before.

Regarding EE, our findings suggest that using factors within the commonly recommended
range promotes effective cluster formation and minimizes the risk of clusters splitting.
However, there appears to be a trade-off between preserving global versus local structure:
shorter periods of EE improve local detail, while longer periods tend to maintain a more
coherent global organization, albeit at the expense of visual clarity. Our implementation of
the automated stopping criteria from [Bel+19] notably reduced runtimes across all datasets,
even though it did not lead to a measurable improvement in embedding quality. We believe
that the idea of automated stopping is useful, even though it did not lead to qualitatively
superior results. The exact choice of parameters or even stopping criteria could be an
interesting area of further research.

On the theoretical side, our experiments call into question the clustering guarantee pre-
sented in [LS22], as even a small, well-clustered dataset like Iris did not meet the assump-
tions made in their paper. In contrast, our implementation of the rescaled t-SNE variant,
as suggested in [MP24], was more promising. Using the rescaled version of t-SNE, embed-
dings indeed became more consistent in the large data limit, supporting the central claim
of the paper.

Altogether, it still remains difficult to interpret a given t-SNE embedding. Different pa-
rameter choices can lead to very different results and it can be difficult to evaluate how
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good a given embedding is. This is especially the case for exploratory data analysis or
cases where we have unlabeled data. As pointed out by [WVJ16], it is easy to see clusters
in t-SNE plots where none exist in the underlying data, and as our experiments show, one
cannot make any statements about global structure and distances in the t-SNE embeddings
(remember, distances are not preserved). In particular, one should be cautious when t-SNE
is used for outlier detection. It is simply not designed for such use cases.

Furthermore, it is not clear which metrics to use in order to measure the quality of the
embeddings. We chose to use certain commonly used measures, but looking at other quality
measures, e.g. rank-based criteria [LV09] might be an interesting direction for further
research.

Moreover, it would be interesting to study the interplay between different parameters more.
In this thesis, we only changed one parameter at a time, but it could be interesting to see
how they interact.

Finally, there are still a lot of opportunities for a theoretical analysis of t-SNE. A particular
difficulty with regard to clustering guarantees seems to be defining what even constitutes
clustered data, a concept that is certainly difficult to formalize. Another very exciting area
is the comparison of t-SNE to other dimensionality reduction methods. Here, the use of
attraction and repulsion dynamics seems to be of central importance and is an active area
of research, with new algorithms constantly being proposed, see [LC24].

52



Appendix

A. openTSNE Default Settings

In the following, we present the default settings of the openTSNE library that were relevant
for our experiments.

• n_component: Dimension of the embedding space. Default: 2

• perplexity: 30

• learning_rate: “auto”

• early_exaggeration_iter: Length of EE phase. Default: 250

• early_exaggeration: EE factor. Default: 12

• n_iter: Number of iterations to run in the normal optimization regime. Default:
500

• exaggeration: Exaggeration factor to be used during the normal optimization regime.
Default: None

• dof: Degrees of freedom of the Student t-distribution. Default: 1

• theta: Only used when negative_gradient_method="bh". Trade-off parameter
between speed and accuracy of the Barnes-Hut method. Default: "auto"

• n_interpolation_points: Only used when negative_gradient_method="fft" or
its other aliases. Number of interpolation points to be used within each grid cell for
interpolation based t-SNE. Default: 3

• min_num_intervals: Only used when negative_gradient_method="fft" or its other
aliases. Minimum number of grid cells to use. Default: 50

• ints_in_interval: Only used when negative_gradient_method="fft" or its other
aliases. Indicates how large a grid cell should be. Default: 1
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A. openTSNE Default Settings

• initialization: Initial point positions to be used in the embedding space. Default:
“pca”

• metric: Metric to be used to compute affinities between points in the original space.
Default: “euclidean”

• initial_momentum: Momentum to be used during the EE phase. Default: 0.8

• final_momentum: Momentum to be used during the normal optimization phase. De-
fault: 0.8

• max_grad_norm: None

• max_step_norm: Maximum update norm. If the norm exceeds this value, it will be
clipped. Default: 5

• n_jobs: Number of threads to use while running t-SNE. Default: 1

• neighbors: Nearest neighbor method to use. Default: “auto”

• negative_gradient_method: Negative gradient approximation method to use. De-
fault: "auto"
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B. Additional Results

B. Additional Results

Perplexity

Figure 1.: Standard perlexity values on Iris (first row), Macosko (second row), MNIST (third row) and
Flow18 (last row) datasets.

55



B. Additional Results

Figure 2.: Quality of t-SNE embeddings with different perplexities across all four datasets.

Rescaled t-SNE on MNIST

Figure 3.: Standard t-SNE embeddings on data sampled randomly MNIST with increasing sample size. The
rows show embeddings with different seeds.
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B. Additional Results

Figure 4.: Rescaled t-SNE embeddings with b = 0.07 on data sampled randomly MNIST with increasing
sample size. The rows show embeddings with different seeds.
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B. Additional Results

Figure 5.: Rescaled t-SNE embeddings with b = 0.15 and κ = 20 on data sampled randomly MNIST with
increasing sample size. The rows show embeddings with different seeds.
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