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Abstract. In this paper we provide a method to find global minimiz-
ers of certain non-convex 2-phase image segmentation problems. This is
achieved by formulating a convex minimization problem whose minimiz-
ers are also minimizers of the initial non-convex segmentation problem,
similar to the approach proposed by Nikolova, Esedoḡlu and Chan. The
key difference to the latter model is that the new model does not involve
any constraint in the convex formulation that needs to be respected when
minimizing the convex functional, neither explicitly nor by an artificial
penalty term. This approach is related to recent results by Chambolle.
Eliminating the constraint considerably simplifies the computational dif-
ficulties, and even a straightforward gradient descent scheme leads to a
reliable computation of the global minimizer. Furthermore, the model is
extended to multiphase segmentation along the lines of Vese and Chan.
Numerical results of the model applied to the classical piecewise constant
Mumford-Shah functional for two, four and eight phase segmentation are
shown.

1 Introduction

Image segmentation is one of the fundamental research topics in the field of
image processing. In particular, the Mumford-Shah model [1] is widely used in
this context. One of the difficulties of this and many other variational image
processing models is that the underlying energy functional has local, non-global
minima. This is not only a theoretical problem, since the commonly used nu-
merical minimization techniques often get stuck in local minima that differ con-
siderably from a global minimum, hence possibly producing useless results. The
goal of this paper is to introduce a method to obtain a global minimizer of the
Mumford-Shah functional for 2-phase segmentation that only involves solving an
unconstrained convex minimization problem. This method can be extended to
multiphase segmentation by the ideas of Vese and Chan [2] in a canonical way.

1.1 Related work

The problem of minimizing the Mumford-Shah segmentation functional has been
extensively studied in the last decade leading to a wide range of existing methods,



each with its own shortcomings. One of the first numerical feasible methods to
obtain (local) minimizers of the functional was proposed by Chan and Vese [3].
They build on the levelset methods of Osher and Sethian [4] and parameterize
the unknown set by a levelset function.

Shen [5] developed a Γ -convergence formulation along with a simple imple-
mentation by the iterated integration of a linear Poisson equation. The unknown
set is represented in a diffuse way by a phase field.

In [6], Esedoḡlu and Tsai tackle the minimization problem based on the
threshold dynamics of Merriman, Bence and Osher [7] for evolving an interface by
its mean curvature. Here the minimization is achieved by alternating the solution
of a linear parabolic partial differential equation and simple thresholding.

Alvino and Yezzi [8] approximate Mumford-Shah segmentation using reduced
image bases. According to them, the majority of the robustness of Mumford-Shah
segmentation can be obtained without allowing each pixel to vary independently.
Their approximative model has comparable performance to Mumford-Shah seg-
mentations where each pixel is allowed to vary freely.

A way to obtain global minimizers was introduced by Nikolova, Esedoḡlu
and Chan [9]. Here, a convex constrained minimization problem has to be solved
followed by a simple thresholding of the latter minimizer. This method is closely
related to the method we propose in this paper, the key difference is that [9]
requires a constraint in the convex minimization while the model proposed in
this paper does not involve any constraint in the convex formulation.

On the other hand there are methods to solve a certain class of minimal sur-
face problems by unconstrained convex optimization, cf. the work of Chambolle
and Darbon [10, 11]. The 2-phase Mumford-Shah functional belongs to this class,
yet due to the best of our knowledge nobody seems to have tapped the potential
offered by these general insights for Mumford-Shah based image segmentation
so far.

2 Constrained global 2-phase minimization

First let us describe the general framework and revise the work of Nikolova et
al. [9], the starting point for our model.

In the following, Ω denotes our computational domain, an arbitrary but fixed
subset of Rn. For given indicator functions f1, f2 ∈ L1(Ω) such that f1, f2 ≥ 0
a.e. we consider the prototype Mumford-Shah energy

EMS[Σ] :=
∫
Σ

f1dx+
∫
Ω\Σ

f2dx+ ν Per(Σ), (1)

where Per(Σ) denotes the perimeter of the set Σ ⊂ Ω in Ω. If u0 is an image,
c1, c2 ∈ R are two grey values and fi(x) := (u0(x)− ci)2, this is the well known
piecewise constant Mumford-Shah functional for 2-phase segmentation, i.e.

E[Σ, c1, c2] =
∫
Σ

(u0 − c1)2dx+
∫
Ω\Σ

(u0 − c2)2dx+ ν Per(Σ). (2)



Remark 1. Because of

EMS[Σ] =
∫
Σ

(f1 − f2)dx+ ν Per(Σ)︸ ︷︷ ︸
=:ÊMS[Σ]

+
∫
Ω

f2dx,

EMS and ÊMS share the same minimizers.

Remark 2. For h(x) := e−|x|
2
, we have

EMS[Σ] =
∫
Σ

(f1 + h) dx+
∫
Ω\Σ

(f2 + h) dx+ ν Per(Σ)−
∫
Ω

hdx︸ ︷︷ ︸
=C<∞

,

i.e. replacing f1 and f2 by f1 + h and f2 + h does not affect the minimizers of
EMS. This, combined with f1, f2 ≥ 0 a.e., means that we can assume f1, f2 > 0
a.e. in Ω without loss of generality.

To obtain (local) minimizers of the functional above, Chan and Vese [3] proposed
to parametrize the unknown set Σ by a levelset function φ and get the energy

ECV[φ] :=
∫
Ω

H(φ)f1 + (1−H(φ))f2 + ν|∇(H(φ))|dx.

Here, H(·) denotes the Heaviside function, i.e. H(s) = 1 for s > 0 and H(s) = 0
else. A gradient descent will be used for minimization, therefore H is replaced by
a smeared out Heaviside function, e.g. Hδ(x) := 1

2 + 1
π arctan

(
x
δ

)
, where δ > 0.

While the specific choice is not important, it is important to use a function whose
derivative does not have compact support (cf. [3]). This gives the regularized
energy

ECV,δ[φ] :=
∫
Ω

Hδ(φ)f1 + (1−Hδ(φ)) f2 + ν |∇(Hδ(φ))|dx (3)

and yields the gradient descent

∂tφ = H ′δ(φ)
[
(f2 − f1) + ν div

(
∇φ
|∇φ|

)]
. (4)

One of the major drawbacks of the energy (3) is its non-convexity in φ. In [9],
Nikolova et al. noted that the gradient descent (4) and

∂tφ =
[
(f2 − f1) + ν div

(
∇φ
|∇φ|

)]
have the same stationary points, because H ′δ(φ) > 0. Obviously the latter is the
gradient descent of the energy

ECE[φ] :=
∫
Ω

(f1 − f2)φ+ ν|∇φ|dx.



In general, f1 − f2 takes positive and negative values, therefore the energy is
not bounded (neither from below nor from above). In other words, it does not
necessarily have a minimizer. However, this is easily fixed by restricting the
minimization to 0 ≤ φ(x) ≤ 1 for all x ∈ Ω. Based on this, the following
theorem holds:

Theorem 1. For given indicator functions f1, f2 ∈ L1(Ω) such that f1, f2 ≥ 0
a.e., let

u := argmin
0≤ũ≤1

∫
Ω

(f1 − f2)ũ+ ν|∇ũ|dx = argmin
0≤ũ≤1

ECE[ũ]

and Σc := {x ∈ Ω|u(x) > c}. Then Σc is a minimizer of the Mumford-Shah
energy (1) for all c ∈ [0, 1).

Proof. Nikolova et al. proved this theorem in [9] for a.e. c ∈ [0, 1], we extend it
here to hold not only for almost every, but for every c ∈ [0, 1). First, we briefly
sketch the prove given by Nikolova et al. for a.e. c ∈ [0, 1].

Using 0 ≤ u ≤ 1 and the coarea formula, one can show

ECE[u] =
∫ 1

0

EMS[Σc]dc− C,

where C is a constant independent of u. Let Σ∗ ⊂ Ω be a minimizer of EMS (the
existence of such minimizers using convergence in measure follows from standard
arguments) and let M := {c ∈ [0, 1]|EMS[Σc] > EMS[Σ∗]}. Assuming µ(M) > 0
leads to the contradiction ECE[χΣ∗ ] < ECE[u] therefore µ(M) = 0 holds and
the statement is proven for a.e. c ∈ [0, 1]. Here, χA denotes the characteristic
function of the set A.

Now we extend the statement to all c ∈ [0, 1), inspired by the proof of
Lemma 4 (iii) in [12]: Again let u be a minimizer of ECE under the constraint
0 ≤ u ≤ 1 and denote its superlevelsets by Σc. Choose an arbitrary but fixed
ĉ ∈ [0, 1). The statement holds for a.e. c ∈ [0, 1], so by Remark 1, there exists a
sequence (cn) ∈ [0, 1]N with cn ↓ ĉ such that

Σcn ∈ argmin
Σ⊂Ω

ÊMS[Σ].

Since the superlevelsets of a function are contained in each other, we have χΣcn
=

χ⋃n
k=1 Σck

→ χΣ∪ pointwise a.e., where Σ∪ :=
⋃∞
n=1Σcn

. Setting g := f1 − f2
and using Lebesgue’s dominated convergence theorem, we obtain∫

Σ∪
gdx =

∫
Ω

gχΣ∪dx = lim
n→∞

∫
Ω

gχΣcn
dx = lim

n→∞

∫
Σcn

gdx.

Here we used
∣∣gχΣcn

∣∣ ≤ |g| ≤ |f1|+ |f2| to provide the integrable upper bound.
For each n and Σ ⊂ Ω, we have∫

Σcn

gdx+ ν Per(Σcn
) ≤

∫
Σ

gdx+ ν Per(Σ).



Using the continuity argument from above and the lower semicontinuity of the
perimiter (cf. [13]), we get∫

Σ∪
gdx+ ν Per(Σ∪) ≤

∫
Σ

gdx+ ν Per(Σ),

i.e. Σ∪ is a minimizer of EMS[·, cn]. Combining this with

Σc = {x ∈ Ω|u(x) > c} =
∞⋃
n=1

{x ∈ Ω|u(x) > cn} =
∞⋃
n=1

Σcn

concludes the proof. ut

Knowing that Theorem 1 holds true for all c ∈ [0, 1) also remedies the last bit
of “uncertainty” left in [9].

Remark 3. For any function u that fulfills the constraint, obviously {u > 1} = ∅.
Therefore we cannot expect Theorem 1 to hold for c = 1.

To solve the constrained optimization problem, Nikolova et al. show that the
constrained problem has the same minimizers as the unconstrained problem if a
penalty term of the form α

∫
p(u(x)) is added with a sufficiently large coefficient

α (cf. [9], Claim 1). Here p denotes p(s) = max{0, 2
∣∣s− 1

2

∣∣− 1} .
While this result already gives a method to find global minimizers of EMS

by solving a convex, unconstrained minimization problem, its practical relevance
is limited. Most numerical minimizations methods rely on the gradient of the
functional, but the proposed penalty term is not differentiable, making a reg-
ularization necessary. But any smooth regularization of the penalty term will
stop the minimizers of the convex, constrained functional to coincide with those
of the convex functional with penalty term. The stronger the regularization, the
more the minimizers deviate.

Furthermore, the regularization imposes numerical difficulties. If an explicit
gradient descent is used for the minimization (as proposed in [9]), a suitable
timestep size control is needed to ensure convergence. The step sizes allowed by
such methods, e.g. the Armijo rule [14], typically correspond to the size of the
region in which the linearization of the functional properly approximates the
functional. Due to the nature of the penalty term p, the linearization at 0 and
1 of a regularized version of it only approximates the regularization properly in
a region that is of the size of the regularization parameter. So, as soon as the
current iterate of the gradient descent takes values near 0 or 1, the timestep
control only allows timestep sizes of the order of the regularization parameter,
which, as mentioned above, cannot be chosen too big.

Instead of using a penalty term one could of course also approach the con-
strained convex optimization problem directly. This is done for example by Bres-
son et al. [15]. Their approach does not need a penalty term and gives an efficient
algorithm to minimize ECE, but has to introduce an additional unknown v and a
regularization parameter θ and needs to minimize for u and v alternatingly. Fur-
thermore, the key idea to apply Chambolle’s TV minimization algorithm [16] can



also be directly applied to our model to obtain a simpler and faster minimization
algorithm: There is no need to introduce v, θ and the alternating minimization.
Therefore it is worth to investigate whether it is possible to simplify the problem
by getting rid of the constraint altogether.

3 Unconstrained global 2-phase minimization

Another alternative to Chan Vese is a phase field approach [6, 5] with a typical
double well term:

EPH,ε[u] :=
∫
Ω

u2f1 + (1− u)2f2 + ν

(
1
ε
u2(1− u)2 + ε |∇u|2

)
dx.

A minimizer uε of this energy is a diffuse representation of the segmentation,
i.e. {uε = 0} and {uε = 1} represent the two segments respectively with a
smooth transition in between. EPH,ε[u] is known to Γ -converge to EMS [5], but
unfortunately not convex and does not permit jumps in u for ε > 0.

Knowing both ECE and EPH,ε, the question arises whether it is possible to
combine the advantages of both models while eliminating some of the disadvan-
tages. Heuristically looking at both energies served as motivation to investigate
the following energy:

E[u] :=
∫
Ω

u2f1 + (1− u)2f2 + ν|∇u|dx. (5)

This energy is convex because it does not involve the non-convex double well
term of EPH,ε, and can be minimized without imposing constraints because it
does not have the indicator term from ECE that is not bounded from below.
Furthermore, it permits jumps in u.

Remark 4. Given a function u, obviously we have

E[min{max{0, u}, 1}] ≤ E[u].

Therefore, a minimizer umin fulfills 0 ≤ umin ≤ 1.

While the proposed functional has some nice obvious properties, it is far from
obvious whether there is a relation between its minimizer and minimizers of
EMS. Before we tackle this question, let us remark a link between ECE and E:

Remark 5. There is a direct relationship between ECE and E: A straightforward
calculation shows

u2f1 + (1− u)2f2 = (f1 − f2)u+ (u− 1
2 )2(f1 + f2)− 1

4 (f1 + f2) + f2.

Therefore

E[u] =
∫
Ω

(f1 − f2)u+ (u− 1
2 )2(f1 + f2)− 1

4 (f1 + f2) + f2 + ν|∇u|dx

=ECE[u] +
∫
Ω

(f1 + f2)(u− 1
2 )2dx+ C.



In other words, E essentially equals ECE plus an additional quadratic penalty
energy. The constant C is clearly irrelevant for the minimizers.

To investigate the relation between the minimizers of E and minimizers of
EMS we can make use of the theory derived in the context of the connection
between minimal surface problems and total variation minimization.

The following general statement has been made by Chambolle [17], Cham-
bolle and Darbon [11], in the continuous setting, its discrete counterpart is well
known:

Theorem 2. Let Ψ : Ω × R → R, (x, s) 7→ Ψ(x, s) such that Ψ(x, ·) is C1 and
uniformly convex for all x ∈ Ω and

u := argmin
ũ

∫
Ω

Ψ(x, ũ(x)) + ν|∇ũ|dx.

Then Σc := {x ∈ Ω|u(x) > c} for all c ∈ R is a minimizer of∫
Σ

∂sΨ(x, c)dx+ ν Per(Σ).

Note that this general statement cannot be directly applied to the model of
Nikolova et al. discussed in Section 2 because the integrand is neither uniformly
(not even strictly) convex nor does the general statement incorporate the con-
straint.

As remarked in [11], the proof for a more specific statement given in [10] still
applies to Theorem 2.

Theorem 3. If u is a minimizer of (5), then {u > 1
2} minimizes

EMS[Σ] =
∫
Σ

f1dx+
∫
Ω\Σ

f2dx+ ν Per(Σ).

Proof. Let Ψ(x, s) := s2f1(x)+(1−s)2f2(x). Obviously Ψ(x, ·) is C2 for all x ∈ Ω
and we have ∂sΨ(x, s) = 2sf1(x)+2(s−1)f2(x) and ∂2

sΨ(x, s) = 2(f1(x)+f2(x)).
From Remark 2, we know that f1, f2 > 0 a.e., therefore Ψ(x, ·) is uniformly
convex for a.e. x ∈ Ω. Now just apply Theorem 2, noting ∂sΨ(x, 1

2 ) = f1(x) −
f2(x) and Remark 1. ut

In this sense, our theorem is a corollary of Theorem 2.

The preceding theorem finally tells us how to find a global minimizer of EMS[·]
given in (1): Minimize the convex energy (5) and threshold the minimizer to
1
2 . In case of the piecewise constant Mumford-Shah functional for 2-phase seg-
mentation, we obtain a global minimizer of the Mumford-Shah energy (2) with
respect to Σ for fixed gray values c1, c2. We do not necessarily find a global
minimizer with respect to Σ, c1 and c2.

Another link between ECE and EPH,ε is the so-called piecewise constant lev-
elset method [18] for 2-phase segmentation that constrains the levelset function



to be piecewise constant. If this constraint is approximated with a penalty en-
ergy, the method equals the phase field approach. If the constraint is relaxed
to a certain boundedness constraint, the method equals [9]. In both cases the
fidelity term has to be altered accordingly, making use of the fact that this term
is the same in ECE and EPH,ε if u only takes the values 0 and 1.

Since (5) is similar to the Rudin-Osher-Fatemi energy [19], there is a wide
variety of established minimization schemes to choose from, ranging from a
straightforward gradient descent scheme with a differentiable approximation of
the BV term over primal thresholding methods [20] to sophisticated methods
based on the dual formulation of the BV norm, e.g. [16, 11].

With Ψ(x, s) = 1
2 (s− (f2(x)− f1(x)))2, another immediate consequence of

Theorem 2 is that the zero superlevelset of a minimizer of the ROF energy

EROF[u] :=
∫
Ω

1
2

(u− (f2 − f1))2 + ν|∇u|dx (6)

is a global minimizer of ÊMS and therefore of EMS. This is another way to obtain
a global minimizer of EMS by unconstrained convex optimization, but compared
to (5) this method has a few shortcomings, cf. Sections 4 and 5. Furthermore,
the boundedness mentioned in Remark 4 does not hold for minimizers of the
ROF energy. Perhaps this is one of the reasons why nobody seems to have used
the classical ROF function for Mumford-Shah based image segmentation so far.

4 Multiphase segmentation

Our functional can be extended to multiphase segmentation by the using the
idea of Vese and Chan [2] in a straightforward manner. To keep notation at bay,
we restrict the discussion to segmentation in 4 phases. The segmentation in 2n

phases works analogously. Let f1, f2, f3, f4 ∈ L1(Ω) such that fi ≥ 0 a.e., then
the multiphase functional is given by

E[u1, u2] :=
∫
Ω

u2
1u

2
2f1 + (1− u1)2u2

2f2

+ u2
1(1− u2)2f3 + (1− u1)2(1− u2)2f4 (7)

+ ν (|∇u1|+ |∇u2|) dx.

If we fix u2, the reduced functional E[·, u2] is the same as the 2-phase functional
(5) with the indicator functions f̃1 = u2

2f1 + (1 − u2)2f3 and f̃2 = u2
2f2 +

(1 − u2)2f4. As in the 2-phase case, we can assume fi > 0 a.e. without loss of
generality and because either u2

2 > 0 or (1 − u2)2 holds, we have f̃1, f̃2 > 0.
Therefore, all statements proven for the 2-phase functional can be applied to
E[·, u2], i.e. we can compute the global minimum (for fixed u2). The same applies
for fixed u1, so as an optimization strategy, we propose to minimize with respect
to u1 and u2 alternatingly.

Even though it is easy to extend (5) to multiphase segmentation, the same
does not apply to the ROF energy (6). There is no apparent extension in the
sense of [2] to formulate the multiphase segmentation in a single functional.



5 Indicator parameters

In typical segmentation tasks, the indicator functions depend on unknown pa-
rameters, e.g. the grey values for each segment in case of the piecewise constant
Mumford-Shah model. For the sake of simplicity, we discuss the latter model
in its 2-phase formulation here, i.e. fi(x) := (u0(x) − ci)2, i = 1, 2, but this
discussion applies to other indicator functions and multiphase segmentation as
well.

During the minimization of (5) we have to minimize for c1 and c2 as well.
This is typically done in an alternating fashion, but there are two apparent
possibilities to update the grey values: Minimize (5) with respect to c1 and c2
or do so for the energy in the set formulation (1). The two possible updating
formulae for c1 two arising are

c1 =
∫
Ω

u2u0dx
/∫

Ω

u2dx or c1 =
∫
{u> 1

2}
u0dx

/∫
{u> 1

2}
dx.

The two possibilities only coincide if u is binary. The first formula not only
averages u0 in {u > 1

2}, instead it takes into account the values of u0 everywhere,
but weights the values according to u2. To a certain degree this is similar to
the effect of the regularization of the Heaviside function in the model of Chan
and Vese. From our experiments, this reduces the chance of getting stuck in
local minima that can still occur when minimizing over u and the indicator
parameters. Particulary in the case of multiphase segmentation it turned out to
be beneficial.

Due to the different way f1 and f2 are used in the ROF energy (6), it is not
quadratic in c1 and c2. So this functional does not give a natural formula to
update the grey values.

6 Numerical examples

To conclude, we show the practical usability of the proposed model by applying
it to the classical piecewise constant Mumford-Shah functional, see equation (2).
As minimization method we use an explicit gradient descent scheme with the
Armijo rule [14] as timestep size control. The absolute value is regularized by
|z|ε =

√
z2 + ε2 (in all examples presented here, ε = 0.1 is used). For the spatial

discretization, we use bilinear finite elements on a regular quadrilateral grid, i.e.
each pixel of the input image u0 corresponds to a node of the finite element
mesh. The grey values c1 and c2 are initialized with 0 and 1 respectively and
updated occasionally during the gradient descent.

Figure 1 shows results of our method and of the one proposed by Nikolova
et al. [9] on one artificial image and one digital photo. In both examples, the
minimizer u from our model is far from being binary, but this is nothing to be
expected from the theory presented in this paper. The 0.5-superlevelset gives an
accurate segmentation that is not influenced by the presence of heavy noise (top
row) and works on non-binary input images (bottom row). The minimizers u



Fig. 1. Segmentation of an artificial noisy structure (ν = 2 · 10−3, top row) and the
well-known Matlab cameraman image (ν = 4·10−3, bottom row): Input image u0 (left),
segmentation function u and 0.5-superlevelset of u colored with the average grey values
c1, c2 obtained by our model (middle) and by using ECE (right). The slight difference
of the grey values is attributed to the employed update formula, cf. Section 5.

of the Nikolova et al. model look very different, but the segmentation obtained
from the 0.5-superlevelsets is almost identical.

Upon closer inspection, the minimizer u of our model from the top row of
Figure 1 looks very much like as obtained by minimizing the ROF energy with
u0 as input image. This is not surprising due to the following observation: If
u0 is binary, i.e. u0 = χA for a set A ⊂ Ω and c1 = 0, c2 = 1 we have f1 =
(χA − 0)2 = χA and f2 = (χA − 1)2 = χΩ\A and therefore

E[u] =
∫
Ω

(u− χΩ\A)2 + ν|∇u|dx,

i.e. E equals the ROF energy in this special case. This is not the case if u0 is
non-binary which can be seen from the bottom row of Figure 1.

Figure 2 shows 4-phase segmentation results. Those indicate the tendency of
the segmentation functions to become binary for small values of ν.

Finally, Figure 3 illustrates the behavior of the method for different numbers
of segments and Figure 4 shows three timesteps of the 8-phase segmentation.
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