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Chapter 1

Introduction

Time-series data is widespread across various fields and significantly influences decision-
making processes. In finance, time-series data plays a crucial role, especially in developing
and utilising high-frequency trading algorithms. These algorithms exploit fleeting market
opportunities with remarkable precision, while portfolio optimisation strategies rely heavily
on historical market data. This enables the creation of diversified investment portfolios
tailored to investors’ risk preferences and financial goals. Additionally, risk management
models leverage time-series data to assess and mitigate financial risks, providing valuable
insights into market volatility and asset performance.

In weather forecasting, time-series data forms the foundation for accurate predictions of
meteorological phenomena. Meteorologists analyse historical weather patterns alongside
real-time atmospheric conditions to forecast severe weather events such as hurricanes and
tornadoes. This aids in implementing timely evacuation plans and mitigating potential
damage. Similarly, in agricultural planning, time-series data helps farmers optimise planting
schedules and irrigation strategies based on historical climate data and seasonal trends. This
enhances agricultural productivity and improves food security.

In resource management, time-series data is pivotal for forecasting demand across supply
chains. It enables streamlined inventory management and distribution logistics by predict-
ing fluctuations in consumer demand based on historical sales data and market trends.
Additionally, time-series data facilitates energy consumption forecasting for utilities, en-
abling proactive grid management to meet fluctuating electricity demand efficiently while
minimising waste and environmental impact. Moreover, in urban planning, analysing his-
torical traffic patterns alongside real-time congestion data informs strategies to optimise
traffic flow and enhance transport infrastructure, reducing congestion in urban centres.

As organisations increasingly harness the predictive potential of time-series data, there is
a growing demand for accurate and scalable forecasting methods. This demand drives the
development of advanced analytical techniques and robust predictive models across multiple
sectors, fostering innovation and efficiency.

In the early 20th century, foundational work by statisticians like George Udny Yule and
Andrey Kolmogorov laid the groundwork for time-series forecasting. Yule’s autoregressive
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2 CHAPTER 1. INTRODUCTION

models, introduced in 1927, provided a framework for understanding temporal dependencies
in sequential data [Yul27]. Meanwhile, Kolmogorov’s contributions to probability theory
and stochastic processes laid the theoretical foundation for modeling random fluctuations
in time-series data.

The mid-20th century saw significant advancements with the rise of computer technology,
enabling the application of mathematical modeling techniques on a larger scale. The Box-
Jenkins methodology, developed in the 1970s, formalised model selection, estimation, and
diagnostic checking for autoregressive integrated moving average (ARIMA) models [BJ77].
Concurrently, linear regression techniques gained prominence for trend analysis, enabling
quantification and extrapolation of linear relationships over time.

The late 20th and early 21st centuries saw transformative changes in time-series forecasting,
driven by the exponential growth in data availability and computational power. Neural
network-based methodologies emerged, starting with artificial neural networks (ANNs) in
the late 1980s. Multilayer perceptrons (MLPs) demonstrated effectiveness in assimilating
historical data for precise predictions [LF87].

Further evolution led to recurrent neural networks (RNNs) in the 1990s, which incorporated
feedback loops for sequential data processing. However, challenges such as the vanish-
ing gradient problem limited their effectiveness in capturing long-term dependencies. The
introduction of Long Short-Term Memory (LSTM) networks addressed these challenges,
enhancing the accuracy of neural network-based methodologies for time-series forecasting
[HS97].

In 2017, the Transformer architecture introduced a major paradigm shift by leveraging
self-attention mechanisms to discern global dependencies within data sequences [Vas+17].
Unlike traditional RNNs, Transformers excel in capturing intricate temporal patterns and
nonlinear relationships, revolutionising domains like natural language processing (NLP)
and computer vision (CV). Models such as BERT and GPT have set new benchmarks in
NLP tasks [Dev+19; Bro+20], while Vision Transformers (ViTs) challenge the dominance
of convolutional neural networks (CNNs) in computer vision [Dos+21].

Deploying Transformers in time-series forecasting exploits their ability to analyse historical
data effectively, promising enhanced accuracy and scalability. This marks a significant
advancement in predictive analytics, ushering in an era of innovation and efficiency across
diverse industries.

Objectives of this work

The multivariate time-series forecasting problem is defined as the task of making a multi-
step forecast of length T for all Nin variates of the time-series, given a lookback of the most
recent Lin historic observations per variate. A formal definition of this problem will be
provided in the next chapter.

In recent years, a plethora of Transformer models have been developed with the specific
goal of multivariate time-series forecasting in mind. The following chapter will provide an
overview of the emerging literature on this subject. While many works incorporate inductive
biases specific to time-series data into the model, the focus has recently shifted towards the
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Transformer
Block

Input Embedding Output Projection

Figure 1.1: Illustration of the flow through a simple Transformer model: All variates of
length Lin are combined in a single token for each timestamp and then processed by the
Transformer block that computes a representation that is then used to forecast the next T
timestamps.

Time-Axis

Variate-Axis

Figure 1.2: We distinguish the time- and variate-axis for a multivariate time-series.

study of different model architectures on a higher level. Previously, for each timestamp, all
observations of a multivariate time-series were combined into a single token (see Figure 1.1).
Subsequently, self-attention, the fundamental component of the Transformer, is employed
to extract the underlying dynamics by combining the different tokens.

Goal 1: Systematic Study of Self-Attention and MLPs along the Time- and
Variate-Axis

Recently, [Liu+24; ZY23; Wan+24; Nie+23; Zen+23] have questioned the combined em-
bedding of many variates into one single token and the application of self-attention along
the time axis (see Figure 1.2). Moreover, models that rely on MLPs as their central mecha-
nism for combining different observations of the time-series have received a revival in recent
years. This is evidenced by [Zha+22; Che+23]. These developments have resulted in the
emergence of numerous models with varying structures that have demonstrated empiri-
cal success in multivariate time-series forecasting. To the author’s knowledge, there is no
comprehensive study of the different architectures beyond narrow ablation studies of the
proposed models in their respective works with respect to forecasting performance.
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A systematic study of the different architectures must provide a common reference point.
In light of the above, we put forth the FlexibleTransformer architecture, which builds
upon the architectures in [Nie+23; ZY23; Wan+24] and in which we can formulate current
Transformer- and MLP-based models as examples. This serves as a foundation for extend-
ing the techniques proposed in [Kob+21; Kob+24] to the realm of time-series. Kobayashi
et al. analyse contextualisation in the BERT and GPT language models by decomposing the
Transformer’s components. This approach enables the analysis of the impact of MLPs and
self-attention mechanisms along the time- and variate-axes. The proposed decomposition
is essentially a feature attribution method, which also provides a novel interpretation of
model results for time-series data by attributing predictions to the models’ inputs.

Goal 2: Study of Self-Attention Approximation Schemes along the Variate Axis

The success of methods that do not combine variates in the input embedding has sparked
the development of architectures combining different variates by applying self-attention
[Liu+24]. Due to the squared complexity of the self-attention mechanism in the input
sequence length, there is a well-established body of research studying efficient attention
approximation, which brings down the computational cost to O(Lin logLin) or even O(Lin).
A substantial body of research has been conducted on this topic, with a focus on develop-
ing methods that are agnostic to the specific application. These methods can be broadly
classified into two categories: those that assume sparsity of the attention score matrix and
those that assume a low-rank property [Che+21; KKL20; Cho+21]. Approaches that are
specific to time-series data are designed to be applied to self-attention along the time axis.

The recent advances in methods applying self-attention along the variate-axis have raised
the question of efficient self-attention approximation along this axis, which remains an open
problem. As most modern time-series data is very high-dimensional, efficient self-attention
approximation is of particular importance in this context. Furthermore, we hope that by
enabling the study of self-attention along the variate-axis in high-dimensional settings, we
can pave the way for future research in this new setting.

Outline

In chapter 2 we give a more detailed overview of the current state of the literature in
the field of applying Transformers to time-series data and introduce the basic structure
of the vanilla Transformer encoder. This allows us to study some selected modifications
of the Transformer architecture that are relevant for this work. Afterwards in chapter 3,
we propose the FlexibleTransformer that provides a new framework for jointly studying
recent Transformer- and MLP-based architectures. We use this as a starting point for the
systematic analysis of self-attention and MLPs in different settings in chapter 4 by using
feature attribution methods. In chapter 5, we then tackle the question of efficient self-
attention approximation along the variate axis. Finally, we conclude and give an outlook
in chapter 6.

Contributions

This work’s contributions are
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• We propose the FlexibleTransformer which provides a framework for a systematic
analysis of popular Transformer-based time-series forecasting models. Hereby, we ab-
stract from the concrete architecture and identify the common building blocks amongst
seemingly unrelated architectures.

• We introduce the MLP token-mixer in the FlexibleTransformer framework. This
carries the model architecture from TSMixer [Che+23] over to our setting.

• We then conduct a comprehensive empirical analysis of configurations within the
FlexibleTransformer, including model architectures that have not yet been explored
in the literature.

• We provide an end-to-end decomposition of the FlexibleTransformer based on the
ideas from [Kob+21; Kob+24] and make Transformer-based time-series models inter-
pretable.

• We explore the application of common efficient self-attention mechanisms along the
variate-axis in the FlexibleTransformer to allow for modern large-scale applications.
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Chapter 2

Transformers for Time-Series
Forecasting

This chapter aims to introduce the relevant algorithmic descriptions and theoretical founda-
tions of current Transformer model architectures. Given the multitude of different Trans-
former models for a wide range of applications, we aim to streamline the presentation
towards our application of time-series forecasting. One of the main challenges is to present
the concepts in sufficient generality so that we can later abstract from the concrete model
architecture, while also providing an in-depth review of the relevant models’ components
for the novice to Transformer architectures.

This chapter is organised as follows: We begin by explaining the motivation behind the
use of Transformers for time-series problems and defining the problem to be solved. We
then present a reminiscent of the vanilla Transformer [Vas+17] tailored towards time-series
forecasting. While the exposition of this condensed form of the vanilla Transformer should
be viewed in an exemplary light, it provides us with the opportunity to introduce the
essential concept of self-attention. In the following section, we will delve deeper into the
current state-of-the-art modifications of the Transformer architecture. We will begin this
discussion by providing a review of the broad literature on such modifications tailored
towards time-series tasks. Subsequently, a number of specific models will be discussed in
greater detail, forming the basis for further investigation throughout the remainder of the
thesis and serving as a foundation for the subsequent chapter.

2.1 Motivation

Before embarking on an exposition of the Transformer, it is first necessary to provide a
heuristic motivation behind the Transformer.

Prior to the invention of Transformers, LSTMs had been the state-of-the-art since the 1990s
for time-series forecasting tasks. LSTMs are based on the idea of RNNs, namely that the
input sequence is processed step by step and a hidden state is updated with each timestamp
by the very same neural network. RNNs can be conceptualised as extremely deep neural
networks. Their depth is essentially the length of the sequence, which presents a significant

7



8 CHAPTER 2. TRANSFORMERS FOR TIME-SERIES FORECASTING

(a)

(b)

Figure 2.1: The self-attention mechanism of the Transformer (a) is able to capture long-
range patterns in the data while LSTMs (b) have a more localised receptive field due to the
sequential processing.

challenge since the gradients vanish or explode in backpropagation due to the chain rule.
This issue was addressed by LSTMs, which introduced a gating mechanism to only partially
update the hidden state with new information. However, a commonality among these model
architectures is that the input sequence is processed sequentially. This has two inherent
drawbacks: Firstly, training and inference are both considerably slower with long sequences
due to the inability to parallelise the operations. Secondly, it is extremely challenging to
learn patterns based on observations that are widely spaced in the input sequence.

These are two significant challenges that Transformers aim to address. The innovative
concept behind the ability to overcome the limitations of sequential models is the concept
of self-attention. Self-attention can be conceptualised as a general approach to conducting
pairwise comparisons of distant elements within an input sequence (see Figure 2.1 (a)).
This enables the Transformer to identify global patterns and excel in long-range forecasting
tasks. An alternative way of expressing this insight is that Transformers represent a special
case of graph neural networks (GNNs) that correspond to a fully connected graph (see
[Zho+20] for an introduction).

It has been demonstrated that these pairwise comparisons can be parallelised, which results
in the entire model having a training and inference time that is O(1) in the input sequence
length Lin.

2.2 The Time-Series Forecasting Problem

For the sake of completeness, we want to define the concept of a stationary multivariate time-
series and the task that we want to solve. Let ξ = (ξi)i∈N be a time-discrete RNin-valued
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stationary stochastic process on some probability space (Ω,F ,P). We will neither explicitly
mention ξ nor the underlying probability space in the coming sections and chapters.

Definition 2.1. A stationary multivariate time-series X of ξ of length Lin ∈ N is a
realisation of Lin successive steps of a stationary RNin-valued stochastic process ξ, i.e.
X ∈ RNin×Lin such that there is ωX ∈ Ω with

Xni = (ξi(ωX))n, n ∈ {1, . . . , Nin}, i ∈ {1, ..., Lin}.

While, the case of non-stationary time-series has recently been treated by the introduction
of the non-stationary Transformer in [Liu+22b], we exclusively focus on the stationary case.
This case captures most of the challenges in modeling and is the classical setting for time-
series forecasting. Furthermore, we are not going to explicitly treat the case Nin = 1 in
this thesis. Hence, we abbreviate by simply using time-series for the definition above. We
further remark that X is well-defined thanks to the stationarity of ξ in the definition above.

The time-series forecasting problem for ξ with history sequence length Lin and prediction
length T consists of predicting

Y := (ξLin+1(ωX), . . . , ξLin+T (ωX)) ∈ RNin×T

for some time-series X of length Lin. The typical approach in the Transformer literature is
to model this as a supervised learning problem with a training dataset D based on a long
time-series of ξ containing samples of the form

((ξl+1(ω), . . . , ξl+Lin
(ω)), (ξl+Lin+1(ω), . . . , ξl+Lin+T (ω))) ∈ RNin×Lin × RNin×T ,

where l is the sample index and ω ∈ Ω is corresponding to the given time-series. In
training, the first component of the samples above is the input to the model and the second
component serves as the label. We use the L2-loss function for training and call a model’s
output Ŷ ∈ RNin×T the forecast of length T .

We call the rows of X variates and write Xn or Xn,: for the n-th row of X and X:,i for the
i-th column of X.

2.3 Vanilla Transformer

The ideas of this chapter have been originally presented in [Vas+17] for machine translation.
Since 2017, Transformers have been adapted to many domains including computer vision
[Dos+21; Ram+21], speech recognition [DXX18] and music composition [Kes23]. The ob-
jective is to streamline the presentation of the vanilla Transformer’s components in order
to facilitate their subsequent utilisation in our later applications. Contrary to [Vas+17], we
replace the Transformer decoder with a simple linear layer. This simplifies the model and is
currently the state-of-the-art for tasks based on time-series after the effectiveness of linear
decoder has been demonstrated in [Zen+23].

Hence, we have the following three building blocks that we want to study in this section:

• Input encoding: The input encoding computes so-called tokens from the inputted
time-series X. The canonical input encoding following [Vas+17] is to produce one
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token for each timestamp of the time-series. Such an input encoding is composed of
the input embedding and the positional encoding.

• The transformer encoder represents the core component of the transformer. It pro-
cesses a sequence of tokens derived from the input encoding, extracting the essential
semantics of the time-series that are pertinent to the forecasting task. In more con-
crete terms, the transformer encoder is comprised of multiple stacked transformer
blocks. Each of these blocks contains a token-mixer, which interrelates the tokens in
the sequence, and a token-processor, which is applied independently to each token. In
the original Transformer, the token-mixer is self-attention, while the token-processor
is an MLP. Additionally, we use the layer normalisation introduced in [Xio+20] and
residual connections around the token-mixer and token-processor proposed in [He+16]
to stabilise and improve learning.

• Linear decoder: This is a great simplification of the Transformer architecture com-
pared to the iterative decoding in [Vas+17] that follows the classical Seq2Seq-approach
from [SVL14]. The linear decoder is simply a linear layer that produces the T fore-
casting outputs given the Transformer encoder representation.

We have hinted at the notion of a token above since they are the elementary building blocks
of the models’ internal data representation which contains several tokens at each step. We
introduce the following new notation.

Definition 2.2. A token x is a vector in X := Rd, where d denotes the model dimension.
The token representation is given by (xi)i∈I , where I is a model dependent index set. We
further write

T := X I = {(xi)i∈I : xi ∈ Rd for i ∈ I}

for the token space.

As we will shortly see, the index set I can for example be chosen as {1, . . . , Lin}, i.e. the set
of timestamps. We typically use bold letters for tokens and understand all standard vector
operations token-wise if not otherwise mentioned.

The structure of the vanilla Transformer is outlined in Figure 1.1. We can also formulate the
vanilla Transformer for the time-series forecasting task with a linear decoder algorithmically
(we define the appearing operations in the next sections) in Algorithm 1.

We have slightly changed the notation with respect to [Vas+17]. We call the feed-forward
layer that is applied to every token independently token MLP and the input embedding
single token input embedding instead of just input embedding. The reason for this is that
we are going to introduce a more general class of models in chapter 3 for which the vanilla
Transformer will just prove to be a special case.

We are now going to define the operations that appear in Algorithm 1 and provide the
theoretical foundations to explore modifications and generalisations. We refer the reader
to appendix A.1 for an introduction on commonly used notation and to appendix A.2 for
standard operations.
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Algorithm 1: VanillaTransformer

input : Time-series X ∈ RNin×Lin

output: Forecast Ŷ ∈ RNin×T

X(0) ← SingleTokenInputEmb(X) + TimePosEnc(Lin);

for l← 1 to nlayers do

X̃(l) ← ResConnSelfAttn

(
X(l−1)

)
;

X̃(l) ← LayerNorm
(
X̃(l)

)
;

X(l) ← ResConnTokenMLP

(
X̃(l)

)
;

X(l) ← LayerNorm
(
X(l)

)
;

Ŷ ← LinDecoder
(
X(nlayers)

)
2.3.1 Input Encoding

The input encoding is composed of an input embedding that is responsible for embed-
ding the multivariate time-series in the token space T , that is suited for the application
of self-attention, and a positional encoding, that provides a fixed representation for each
timestamp, allowing the model to discern the same value at different positions. In the case
of the vanilla Transformer, we embed tokens timestamp-wise with the single token input
embedding and thus consider a time positional encoding. These are parts of the Transformer
architecture that are subject to modifications in subsequent versions of the Transformer.

Single Token Input Embedding

The purpose of the input embedding becomes evident when we consider the domain of
NLP. In this context, the input sequence X is not a time-series, but rather a sequence of
words (or stems of words). Consequently, it is not yet ready to be further processed by any
self-attention mechanism that generally requires a sequence of real vectors. Therefore, the
first step is to encode the input sequence into the token space T .

We will later explore different types of encodings, but focus now on the single token input
embedding that the vanilla Transformer makes use of. The idea is the following: For every
timestamp i ∈ {1, . . . , Lin}, we want to compute a token xi. Hence, the index set appearing
in definition 2.2 is I := {1, . . . , Lin} for the vanilla Transformer.

Since we have very little control over the number of variates Nin, having an input embedding
RNin → Rd is a natural choice. The model dimension d appears as a model hyperparameter
and depends on the kind of data and application. For NLP tasks, relatively large values of
d = 512 are common, whereas, we typically choose d to be (much) smaller in time-series
based applications.

The reason why we call this type of embedding single token input embedding is that we
reduce the originally present Nin observations at each timestamp to a single token in Rd.
Furthermore, as we will see shortly, the time positional encoding of a token is a function
of the token position that carries most of the information in only a few of the d model
dimensions. Hence, the input embedding allows to “make space” in Rd for the quickly
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oscillating components of positional encoding that carry most of the positional information.

Definition 2.3. The single token input embedding for a time-series of length Lin and Nin

variates is defined as a linear layer, given by

SingleTokenInputEmb (X) := LinNin→d

(
XNin×Lin

)
Time Positional Encoding

The time positional encoding for a token is a vector in Rd only depending on the position of
that token in the input sequence. The main reason for having a positional encoding is the
permutation-equivariance of the self-attention mechanism which requires us to add infor-
mation about the timestamp to the tokens computed by the single token input embedding
to allow the model to discern the same value of the input time-series in different positions.
In comparison to other models such as RNNs, we have to somehow inject the sequential
nature of the data, while allowing for parallel processing.

Generally, there are two approaches to (time) positional encoding. While it is possible to
learn positional encoding from scratch, we typically choose a fixed function. In its classical
form from [Vas+17], the positional encoding is defined in the following way.

Definition 2.4. The time positional encoding of length L is an element in T with I =
{1, . . . , L} given by

(TimePosEnc(L)n)i :=

sin
(

n
Ci/d

)
if i ≡ 0 mod 2,

cos
(

n
C(i−1)/d

)
else

(2.1)

for i ∈ {1, . . . , d} and n ∈ {1, . . . , L} where C ≫ 0.

A typical choice for C is C = 10000. An intuitive view on definition 2.4 is that it corresponds
to a continuous analgue of a binary encoding of the timestamp (as a natural number).

Bronstein et al. provide an interesting perspective on the positional encoding in [Bro+21].
They remark that based on the work [DB21], time positional encoding implements the
sequential structure of the time-series because its columns are approximately the first com-
ponents of the real and imaginary parts of the eigenvectors of a circulant matrix. It turns
out that the graph having such circulant matrices as their graph Laplacians are long “loops”.

2.3.2 Token-Mixer: Self-Attention

The token-mixer represents the central component of the Transformer architecture. As
previously mentioned in section 2.1, the token-mixer enables the Transformer to learn long-
ranging patterns in the data by considering and comparing all pairs of tokens. In concrete
terms, the use of self-attention as the token-mixer along the time-axis represents the great
innovation described in [Vas+17].

As we have seen in Algorithm 1, we input a token representation X(l−1) = (xi)i∈I ∈ T
to self-attention. For the rest of the section, we simply write X instead of X(l−1) for
(xi)i∈I ∈ T . This is not to be confused with the inputted time-series which we do not
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mention for the rest of this section. We say that we apply self-attention along the time-axis
in Algorithm 1 because the index set I corresponds to timestamps. We are going to see
other applications of self-attention in the second half of this chapter. Thus, we abstract
from the setting in the vanilla Transformer and consider the self-attention operation on a
general collection of tokens, where I is not fixed to the natual numbers up to Lin.

The idea behind self-attention is that we want to compare every possible selection of two
tokens. This results in an attention score matrix which we use to produce new tokens
that are weighted combinations of the original tokens. In NLP tasks, this corresponds
to identifying how much attention each words pays to every other word and using that
information to recombine the original sequence of words.

The self-attention operation consists of the application of several self-attention heads. LetH
be the number of such self-attention heads. We begin by introducing a single self-attention
head, before integrating it into the complete model. Then we want to take a step back and
look at attention more generally through the lens of probability kernels.

Let h ∈ {1, . . . ,H}. The h-th self-attention head computes queries, keys and values from
the token representation X ∈ T . This is simply done by linear layers projecting each token
into the attention space Rdattn with dimension dattn. We give some guidelines about the
choice of dattn in remark 2.2. Hence, we get the queries, keys and values

Q(h) = Lin
(Q,h)
d→dattn

(X) , K(h) = Lin
(K,h)
d→dattn

(X) , V(h) = Lin
(V,h)
d→dattn

(X) . (2.2)

The prefix “self” comes from the fact that the queries, keys and values are all derived from
the same input X. We further take a similarity kernel to compare queries and keys

ϕ : Rdattn × Rdattn → R

(q,k) 7→ qtk√
dattn

(2.3)

In the literature, this concrete similarity kernel ϕ is known under the name scaled dot-
product and is one of many possibilities to establish the “closeness” of two vectors. Other
choices include for example the cosine-similarity which is a non-linear transformation of
the scaled dot-product. Having established the similarity between queries and keys, we can
define the attention head and self-attention, which is based on [Vas+17].

Definition 2.5. Let X = (xi)i∈I ∈ T be a token representation with X = Rd and Q(h) =

(q
(h)
i )i∈I , K(h) = (k

(h)
i )i∈I and V(h) = (v

(h)
i )i∈I be queries, keys and values in Rdattn for

h = 1, . . . ,H as computed in equation (2.2). Let ϕ : Rdattn × Rdattn → R be the similarity
kernel in (2.3). Then, we can define

SelfAttn (X) :=

H∑
h=1

Lin
(out,h)
dattn→d

[
AttnHead

(
Q(h),K(h),V(h)

)]
,

where Lin
(out,h)
dattn→d are output projections for each head h = 1, . . . ,H and where the attention

head is given by

AttnHead
(
Q(h),K(h),V(h)

)
j
:=
∑
i∈I

SoftMax
(
ϕ
(
q
(h)
j ,k

(h)
i′

)
i′∈I

)
i
v
(h)
i (2.4)

for j ∈ I.
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We can recognise self-attention as a map from T to itself. It should be noted that this is not
necessary and that we could easily tweak the set of queries and hence get a different image
of SelfAttn. Furthermore, we remind the reader that the softmax with inverse temperature
β > 0 is given by

SoftMaxβ(a1, ..., an)k :=
exp(βak)∑n
i=1 exp(βai)

.

If not explicitly mentioned, we assume β = 1.

Remark 2.1. The normalising factor
√
dattn in the similarity kernel ϕ stabilises the at-

tention operation. This claim is heuristically justified by the following argument: Assume
that the query q and keys (ks)

S
s=1 are independent having mean zero and unit variance with

respect to P. Then E(qtks) = 0 and

Var
(
qtks

)
= Var (q)tVar (ks) = dattn

for all s = 1, . . . S. Hence, we get stability of the attention operation by dividing by
√
dattn,

which is especially useful in training where the gradients for the SoftMax vanish as the
argument vector grows in norm.

A More Abstract View on Self-Attention

Now, let us take a step back and introduce attention in a fairly general way that will serve
us later. For the moment, we ignore where the queries, keys and values come from in the
Transformer’s self-attention operation. One can think of attention as a fuzzy key-value
lookup table with |IK | key-value pairs (ki,v(ki))i∈IK , where IK is a suitable index set for
the key-value pairs. Hereby, we assume that ki ∈ H for some pre-Hilbert space (H, ⟨·, ·⟩)
and v(ki) ∈ V for some real vector space V for all i ∈ IK . We now want to query these
key-value pairs by using a query q ∈ H. This means, that each query q induces a probability
distribution p(q, ·) on the keysK = {ki}i∈IK . Attention can then be written as the expected
value of the corresponding values with respect to p(q, ·):

Attn (q, (ki)i∈IK , (v(ki))i∈IK ) :=

∫
K
v(k) p(q, dk) (2.5)

The attention head AttnHead is obtained by considering multiple queries (qj)j∈IQ , i.e.

AttnHead
(
(qj)j∈IQ , (ki)i∈IK , (v(ki))i∈IK

)
j′
= Attn

(
qj′ , (ki)i∈IK , (v(ki))i∈IK

)
. (2.6)

For reference, the following choices have been made in the discussion of the AttnHead above:

IK := IQ := I, p(q, dk) :=
∑
i∈I

SoftMax
(
ϕ (q,ki′)i′∈I

)
i
δki

(dk)

This somewhat more general presentation of attention allows us to identify the key compo-
nents.
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Complexity analysis of (self-)attention

We analyse the complexity for the attention mechanism of the vanilla Transformer. Each
query requires the evaluation of the integral in equation (2.5). Hence, the summation of
|IK | dattn-dimensional weighted values leads to an O(|IK |dattn) time-complexity for a single
evaluation of Attn. Since we have a total of |IQ| qeuries, we get that the computational
complexity of AttnHead is O(|IQ| |IK | dattn). We also have to consider the embedding of
each token from Rd to Rdattn , which has a computational complexity of O((|IQ|+|IK |)dattnd)
for each head’s query, key, value and output embedding. By considering the total ofH heads,
we have proven

Lemma 2.1. The computational complexity of SelfAttn in its general form is

O (Hdattn(|IK | |IQ|+ (|IQ|+ |IK |)d)) .

Remark 2.2. The choice of dattn is typically made in a way so that the computational
complexity of SelfAttn does not depend on H, i.e. dattn ∝ 1/H.

We notice that the computational cost of self-attention in the vanilla Transformer scales
quadratically in the sequence length Lin.

2.3.3 Layer Normalisation

Batch and layer normalisation techniques are designed to enhance the speed at which a
model can be trained, enabling the use of larger learning rates. However, one challenge is
the phenomenon of covariate shift, which was initially addressed by batch normalisation
[IS15]. This refers to the shift in the input distribution that a model encounters when pro-
cessing different batches. This distributional shift leads to a shift of the distribution of the
model’s parameters, which in turn shifts the distribution of the model’s activations. The
hypothesis put forth in [IS15] is that stabilizing the distribution of the internal model acti-
vations improves model training stability and speed. The proposed method is to normalise
the model activations by considering batch statistics and normalising the first and second
moments of this distribution in a dedicated BatchNorm layer.

While BatchNorm achieves this goal, [Xio+20] proposes replacing this layer with layer
normalisation. The key argument is that Batch Normalisation is difficult to carry out in
large distributed training settings, is not suitable for some model classes such as RNNs
and overloads the batch size as a hyperparameter. In their paper, Xiong et al. propose
normalising the mean and variance of the distribution of all hidden units corresponding to
a single sample. This approach does not introduce dependencies between different training
samples and therefore does not depend on the batch size. In the context of the Transformer,
the samples in question are the tokens, as defined in [Xio+20]. Layer normalisation is applied
after the self-attention layer and the MLP, respectively.

Definition 2.6. Let X = (xi)i∈I ∈ T be the input to layer normalisation. Let γ ∈ Rd and
β ∈ Rd be learnable weights, then we define

LayerNorm(X) :=

(
xi − µ̂(xi)
σ̂(xi)

⊙ γ + β

)
i∈I

,
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where ⊙ denotes the element-wise multiplication and for y ∈ Rd

µ̂(y) =
1

d

d∑
j=1

yj and σ̂(y) =

√√√√1

d

d∑
j=1

(yj − µ̂(y)2)

2.3.4 Residual Connection

In the paper [He+16], residual connections are proposed as a means of more efficiently
training deep neural networks. These connections form the basis of the well-known residual
nets (ResNets) in computer vision, and make training of super deep neural networks with
more than 150 layers possible. Moreover, residual nets can be regarded as the discrete
analogue of Neural ODEs [Che+18; SAP22].

In the context of our training of Transformer models, we utilise them as a means of training
our models in a more efficient manner. However, we analyse their contextualisation abilities
in greater detail in chapter 4.

Definition 2.7. The residual connection around a model component M : T → T is given
by

ResConnM (X) :=M(X) +X.

We remind the reader that the addition is token-wise.

2.3.5 Token-Processor: Multilayer Perceptron

MLPs are employed to process tokens. The token-processor is applied to each token inde-
pendently, in a manner analogous to layer normalisation.

Definition 2.8. The token multilayer perceptron (TokenMLP) with one hidden layer, hid-
den layer size dhidden and activation function g : R→ R is defined as

TokenMLP(X) := MLPd→1×dhidden→d,g (X)

where X = (xi)i∈I ∈ T .

We typically use MLPs with one hidden layer and a hidden dimension that is greater than
d. Common choices for the activation function are ReLU and GeLU.

Some research has been conducted into the role of MLPs in the Transformer, with findings
presented in [Gev+21; Gev+22]. At present, the role of MLPs (also known as feed-forward
layers in the literature) is understood to involve the encoding of vocabulary concepts in
key-value pairs. This can be conceptualised as a process of understanding the concept
through the probing of learned questions. However, the precise role of MLPs in the context
of time-series contextualisation has not yet been subjected to a comprehensive investigation.

2.3.6 Linear Decoder

The objective of the decoder is to compute the forecast based on the encoder representation.
In the original presentation of the Transformer in [Vas+17], an iterative decoder producing
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one forecasted timestamp after another is employed. This approach follows the Seq2Seq
methodology outlined in [SVL14] and is still employed in NLP tasks. While this pattern
had also been utilised for Transformers in the context of time-series forecasting, Zeng et al.
demonstrated the efficacy of linear decoders in their work [Zen+23], introducing DLinear.

Definition 2.9. The linear decoder maps a collection of tokens X ∈ T to the time-series
forecast of length T and is defined as

LinDecoder(X) := Reshape(Nin, T )(Lind |I|→NinT (FlattenI(X))).

A concrete definition of the Reshape and FlattenJ operations is given in appendix A.3. An
additional path for investigation is the potential to alter the basis upon which the forecast
is generated, i.e. forecasting coefficients for a representation of the forecast in another basis,
to introduce an inductive bias. One such basis could be a wavelet basis. However, this is
beyond the scope of the current work and is therefore left for future research.

2.4 Modifications of the Transformer Architecture

This section presents some of the modifications to the Transformer for time-series forecasting
from the literature that are relevant to this work. The range of such modifications is very
broad, which is why we start off by reviewing the literature. We then proceed to present
three types of models (PatchTST, iTransformer, TSMixer). We then present a common
generalisation for these models in chapter 3.

2.4.1 Literature Review

While there is a long-standing and active research community focusing on more general
methods in time-series analysis, we restrict ourselves to recent developments based on neural
networks and begin with the invention of the Transformer in 2017 by Vaswani et al.

Originally, the Transformer was developed for NLP tasks [Vas+17; Dev+19]. However, it
has since been applied to a range of other applications. Applications such as computer vision
[Dos+21] and speech processing [DXX18] have also benefited from the use of Transformers.
Transformers have been demonstrated to be highly effective, with numerous state-of-the-art
models relying on Transformers in their respective domains. This work will focus on the
evolution of Transformers in the context of time-series forecasting.

It is important to note that there are numerous additional tasks based on time-series data,
including classification [Zer+21] and anomaly detection [Xu+21; TCJ22]. These tasks are
beyond the scope of this discussion, but it is worth mentioning that they are also areas
where Transformers have been applied.

The modifications of the original Transformer can be broadly categorised into two groups:
those at the component level and those at the architecture level.

The component-level modifications are further divided into two main branches: the first
being the modifications of the self-attention mechanism. The O(L2

in) time-complexity of
self-attention in the input sequence length Lin was the first significant drawback of self-
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attention that was addressed in the literature. Two main approaches have been proposed
to address this issue: the use of sparse and low-rank attention approximation schemes.

In LogTrans [LI+19], sparsity is introduced by reducing the set of keys considered in self-
attention to the order O(logLin). More concretely, only keys at O(logLin)-many fixed
positions are selected. This achieves a time-complexity of O(Lin logLin). The utilisation
of convolutional self-attention in LogTrans involves the application of a convolutional layer
prior to the implementation of self-attention. Furthermore, it incorporates the inductive
bias that observations occurring in close temporal proximity provide valuable semantic
information.

In contrast to the fixed selection of O(logLin) keys in LogTrans, Informer proposes Prob-
Sparse self-attention as an alternative [Zho+21]. The entropy of the probability distribu-
tions induced by the queries on the set of keys is analysed, and self-attention is conducted
only with respect to the most sparse O(logLin) queries. The rationale is that queries in-
ducing probability distributions, that are close to uniform, carry very litte information.
This method is also able to reduce the time complexity to O(Lin logLin), but achieves a
better performance compared to LogTrans because of the increased relevancy of the se-
lected keys. Informer is also the first model to challenge the Seq2Seq decoder approach
proposed in [SVL14] for time-series forecasting. It designs a one-step decoder that avoids
the accumulation of errors encountered in iterative forecasting.

Pyraformer [Liu+22a] implements a pyramidal tree-like structure to self-attention, which
effectively reduces the time complexity to O(Lin). In this tree-like hierarchical structure, in-
formation is aggregated from the local level to the global level with the help of self-attention.
This is achieved while maintaining the signal communication path length constant with re-
spect to the input sequence length Lin under mild conditions.

The Autoformer model [Wu+21] and the FEDformer model [Zho+22] represent a novel
approach to the problem, departing from previous models in significant ways. The models
incorporate the inductive bias of periodicity in time-series into the model by conducting
self-attention on an overlay of periodic patterns based on autocorrelations in the time-
series in the case of Autoformer and in the Fourier-space in the case of FEDformer. Both
models reduce the time complexity by selecting relevant frequencies before the application
of self-attention. Both approaches have heuristic arguments in favour of them, and Zhou
et al. provides formal arguments in favour of FEDformer in their paper. However, these
arguments cannot be confirmed from a mathematical standpoint.

While the aforementioned models primarily aim to reduce the time complexity of self-
attention, there are also models that focus on other components of the Transformer. The
non-stationary Transformer [Liu+22b] employs normalisation, de-normalisation and lastly
de-stationary attention to accommodate shifts in the input time-series distribution.

A recent development is to change the model architecture and focus less on modifying
the self-attention component. The patch embedding, which was first popularised in the
Transformer literature by the Vision Transformer [Dos+21], is used in PatchTST [Nie+23].
Furthermore, the author of the aforementioned paper introduces the concept of variate
independence (see Figure 2.2). The Crossformer model [ZY23] builds upon the ideas pre-
sented in [Nie+23] and introduces the use of self-attention along variates. The iTransformer
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Figure 2.2: Illustration of variate independence; figure has been reproduced based on
[Nie+23]

[Liu+24], completely discards the use of self-attention along the time and replaces it with
an MLP-structure.

It should be noted that approaches from computer vision have also influenced the recent
time-series forecasting literature. TimesNet [Wu+23] builds upon the ideas presented in
Autoformer [Wu+21] and FEDformer [Zho+22]. However, it employs components from CV
to extract interdependencies between observations belonging to the same frequency.

A parallel line of research was sparked by [Zen+23]. The authors question the efficacy of
the previously proposed Transformer-based models and argue that their performance can be
beaten with a simple linear model (DLinear) that produces a multistep forecast. While sub-
sequent models, such as PatchTST, yield better results in numerical experiments, this line of
research was continued. MLP-based models such as TSMixer [Che+23] or LightTS [Zha+22]
employ analogous methodologies to those employed by the aforementioned Transformer-
based models [Nie+23; Liu+24], but replace self-attention with an MLP.

2.4.2 Patching Time: PatchTST

PatchTST, an acronym for patch time-series Transformer, is a model proposed in [Nie+23].
It is a variate-independent model that employs a patch encoding.

The ideas behind PatchTST can be summarized as follows: Firstly, by patching several
timestamps of the input time-series into one token, local information is aggregated in the
tokens. Now, tokens are conceptually much closer to word-embeddings, because they carry
very localised semantic information. Secondly, patching in time reduces the computational
complexity from O(L2

in) to O((Lin/P )
2), where P denotes the patch length. While it is

questionable whether one can retain a competitive performance of the resulting model, it
seems possible to scale up P with longer input sequences. Finally, the concept of variate
independence, also known as channel independence, suggests that each variate is treated
independently from the others, with the linear decoder aggregating information from several
variates (see Figure 2.2). The work [Nie+23] is the first application of variate- or channel-
independence in the Transformer architecture. Previous work in this direction was mostly
done on convolutional neural networks (CNNs) and linear models [Zhe+14; Zen+23].

As stated by Nie et al., there are several reasons for the success of variate-independent ap-
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proaches. Despite the application of the same self-attention and MLP layers to all variates,
the model was still able to identify different attention patterns for each variate. This adapt-
ability is attributed to the model’s ability to utilise distinct regions of the attention space
for different variate types. Furthermore, the size of commonly used time-series datasets
may be insufficient for non-variate independent approaches. Experimentally, variate inde-
pendent models converge more rapidly with less available training data. We wish to present
another heuristic argument: in high-dimensional time-series data, period lengths are not
uniform across all variates. Consequently, combining all observations at each timestamp
into one token may be inappropriate. The contextualisation patterns of variate-independent
approaches are studied in chapter 4.

Let us now define the operations of PatchTST that we need.

Definition 2.10. Let X ∈ RNin×Lin be a time-series of length Lin. Let P ∈ {1, . . . Lin}
denote the patch length. Then PatchEmb maps a time-series to the token-space TPatchTST

corresponding to X := Rd and IPatchTST := {1, . . . , Nin} × {1, ..., L} with L = ⌈Lin/P ⌉ by

PatchEmb(X) = LinP→d

((
Reshape(Nin,L,P ) (X)

)
Nin×L×P

)
,

where we potentially pad the input time-series X by repeating its last observation so that
Lin = LP .

In contrast to the vanilla Transformer, the entire token representation X is not fed into
self-attention; rather, self-attention is applied along the time-axis.

Definition 2.11. For X = (xi)i∈IPatchTST
∈ TPatchTST. Self-attention along the time-axis

is then defined as

SelfAttntime(X) :=
∨

Nin×L
SelfAttn

(
XNin×L

)
.

We summarise PatchTST in Algorithm 2 and remark that the summation of PatchEmb(X)
and TimePosEnc(L) is to be understood that the time positional encoding is added to each
variate of the output of the patch embedding.

Algorithm 2: PatchTST

input : Time-series X ∈ RNin×Lin

output: Forecast Ŷ ∈ RNin×T

X(0) ← PatchEmb(X) + TimePosEnc(L);

for l← 1 to nlayers do

X̃(l) ← ResConnSelfAttntime

(
X(l−1)

)
;

X̃(l) ← LayerNorm
(
X̃(l)

)
;

X(l) ← ResConnTokenMLP

(
X̃(l)

)
;

X(l) ← LayerNorm
(
X(l)

)
;

end

Ŷ ← LinDecoder
(
X(nlayers)

)



2.4. MODIFICATIONS OF THE TRANSFORMER ARCHITECTURE 21

Token Token Token

Token

Token

Token

Token
Timestamps

d

Variates

d

Attention
along

variate-axis

Attention
along

time-axis

Figure 2.3: Idea of iTransformer: The Transformer does not mix time-based tokens, but
rather variate-based tokens. Thus, we can see it as an inversion of the vanilla Transformer
model. The illustration is reproduced from [Liu+24]

.

2.4.3 Self-Attention along Variate-Axis: iTransformer

Thus far, we have applied self-attention along the time-axis by comparing tokens corre-
sponding to different timestamps in the input time-series. This has been challenged by Liu
et al., who propose iTransformer, an inverted Transformer, to consider self-attention along
the variate-axis [Liu+24]. This addresses the critique on self-attention along the time-axis
by [Zen+23] and the recent success of MLP-based models, which we introduce as a baseline
in the next section.

The key concept behind iTransformer is to use MLPs along the time-axis and self-attention
along the variate-axis to extract patterns across several variates. The concept is illustrated
in Figure 2.3.

The iTransformer can be readily formalised by simply swapping the time- and variate-axis
in the vanilla Transformer, thereby transposing the single token input embedding. This
results in the time positional encoding being dropped, which in turn means that the self-
attention layer is unable to discern very similar time-series. Consequently, we can formalise
the iTransformer as in Algorithm 3.

However, one significant challenge that remains unresolved in [Liu+24] is the efficient com-
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Algorithm 3: iTransformer

input : Time-series X ∈ RNin×L

output: Forecast Ŷ ∈ RNin×T

X (0) ← SingleTokenInputEmb(Xt);

for l← 1 to nlayers do

X̃(l) ← ResConnSelfAttn

(
X(l−1)

)
;

X̃(l) ← LayerNorm
(
X̃(l)

)
;

X(l) ← ResConnTokenMLP

(
X̃(l)

)
;

X(l) ← LayerNorm
(
X(l)

)
;

Ŷ ← LinDecoder
(
X(nlayers)

)

putation of attention along variates. In real-world time-series datasets containing thousands
of variates, the self-attention operation has an O(N2

in) time complexity, which represents
a significant computational bottleneck. In their attempt to address this issue, Liu et al.
adopt a flexible training strategy. This is made possible by the inverted design of the model
and the absence of a positional encoding, which allows for the use of a flexible number of
variates. Consequently, the authors randomly select a subset of the variates for training and
testing with all variates. They demonstrate that this strategy can retain the majority of the
performance gains of the iTransformer while simultaneously significantly reducing training
time. However, it should be noted that inference still has the O(N2

in) complexity. Fur-
thermore, it is uncertain whether this strategy allows for the learning of complex patterns
involving many variates in very complex datasets. Consequently, we later investigate the
potential of efficient attention approximation schemes along variates for efficient inference
and training using all variates at once in chapter 5.

2.4.4 Questioning Self-Attention: MLP-based models

As demonstrated by the iTransformer, an MLP is employed to process the tokens, which
are computed from a variate. It is not self-attention that is used to extract any temporal
patterns, but rather an MLP.

The rationale behind the use of MLPs instead of self-attention can be traced back to
[Tol+21], who questioned the necessity of CNNs and Transformers in computer vision tasks.
This proved to be a valuable extension of the critical linear ideas from [Zen+23] in the realm
of time-series forecasting, leading to the development of the first adaptations of the MLP-
Mixer from [Tol+21] to this field. Consequently, TSMixer was proposed in [Che+23], which
was the first instance of such an application in the field of time-series forecasting. This
involved the use of MLPs to mix along both the time- and variate-axes. This work focuses
on the conceptually simpler case of TSMixer, rather than further developments such as
LightTS [Zha+22], which constitute even more sparse models.

The authors of [Tol+21] present a conceptually straightforward rationale for the efficacy
of linear models (and MLP extensions) in time-series forecasting tasks. They idenitify
that, in practical applications, time-series data is typically characterised by smoothness
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and periodicity. In all other cases, it is very challenging to accurately predict a time-
series forecast. Now, consider a perfectly P -periodic and deterministic time-series X, where
X:,t = X:,t+P for t = 1, . . . , L− P , where P < L. In this case, we have a linear model that
perfectly predicts each variate of X. This linear model has a bias of zero and

Aij =

{
1, if j = L− P + (i mod P ),

0, else

as its weight matrix. Furthermore, the authors demonstrate that linear models exhibit ro-
bust predictive capabilities in scenarios where the time-series can be decomposed into a sum
of a P -periodic component and a Lipschitz-continuous component. The Lipschitz constant
is proportional to an upper bound on the model’s error. This justifies the investigation of
linear and hence MLP-based models.

The terminology used in the models introduced before differs significantly from that used
in this work, which is why we begin by considering the raw time-series X of length Lin

with Nin variates. A generalisation of TSMixer is provided in the following chapter, which
allows the MLP-based model to be treated in a common framework with the other models
presented in this chapter. The TSMixer with nlayers layers, activation function g and hidden
dimension dhidden is presented in Algorithm 4.

Algorithm 4: TSMixer

input : Time-series X ∈ RNin×Lin

output: Forecast Ŷ ∈ RNin×T

X(0) ← X;

for l← 1 to nlayers do

X̃(l) ← LayerNorm
(
X(l−1) +

∨
Nin×Lin

g
(
LinLin→Lin

(
X

(l−1)
Nin×Lin

)))
;

X(l) ← LayerNorm
(
X̃(l) +

∨
Nin×Lin

MLPNin→1×dhidden→Nin

(
X̃

(l)
Nin×Lin

))
;

Ŷ ← LinLin→T

(
X

(nlayers)
Nin×Lin

)
;

It can be observed that the TSMixer architecture successively mixes time- and variate-
information. It should be noted that the time-mixing operation in the TSMixer is not an
MLP, but can be considered to be a reasonable approximation of an MLP structure.
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Chapter 3

FlexibleTransformer

We think that a systematic study of existing ideas in the literature is important and can pro-
vide novel insights into the current state of the field of applying Transformers to time-series
forecasting. Currently, it is the case that a comparison of models is only conducted in terms
of performance on benchmark datasets without unifying the setting in which these architec-
tures are compared. This perspective fails to acknowledge the intricacy and complexity of
model architectures, which often comprise numerous interconnected components or employ
disparate methodologies, such as the vanilla Transformer, PatchTST, iTransformer, and
MLP-based models. It is challenging, if not impossible, to discern the fundamental ele-
ments of a given model architecture within this setup. Consequently, in order to study and
compare the inner workings of these models, it is necessary to identify a common framework
that is sufficiently abstract to provide interpretable flexibility while also being sufficiently
concrete to allow for a systematic study. In this chapter, we introduce FlexibleTransformer,
a novel generalisation of existing Transformer models. This framework allows us to formalise
the models presented in chapter 2, with the goal of studying them in the next chapter from
a standpoint of contextualisation. We begin by introducing the time-variate-token frame-
work, which composes the model-internal data representation of the FlexibleTransformer.
This is also where we formalise the token-mixing and token-processing operations that we
have previously discussed. Finally, we examine how previously introduced models are im-
plemented in the context of the FlexibleTransformer. While we do not seek to reinvent
the Transformer and rely on the ideas presented in the literature, in particular the data
representation proposed in [Nie+23] and the concept of operations along the variate-axis
outlined in [Liu+24], our contributions can be summarised as follows:

• Formalisation: Introduction of the language of token spaces, token representations,
operations along axes, definition of token-mixing and token-processing.

• Unification: Identification of common building blocks amongst current models follow-
ing different architectural paradigms.

• MLP token-mixer: To sensibly compare MLP-based token-mixing with self-attention
as a token-mixer, we have to lift the MLP to the level of combining different tokens
while respecting the ideas from the token-unaware MLP-based models introduced in
chapter 2.

25
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Figure 3.1: The time-variate-token framework formalises the idea of having a time- and a
variate-axis and one token in Rd at each of the gridpoints.

It should be noted that the presentation of the models and their operations in the previous
chapter has been aligned with the FlexibleTransformer. The notation and formalisation
that has been used is not standard notation in the literature, but it is highly useful in our
context.

3.1 Time-Variate-Token Framework

It should be noted that the concept of internal data representation by the time-variate-token
framework is not entirely novel, but rather draws inspiration from the variate-independence
approach outlined in [Nie+23].

This work builds upon the theoretical foundations established in chapter 2. Figure 3.1 illus-
trates the concept of a grid with a time- and a variate-axis, on which tokens are positioned.

Definition 3.1. Let L ∈ N denote the internal number of timestamps, N ∈ N the internal
number of variates and d ∈ N the model dimension. Then the index set I for the token-
space T in the time-variate-token framework is given by I := {1, ..., N} × {1, ..., L} and
X := Rd in the definition of T .

We elaborate on the choice of L and N later in this chapter and also give examples of
corresponding input embeddings that are compatible with the choices of L and N . The
reason why we choose T as in definition 3.1 is not because of variate independence as in
[Nie+23], but because we want to flexibly mix tokens along the time- and variate-axis. We
can now define precisely what we refer to by a token-mixer along an axis.

Definition 3.2. Let T be a token-space in the time-variate-token framework. A token-
mixer is a map

TM : XJ → XJ ,

where J = {1, ..., L} in the case of token-mixer along the time-axis and J = {1, ..., N} in
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the case of a token-mixer along the variate-axis. We further write

TMtime : T → T
X 7→

∨
N×L

TM
(
XN×L

)
and

TMvariate : T → T
X 7→

∨
N×L

TM
(
XN×L

)

Figure 3.2 illustrates the application of a token-mixer along a given axis. In the preceding
chapter, we have seen self-attention as a token-mixer along the time- and the variate-axis.
We can observe that SelfAttn is indeed a token-mixer in the sense of definition 3.2.

Let us now also give a definition for a token-processor.

Definition 3.3. Let T be a token space with index set I and X = (xi)i∈I ∈ T . A
token-processor is a map

TP : X → X .
We also write for X = (xi)i∈⟩ (with a slight abuse of notation)

TP : T → T
X 7→ (TP(xi))i∈I .

We can identify MLPs and layer normalisation as examples of token-processors.

We want to close this section with the input embedding.

Definition 3.4. An input embedding for a time series of length Lin with Nin variates to a
token space T is a map

InputEmb : RNin×Lin → T .

The rather informal spirit of the input embedding (which we do not rigorously define) pre-
vents the mixing of time and variates. However, the concrete choice of the input embedding
is closely tied to the choice of T . We will now summarise the ideas of this section by giv-
ing some examples of what the token spaces and the input embeddings can be. Examples
include the following:

• Single token input embedding: We have seen this input embedding in the vanilla
Transformer. It combines all variates into one token for each timestamp. Accordingly,
L = Lin and N = 1.

• Patch embedding: Here, local information is kept along time and variates by only
combining nearby timestamps into patches. We thus have L = ⌈Lin/P ⌉ and N = Nin,
where P denotes the patch length.

• Variate as token embedding: This is the input embedding of the iTransformer. It
combines all timestamps of a variate into one token, i.e. L = 1 and N = Nin.
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Figure 3.2: Illustration of how a token-mixer taking in all tokens (little towers representing
elements in X ) along an axis is applied in the case of a (a) token-mixer along the time-axis
and (b) token-mixer along the variate-axis. The colour indicates how the data is grouped
before the application of the token-mixer.

3.2 Mixing Tokens with MLPs

As the reader may have observed, we have thus far only introduced one token-mixing op-
eration: self-attention. In the previous chapter, we also considered MLP-based models
in which MLP structures were employed to identify long-range patterns across time and
variates. However, the notion of a token was absent, which is why we wish to introduce
an MLP token-mixer structure that allows us to analyse these MLP-based models in the
time-variate-token framework.

This is essentially a slightly new model that is conceptually very similar to the TSMixer.
In order to support our argument that our proposal is appropriate, we also want to experi-
mentally verify that the models are similar and identify the best model hyperparameters.

Let us begin by noting the key requirements for the proposed MLP token-mixer.

• MLP token-mixer is actually a token-mixer in the sense of definition 3.2.

• In the case d = 1, the MLP token-mixer corresponds to the variate-mixing step in the
TSMixer architecture.

• As in TSMixer, the MLP token-mixer has a bottleneck structure, i.e. the hidden layer
size is much smaller than the number of input layer size of the MLP.

In light of the aforementioned requirements, it appears that a natural extension of TSMixer
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Figure 3.3: A sequence of tokens is mixed by the MLP token-mixer that flattens the tokens
and uses an MLP to mix all the tokens information. Finally, the flattening is undone to
produce a sequence of tokens again.

to the time-variate-token framework would be to flatten all tokens along an axis and pass
them through an MLP with a modest hidden layer size. The output layer size would be
the same as that of the input layer. Finally, the result would only have to be reshaped into
tokens along the original dimensions. We thus formally define:

Definition 3.5. Let X and J = {1, . . . , A} be as in definition 3.2 (with A = L or A = N).
We define the MLP token-mixer with hidden layer size dmixing and activation function g as

MLPTokenMixer(X) :=
[
Reshape(A,d)

(
MLPdA→dmixing→dA,g (FlattenJ (X))

)]
A×d

,

where X = (xj)j∈J

A detailed definition of the FlattenJ operation is given in appendix A.3. We illustrate the
MLP token-mixer in Figure 3.3. It is immediate to see that this is precisely a variate-mixing
step in TSMixer if we choose d = 1.

3.2.1 Experimental Comparison of MLP Token-Mixer and TSMixer

The objective of this experiment is to confirm that the MLP token-mixer layers in the
time-variate-token framework produce similar results to the TSMixer. To this end, we will
compare the model pure MLP token-mixer model outlined in Algorithm 5 with TSMixer.
The choice of dmixing does not have to be the same for the time- and the variate-mixer,
but to allow for better comparability with the TSMixer model, we use the same mixing
dimension dmixing in both mixing-steps.

A comparison is presented between the performance of TSMixer and the pure MLP token-
mixer model, with the optimal hyperparameters identified for various settings in terms of
data and prediction length. This is presented in Table 3.1. While the objective is not to
outperform existing benchmarks, it is of interest to utilise standard benchmark datasets to
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Algorithm 5: PureMLPTokenMixerModel

input : Time-series X ∈ RNin×Lin

output: Forecast Ŷ ∈ RNin×T

X(0) ← X;

for l← 1 to nlayers do

X̃(l) ← LayerNorm
(
X(l−1) +MLPTokenMixertime

(
X(l−1)

))
;

X(l) ← LayerNorm
(
X̃(l) +MLPTokenMixervariate

(
X̃(l−1)

))
;

Ŷ ← LinDecoder
(
X(nlayers)

)
Table 3.1: Experimental comparison of FlexibleTransformer with MLP token-mixer (iden-
tity and patch embedding) and TSMixer. The best models for each dataset are marked in
red, the second best in blue.
Model FlexibleTransformer TSMixer FlexibleTransformer TSMixer
Encoding identity patch No Encoding identity patch No Encoding

dmixing nlayers dmixing dmodel nlayers dhidden nlayers MSE MAE MSE MAE MSE MAE
dataset

ETTh1 64 3 256 32 3 32 3 0.419 0.448 0.414 0.441 0.421 0.442
ETTh2 32 1 64 32 3 128 3 0.247 0.350 0.248 0.352 0.269 0.381
ETTm1 256 4 64 32 1 32 3 0.364 0.401 0.367 0.400 0.352 0.394
ETTm2 512 3 512 32 4 32 3 0.151 0.258 0.151 0.264 0.151 0.262
weather 64 4 32 32 4 32 1 0.269 0.252 0.271 0.254 0.266 0.267

facilitate comparability with a greater number of models. The datasets utilised are described
in greater detail in appendix A.6. The optimal models are identified by determining the
most effective parameter values for each model. We consider the ranges

dmixing ∈ {32, 64, 128, 256, 512}
d = 32

nlayers ∈ {1, 2, 3, 4}

for the FlexibleTransformer,

dhidden ∈ {32, 64, 128, 256, 512}
nlayers ∈ {1, 2, 3, 4}

for the TSMixer model and use training hyperparameters in

dropout ∈ {0.1, 0.3}
learning rate ∈ {10−5, 10−4, 10−3}

learning rate scheduler ∈ {one cycle, constant},

where the one cycle learning rate scheduler is inspired by [ST18].

Table 3.1 shows that the FlexibleTransformer with the MLP token-mixer as its time and
variate token-mixer performs similarly to the TSMixer model on a time-series forecasting
task for popular benchmark datasets with Lin = T = 96. The fitted hyperparameters and
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Input Embedding N L

Single Token Input Embedding 1 Lin

Patch Embedding Nin ⌈Lin/P ⌉
iTransformer Embedding Nin 1
TSMixer Embedding Nin Lin

Table 3.2: Parameters in various settings.

Model Time Token-Mixer Variate Token-Mixer Token-Processor

Vanilla Transformer Self-Attention - TokenMLP
PatchTST Self-Attention - Token MLP
iTransformer - Self-Attention TokenMLP
TSMixer MLP Token-Mixer MLP Token-Mixer -

Table 3.3: Token-mixers for various models.

the mean squared error (MSE) and mean absolute error (MAE) are displayed in Table 3.1.
Hereby, we have for Ŷ , Y ∈ RNin×T

MSE(Ŷ , Y ) :=
1

NinT

T∑
i=1

Nin∑
n=1

(Ŷn,i − Yn,i)2, MAE(Ŷ , Y ) :=
1

NinT

T∑
i=1

Nin∑
n=1

|Ŷn,i − Yn,i|.

The FlexibleTransformer with the identity embedding is the closest to the TSMixer model
in terms of conceptual similarity. We have also included a model with a patch embedding
(with patch size P = 8), which more closely resembles later model choices. The learning
rate scheduler and dropout did not seem to have a major impact on training performance,
whereas a learning rate of 10−4 proved to be optimal.

It can be concluded that the experimental evidence supports the claim that the MLP token-
mixer is an appropriate analogue of the TSMixer component in the FlexibleTransformer
architecture.

3.3 A Generalisation of Existing Models

In this section we want to illustrate that the models we have encountered so far are examples
of the time-variate-token framework. Since we have only generalised the concepts from
chapter 2, we will only indicate the components that have been used in the different settings.

Let us first consider the input embedding. We show the choices for N and L for the different
input embeddings encountered so far in Table 3.2.

In Table 3.3, we identify the token-mixer along the time- and variate-axes and the token-
processor used in the models discussed in chapter 2. Each model considered applies a
layer normalisation after each mixing and processing step and the token-processors and
token-mixers are wrapped in a ResConn layer.

We can see that the time-variate-token framework is flexible enough to accommodate a wide
range of models. The FlexibleTransformer allows for even greater flexibility than just being
a common framework for well-known time-series models, as we have seen above. In the
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next section, we will systematically examine the impact of different architectural choices on
forecasting performance.

3.4 Experiments

In this section we want to experimentally explore the FlexibleTransformer. As mentioned
in the previous section, we want to go beyond the current model architectures that we have
already generalised, and also explore architectural choices that have not yet been explored
in the literature. The results of this section serve two purposes:

1. An extensive study of different model architectures with respect to performance, sta-
bility and size.

2. An exploration of well-performing model configurations to lay the foundation for an
in-depth analysis of these models in the next chapter.

Our general approach is as follows: In general, we want to distinguish between different
model architectures, characterised by the token-mixers and the token-processors. Since we
have a wide range of possible hyperparameters (d, dhidden, dmixing, H, ...) to consider, we
first find the best hyperparameters for the model architectures before comparing different
architectures. We use the two standard evaluation metrics, the mean squared error and the
mean absolute error.

We also want to report the sensitivity of the models to their hyperparameters, explore the
stability of the models, and compare performance and model size.

3.4.1 Setup

In general, we want to explore all reasonable combinations of token-mixers and token-
processors, but fix the input embedding by choosing the patch embedding with patch length
P = 8. This patch size has shown to be adequate for this study’s benchmark datasets
[Nie+23] and is not of our primary interest. This helps us to reduce the total number
of experiments to run. For brevity, we introduce the following notation for the central
transformer component and write

FTd,N,L : TMtimeTMvariateTP

for the FlexibleTransformer architecture of size I = {1, . . . , N}×{1, . . . , L} with the corre-
sponding time and variate token-mixers and the corresponding token-processor. If a com-
ponent is not used, we simply write “−” instead of SAH for self-attention with H heads,

MLP
dmixing

TM for the MLP token-mixer and MLPdhiddenTP for the MLP token-processor. The
choice of the activation function g is not our main goal, so we choose g = ReLU in the
MLP token-mixer and MLP token-processor. We want to explore all the different architec-
tures that we can construct in the FlexibleTransformer setting with hyperparameters in the
following range

TMtime,TMvariate ∈ {SA8} ∪ {MLP
dmixing

TM : dmixing ∈ {32, 64, 128}} ∪ {−}
TP ∈ {MLP256

TP} ∪ {−}
d ∈ {32, 64, 128, 256, 512}

nlayers ∈ {1, 2, 3}
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The range of model architecture hyperparameters is informed by the research literature on
TSMixer, PatchTST, iTransformer and vanilla Transformer, own exploratory experiments,
and further constrained by computational resources. We fit a total of 750 models for each
experimental setting.

We fix the training hyperparameters to

dropout = 0.1

learning rate scheduler = constant

learning rate = 10−4

as we cannot afford to further increase the number of models to fit and have found in early,
exploratory runs that the training hyperparameters do not depend by much on the model
architecture used. For optimisation, we use the Adam optimiser [KB14] to optimise the
MSE-error training objective.

While the training time for a single model is relatively short, ranging from one to ten
minutes on an Nvidia GA100, depending on the exact model size and Nin and Lin, we have
a computational limit on the number of datasets and combinations of input lengths Lin and
prediction lengths T for which we can run the experiments. Hence, we only consider

Lin ∈ {96, 512},
T ∈ {96, 192, 336, 512}

dataset ∈ {ETTh1,ETTh2,ETTm1,ETTm2,weather}.

See appendix A.6 for more information about the datasets and their properties. We do not
consider datasets with large Nin because of the O(N2

in) complexity of self-attention along
the variate-axis. This problem is discussed in chapter 5. To the author’s knowledge, this
is the most systematic comparison of different time series architectures in different data
settings.

3.4.2 Results and Analysis

We structure this section as follows. First, we present the results of our experiments. Since
we fit a large number of models, we only present the raw results for one dataset and list the
rest in the appendix. We then explore the dependence of model performance on key model
hyperparameters, analyse how certain model components promote performance in different
settings and finally relate model size to performance.

Raw Experiment Results

The total number of trained models is 6000 for each dataset. Therefore, it is impossible to
present all the experimental results in this chapter or in the appendix. Instead, we present
the raw experimental results for the ETTh1 dataset with Lin = T = 96 in Table 3.4. The
other configurations for Lin and T are shown in appendix A.7. We refrain from presenting
the raw experimental results for all other datasets and advise the interested reader to consult
the accompanying repository, which contains all these data in digital form. There, we also
present the l∞-error. Due to the sheer number of models, we do not analyse the results
with the aim of drawing conclusions at this stage, but defer this to later analyses.
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TP No Processing TokenMLP
Metric MAE MSE MAE MSE
d 32 64 128 256 512 32 64 128 256 512 32 64 128 256 512 32 64 128 256 512

VM TM nlayers

MLP128
TM

MLP128
TM

1 0.449 0.444 0.443 0.444 0.453 0.434 0.420 0.418 0.424 0.431 0.446 0.441 0.439 0.455 0.447 0.422 0.411 0.415 0.426 0.420
2 0.446 0.442 0.440 0.440 0.441 0.427 0.416 0.412 0.415 0.416 0.444 0.441 0.440 0.448 0.444 0.417 0.419 0.417 0.422 0.419
3 0.447 0.444 0.445 0.443 0.449 0.426 0.416 0.421 0.419 0.425 0.448 0.444 0.439 0.443 0.452 0.427 0.414 0.414 0.417 0.427

No Mixing
1 0.443 0.437 0.437 0.442 0.442 0.432 0.422 0.424 0.427 0.432 0.438 0.434 0.432 0.432 0.431 0.423 0.417 0.413 0.414 0.414
2 0.443 0.437 0.435 0.430 0.435 0.428 0.419 0.420 0.408 0.415 0.440 0.434 0.431 0.430 0.431 0.425 0.414 0.411 0.406 0.409
3 0.439 0.435 0.433 0.430 0.434 0.420 0.414 0.411 0.404 0.414 0.439 0.433 0.430 0.431 0.435 0.422 0.412 0.407 0.407 0.415

SA
1 0.441 0.435 0.436 0.438 0.438 0.427 0.415 0.416 0.418 0.414 0.439 0.439 0.436 0.440 0.437 0.423 0.423 0.418 0.416 0.411
2 0.441 0.438 0.437 0.442 0.441 0.425 0.417 0.414 0.418 0.417 0.442 0.437 0.443 0.438 0.443 0.425 0.416 0.425 0.416 0.418
3 0.441 0.438 0.438 0.436 0.447 0.424 0.416 0.414 0.413 0.422 0.443 0.442 0.440 0.445 0.448 0.426 0.418 0.415 0.420 0.424

MLP32
TM

MLP32
TM

1 0.452 0.447 0.444 0.443 0.444 0.447 0.436 0.427 0.427 0.429 0.449 0.436 0.437 0.443 0.442 0.435 0.414 0.420 0.421 0.421
2 0.453 0.444 0.443 0.440 0.443 0.441 0.429 0.421 0.416 0.417 0.451 0.439 0.443 0.435 0.441 0.435 0.423 0.415 0.413 0.416
3 0.451 0.445 0.441 0.442 0.440 0.437 0.425 0.417 0.419 0.413 0.450 0.445 0.443 0.440 0.444 0.432 0.422 0.425 0.420 0.419

No Mixing
1 0.452 0.445 0.442 0.448 0.452 0.448 0.434 0.433 0.445 0.451 0.442 0.436 0.432 0.433 0.437 0.430 0.424 0.417 0.416 0.421
2 0.450 0.445 0.440 0.437 0.440 0.443 0.436 0.428 0.422 0.425 0.443 0.440 0.436 0.430 0.432 0.429 0.425 0.421 0.410 0.412
3 0.448 0.442 0.438 0.434 0.435 0.436 0.430 0.424 0.417 0.417 0.443 0.439 0.431 0.436 0.437 0.427 0.422 0.412 0.414 0.414

SA
1 0.444 0.438 0.436 0.439 0.442 0.432 0.426 0.418 0.415 0.423 0.440 0.437 0.434 0.435 0.439 0.428 0.424 0.415 0.412 0.418
2 0.445 0.439 0.439 0.438 0.435 0.430 0.423 0.421 0.415 0.409 0.446 0.439 0.440 0.435 0.443 0.433 0.423 0.420 0.410 0.420
3 0.446 0.440 0.438 0.440 0.438 0.431 0.421 0.416 0.413 0.415 0.446 0.442 0.437 0.447 0.439 0.430 0.425 0.413 0.427 0.414

MLP64
TM

MLP64
TM

1 0.453 0.446 0.442 0.446 0.447 0.440 0.429 0.420 0.424 0.427 0.447 0.440 0.440 0.436 0.443 0.428 0.409 0.412 0.410 0.422
2 0.452 0.444 0.441 0.440 0.442 0.439 0.426 0.422 0.414 0.421 0.445 0.442 0.438 0.439 0.446 0.423 0.420 0.412 0.413 0.422
3 0.448 0.443 0.440 0.440 0.441 0.433 0.423 0.417 0.415 0.416 0.451 0.445 0.439 0.442 0.442 0.432 0.420 0.410 0.415 0.413

No Mixing
1 0.446 0.442 0.439 0.442 0.443 0.438 0.433 0.427 0.431 0.431 0.441 0.434 0.433 0.434 0.432 0.429 0.419 0.417 0.418 0.414
2 0.447 0.440 0.435 0.436 0.438 0.438 0.427 0.419 0.421 0.422 0.441 0.436 0.432 0.428 0.432 0.427 0.421 0.414 0.407 0.411
3 0.444 0.438 0.437 0.433 0.433 0.431 0.420 0.417 0.411 0.411 0.441 0.435 0.431 0.431 0.432 0.425 0.418 0.409 0.407 0.412

SA
1 0.441 0.438 0.436 0.434 0.438 0.428 0.420 0.417 0.409 0.414 0.442 0.441 0.436 0.442 0.441 0.429 0.427 0.416 0.418 0.418
2 0.445 0.439 0.441 0.446 0.437 0.430 0.420 0.420 0.424 0.413 0.442 0.438 0.440 0.435 0.443 0.427 0.420 0.420 0.415 0.421
3 0.444 0.439 0.439 0.441 0.437 0.428 0.422 0.421 0.417 0.415 0.443 0.439 0.445 0.438 0.436 0.426 0.417 0.420 0.414 0.411

No Mixing

MLP128
TM

1 0.462 0.452 0.458 0.461 0.453 0.459 0.439 0.440 0.446 0.438 0.448 0.453 0.452 0.457 0.463 0.433 0.444 0.430 0.431 0.449
2 0.461 0.455 0.460 0.452 0.464 0.452 0.437 0.440 0.437 0.442 0.456 0.457 0.457 0.476 0.492 0.431 0.437 0.437 0.464 0.491
3 0.459 0.454 0.455 0.454 0.466 0.446 0.431 0.432 0.436 0.452 0.466 0.461 0.469 0.464 0.482 0.445 0.434 0.458 0.446 0.470

MLP32
TM

1 0.461 0.452 0.455 0.456 0.459 0.463 0.450 0.452 0.457 0.441 0.454 0.450 0.441 0.462 0.463 0.448 0.441 0.421 0.440 0.441
2 0.456 0.452 0.450 0.451 0.460 0.452 0.451 0.436 0.448 0.447 0.456 0.449 0.459 0.459 0.451 0.444 0.436 0.436 0.451 0.437
3 0.463 0.453 0.448 0.460 0.455 0.463 0.443 0.435 0.440 0.442 0.460 0.451 0.462 0.462 0.470 0.453 0.438 0.435 0.439 0.452

MLP64
TM

1 0.460 0.451 0.448 0.448 0.449 0.462 0.444 0.441 0.432 0.433 0.453 0.449 0.447 0.446 0.469 0.442 0.427 0.420 0.426 0.448
2 0.460 0.451 0.459 0.463 0.456 0.454 0.438 0.444 0.446 0.440 0.455 0.452 0.462 0.455 0.465 0.436 0.427 0.439 0.432 0.442
3 0.461 0.458 0.456 0.459 0.472 0.453 0.441 0.438 0.441 0.458 0.458 0.457 0.455 0.450 0.465 0.447 0.439 0.425 0.426 0.449

No Mixing
1 0.471 0.468 0.464 0.466 0.468 0.488 0.486 0.482 0.485 0.486 0.445 0.441 0.438 0.434 0.443 0.440 0.435 0.430 0.424 0.432
2 0.470 0.467 0.466 0.466 0.471 0.488 0.484 0.487 0.481 0.495 0.448 0.442 0.444 0.433 0.438 0.443 0.436 0.436 0.423 0.425
3 0.470 0.468 0.466 0.467 0.470 0.487 0.486 0.485 0.485 0.485 0.446 0.442 0.438 0.437 0.435 0.441 0.435 0.432 0.425 0.421

SA
1 0.451 0.448 0.447 0.449 0.447 0.450 0.449 0.443 0.440 0.439 0.448 0.444 0.445 0.444 0.449 0.444 0.438 0.434 0.434 0.445
2 0.455 0.449 0.449 0.446 0.456 0.456 0.449 0.443 0.440 0.444 0.450 0.444 0.448 0.442 0.452 0.445 0.439 0.441 0.430 0.445
3 0.452 0.448 0.445 0.449 0.449 0.449 0.444 0.437 0.445 0.439 0.447 0.445 0.442 0.448 0.446 0.443 0.439 0.434 0.434 0.435

SA

MLP128
TM

1 0.449 0.464 0.513 0.560 0.501 0.433 0.451 0.531 0.598 0.505 0.454 0.462 0.460 0.479 0.507 0.444 0.456 0.452 0.474 0.513
2 0.451 0.457 0.475 0.497 0.477 0.436 0.451 0.474 0.507 0.483 0.459 0.471 0.458 0.469 0.479 0.446 0.469 0.449 0.458 0.486
3 0.456 0.487 0.457 0.475 0.491 0.441 0.489 0.447 0.471 0.490 0.466 0.472 0.465 0.476 0.556 0.447 0.470 0.452 0.467 0.608

MLP32
TM

1 0.445 0.443 0.443 0.450 0.447 0.436 0.432 0.425 0.438 0.428 0.445 0.442 0.449 0.445 0.466 0.437 0.428 0.438 0.436 0.457
2 0.448 0.449 0.442 0.470 0.436 0.438 0.433 0.424 0.474 0.416 0.451 0.450 0.448 0.455 0.460 0.441 0.440 0.436 0.455 0.461
3 0.449 0.456 0.450 0.452 0.452 0.438 0.448 0.434 0.444 0.445 0.455 0.453 0.448 0.450 0.477 0.447 0.437 0.437 0.437 0.468

MLP64
TM

1 0.448 0.448 0.465 0.451 0.531 0.441 0.432 0.449 0.431 0.580 0.451 0.450 0.459 0.491 0.482 0.442 0.441 0.453 0.498 0.497
2 0.452 0.450 0.454 0.449 0.486 0.445 0.430 0.441 0.435 0.498 0.454 0.446 0.444 0.449 0.504 0.440 0.428 0.429 0.439 0.529
3 0.455 0.452 0.468 0.465 0.461 0.443 0.437 0.469 0.461 0.447 0.456 0.454 0.464 0.466 0.491 0.436 0.440 0.451 0.456 0.499

No Mixing
1 0.442 0.435 0.433 0.435 0.434 0.435 0.424 0.417 0.415 0.415 0.445 0.435 0.437 0.435 0.438 0.437 0.424 0.420 0.414 0.413
2 0.440 0.437 0.435 0.441 0.434 0.435 0.426 0.419 0.420 0.418 0.445 0.437 0.437 0.435 0.433 0.438 0.427 0.421 0.414 0.415
3 0.440 0.436 0.435 0.433 0.437 0.434 0.422 0.417 0.413 0.417 0.443 0.434 0.432 0.431 0.442 0.435 0.423 0.414 0.407 0.421

SA
1 0.441 0.436 0.436 0.448 0.443 0.435 0.423 0.424 0.434 0.427 0.446 0.439 0.438 0.442 0.450 0.440 0.428 0.423 0.427 0.436
2 0.441 0.440 0.444 0.448 0.444 0.434 0.428 0.424 0.437 0.439 0.444 0.437 0.439 0.448 0.455 0.437 0.422 0.422 0.432 0.442
3 0.442 0.439 0.450 0.444 0.457 0.434 0.425 0.433 0.426 0.439 0.444 0.440 0.454 0.445 0.452 0.437 0.425 0.438 0.428 0.440

Table 3.4: Raw experiment results for ETTh1 dataset with Lin = T = 96. The rest of the
results for this dataset can be found in appendix A.7. We mainly present this raw data for
the sake of completeness. The reader may safely skip the detailed study of this table as we
visualise the main relationships that we are interested in.

The fitted hyperparameters for all scenarios are shown in Table 3.7. We observe that dmixing

is mostly chosen to be rather small to form a bottleneck structure. This is consistent with
the choice in [Che+23] for the TSMixer. On the other hand, d varies greatly between
architectures, making it worthwhile to adjust this hyperparameter in practical settings. It
is interesting to note that the number of layers is rarely chosen to be the highest in our
setting.

Best Architectures and Stability

We refit the models with the best hyperparameter five times to analyse the stability of
model performance. We show these results for the ETTh1 dataset with Lin = 96 in Table
3.5 and for Lin = 512 in Table 3.6. The results for other datasets are shown in appendix
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MSE MAE MMaxError
T Time-Mixer Variate-Mixer Token-Processor

96

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.417± 0.004 0.443± 0.002 1.574± 0.010
TokenMLP 0.421± 0.007 0.441± 0.003 1.589± 0.017

No Mixing
No Processing 0.409± 0.002 0.432± 0.001 1.565± 0.007
TokenMLP 0.412± 0.003 0.433± 0.003 1.563± 0.007

Self-Attention
No Processing 0.420± 0.009 0.441± 0.005 1.581± 0.011
TokenMLP 0.417± 0.006 0.439± 0.005 1.568± 0.007

No Mixing

MLP Token-Mixer
No Processing 0.441± 0.005 0.460± 0.003 1.619± 0.009
TokenMLP 0.430± 0.002 0.451± 0.003 1.595± 0.007

No Mixing
No Processing 0.483± 0.001 0.466± 0.002 1.686± 0.008
TokenMLP 0.426± 0.003 0.439± 0.003 1.589± 0.005

Self-Attention
No Processing 0.442± 0.004 0.448± 0.002 1.618± 0.009
TokenMLP 0.435± 0.002 0.447± 0.003 1.597± 0.008

Self-Attention

MLP Token-Mixer
No Processing 0.436± 0.014 0.447± 0.007 1.605± 0.022
TokenMLP 0.437± 0.003 0.448± 0.003 1.608± 0.012

No Mixing
No Processing 0.415± 0.005 0.435± 0.005 1.562± 0.008
TokenMLP 0.415± 0.003 0.435± 0.002 1.560± 0.005

Self-Attention
No Processing 0.425± 0.002 0.437± 0.001 1.581± 0.004
TokenMLP 0.427± 0.004 0.443± 0.002 1.575± 0.007

192

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.502± 0.012 0.490± 0.008 1.895± 0.010
TokenMLP 0.525± 0.012 0.517± 0.007 1.889± 0.019

No Mixing
No Processing 0.458± 0.005 0.464± 0.003 1.809± 0.013
TokenMLP 0.457± 0.002 0.464± 0.001 1.796± 0.011

Self-Attention
No Processing 0.468± 0.007 0.474± 0.005 1.820± 0.016
TokenMLP 0.469± 0.003 0.474± 0.002 1.820± 0.013

No Mixing

MLP Token-Mixer
No Processing 0.544± 0.011 0.512± 0.004 1.986± 0.018
TokenMLP 0.507± 0.004 0.494± 0.004 1.899± 0.005

No Mixing
No Processing 0.534± 0.001 0.495± 0.000 1.954± 0.003
TokenMLP 0.482± 0.003 0.471± 0.002 1.850± 0.011

Self-Attention
No Processing 0.499± 0.007 0.482± 0.004 1.893± 0.012
TokenMLP 0.495± 0.003 0.478± 0.002 1.878± 0.005

Self-Attention

MLP Token-Mixer
No Processing 0.500± 0.017 0.487± 0.009 1.891± 0.025
TokenMLP 0.502± 0.012 0.493± 0.008 1.868± 0.012

No Mixing
No Processing 0.474± 0.002 0.472± 0.002 1.828± 0.006
TokenMLP 0.472± 0.003 0.472± 0.003 1.809± 0.007

Self-Attention
No Processing 0.487± 0.014 0.481± 0.010 1.847± 0.019
TokenMLP 0.485± 0.004 0.476± 0.002 1.854± 0.015

336

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.586± 0.003 0.535± 0.004 2.235± 0.005
TokenMLP 0.573± 0.012 0.537± 0.008 2.177± 0.014

No Mixing
No Processing 0.513± 0.006 0.500± 0.002 2.069± 0.017
TokenMLP 0.509± 0.005 0.499± 0.002 2.046± 0.012

Self-Attention
No Processing 0.537± 0.012 0.515± 0.007 2.116± 0.023
TokenMLP 0.538± 0.015 0.516± 0.009 2.110± 0.028

No Mixing

MLP Token-Mixer
No Processing 0.664± 0.036 0.579± 0.016 2.296± 0.029
TokenMLP 0.583± 0.005 0.535± 0.004 2.214± 0.007

No Mixing
No Processing 0.585± 0.002 0.524± 0.001 2.203± 0.005
TokenMLP 0.540± 0.002 0.506± 0.001 2.103± 0.002

Self-Attention
No Processing 0.563± 0.013 0.519± 0.007 2.170± 0.019
TokenMLP 0.548± 0.003 0.512± 0.002 2.137± 0.007

Self-Attention

MLP Token-Mixer
No Processing 0.572± 0.010 0.532± 0.009 2.194± 0.007
TokenMLP 0.570± 0.013 0.533± 0.010 2.175± 0.019

No Mixing
No Processing 0.537± 0.005 0.510± 0.003 2.102± 0.013
TokenMLP 0.532± 0.006 0.505± 0.004 2.069± 0.012

Self-Attention
No Processing 0.543± 0.006 0.512± 0.005 2.124± 0.010
TokenMLP 0.566± 0.014 0.530± 0.008 2.102± 0.022

512

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.646± 0.013 0.571± 0.005 2.485± 0.017
TokenMLP 0.626± 0.013 0.575± 0.008 2.414± 0.023

No Mixing
No Processing 0.564± 0.006 0.529± 0.003 2.336± 0.014
TokenMLP 0.549± 0.009 0.527± 0.004 2.277± 0.032

Self-Attention
No Processing 0.579± 0.015 0.542± 0.009 2.347± 0.026
TokenMLP 0.577± 0.004 0.539± 0.002 2.339± 0.012

No Mixing

MLP Token-Mixer
No Processing 0.685± 0.026 0.604± 0.012 2.464± 0.027
TokenMLP 0.653± 0.023 0.582± 0.017 2.451± 0.028

No Mixing
No Processing 0.619± 0.002 0.547± 0.001 2.420± 0.005
TokenMLP 0.587± 0.003 0.537± 0.002 2.356± 0.007

Self-Attention
No Processing 0.604± 0.003 0.544± 0.002 2.395± 0.005
TokenMLP 0.594± 0.004 0.541± 0.003 2.363± 0.006

Self-Attention

MLP Token-Mixer
No Processing 0.688± 0.015 0.604± 0.005 2.459± 0.028
TokenMLP 0.618± 0.006 0.564± 0.005 2.424± 0.012

No Mixing
No Processing 0.584± 0.005 0.543± 0.004 2.353± 0.012
TokenMLP 0.577± 0.010 0.534± 0.007 2.336± 0.022

Self-Attention
No Processing 0.582± 0.005 0.542± 0.004 2.348± 0.014
TokenMLP 0.589± 0.005 0.541± 0.003 2.355± 0.007

Table 3.5: Errors for best models on ETTh1 dataset with Lin = 96 including standard
deviations for a total of five runs. Entries marked in red are the best result for each T and
entries marked in blue are the second best.
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MSE MAE MMaxError
T Time-Mixer Variate-Mixer Token-Processor

96

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.443± 0.007 0.467± 0.006 1.614± 0.006
TokenMLP 0.416± 0.003 0.449± 0.002 1.573± 0.009

No Mixing
No Processing 0.410± 0.003 0.441± 0.001 1.559± 0.008
TokenMLP 0.406± 0.003 0.441± 0.003 1.548± 0.005

Self-Attention
No Processing 0.407± 0.002 0.443± 0.001 1.541± 0.004
TokenMLP 0.410± 0.003 0.445± 0.002 1.555± 0.005

No Mixing

MLP Token-Mixer
No Processing 0.474± 0.008 0.485± 0.006 1.659± 0.017
TokenMLP 0.452± 0.011 0.471± 0.007 1.624± 0.018

No Mixing
No Processing 0.451± 0.001 0.467± 0.001 1.608± 0.006
TokenMLP 0.425± 0.001 0.450± 0.001 1.569± 0.003

Self-Attention
No Processing 0.426± 0.002 0.453± 0.001 1.570± 0.002
TokenMLP 0.430± 0.002 0.457± 0.001 1.571± 0.003

Self-Attention

MLP Token-Mixer
No Processing 0.438± 0.010 0.460± 0.009 1.600± 0.011
TokenMLP 0.436± 0.007 0.463± 0.009 1.587± 0.006

No Mixing
No Processing 0.407± 0.001 0.438± 0.002 1.536± 0.004
TokenMLP 0.424± 0.007 0.452± 0.003 1.552± 0.005

Self-Attention
No Processing 0.413± 0.010 0.444± 0.007 1.540± 0.010
TokenMLP 0.416± 0.002 0.444± 0.002 1.547± 0.004

192

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.485± 0.006 0.495± 0.004 1.873± 0.012
TokenMLP 0.505± 0.010 0.505± 0.005 1.909± 0.014

No Mixing
No Processing 0.458± 0.005 0.475± 0.003 1.850± 0.007
TokenMLP 0.449± 0.002 0.471± 0.002 1.814± 0.009

Self-Attention
No Processing 0.455± 0.003 0.477± 0.001 1.807± 0.007
TokenMLP 0.456± 0.004 0.476± 0.002 1.823± 0.011

No Mixing

MLP Token-Mixer
No Processing 0.548± 0.011 0.529± 0.007 1.977± 0.016
TokenMLP 0.533± 0.009 0.522± 0.005 1.938± 0.010

No Mixing
No Processing 0.488± 0.003 0.491± 0.001 1.870± 0.007
TokenMLP 0.465± 0.004 0.477± 0.002 1.816± 0.011

Self-Attention
No Processing 0.469± 0.002 0.481± 0.002 1.834± 0.003
TokenMLP 0.473± 0.006 0.485± 0.003 1.834± 0.010

Self-Attention

MLP Token-Mixer
No Processing 0.530± 0.017 0.527± 0.010 1.918± 0.016
TokenMLP 0.527± 0.016 0.520± 0.014 1.914± 0.015

No Mixing
No Processing 0.454± 0.003 0.471± 0.003 1.788± 0.010
TokenMLP 0.461± 0.004 0.477± 0.002 1.786± 0.006

Self-Attention
No Processing 0.462± 0.009 0.478± 0.006 1.803± 0.010
TokenMLP 0.469± 0.005 0.482± 0.005 1.806± 0.009

336

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.563± 0.024 0.540± 0.015 2.197± 0.036
TokenMLP 0.597± 0.026 0.563± 0.014 2.187± 0.025

No Mixing
No Processing 0.494± 0.005 0.499± 0.001 2.098± 0.021
TokenMLP 0.486± 0.002 0.497± 0.002 2.062± 0.009

Self-Attention
No Processing 0.498± 0.010 0.507± 0.006 2.067± 0.022
TokenMLP 0.496± 0.005 0.507± 0.002 2.059± 0.007

No Mixing

MLP Token-Mixer
No Processing 0.636± 0.021 0.589± 0.009 2.222± 0.018
TokenMLP 0.647± 0.032 0.593± 0.019 2.227± 0.028

No Mixing
No Processing 0.521± 0.003 0.516± 0.002 2.103± 0.009
TokenMLP 0.500± 0.000 0.503± 0.001 2.052± 0.003

Self-Attention
No Processing 0.516± 0.006 0.515± 0.003 2.095± 0.018
TokenMLP 0.511± 0.003 0.513± 0.001 2.078± 0.007

Self-Attention

MLP Token-Mixer
No Processing 0.564± 0.030 0.556± 0.021 2.134± 0.016
TokenMLP 0.574± 0.010 0.552± 0.010 2.174± 0.013

No Mixing
No Processing 0.504± 0.007 0.507± 0.006 2.047± 0.008
TokenMLP 0.500± 0.004 0.504± 0.002 2.036± 0.011

Self-Attention
No Processing 0.498± 0.004 0.504± 0.003 2.042± 0.010
TokenMLP 0.555± 0.044 0.546± 0.032 2.093± 0.045

512

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.632± 0.018 0.580± 0.010 2.431± 0.021
TokenMLP 0.641± 0.016 0.588± 0.007 2.410± 0.022

No Mixing
No Processing 0.527± 0.005 0.524± 0.002 2.290± 0.016
TokenMLP 0.533± 0.008 0.530± 0.004 2.301± 0.021

Self-Attention
No Processing 0.542± 0.009 0.536± 0.006 2.320± 0.017
TokenMLP 0.543± 0.007 0.538± 0.004 2.309± 0.011

No Mixing

MLP Token-Mixer
No Processing 0.704± 0.031 0.627± 0.015 2.457± 0.031
TokenMLP 0.668± 0.027 0.609± 0.011 2.424± 0.024

No Mixing
No Processing 0.549± 0.004 0.537± 0.002 2.286± 0.012
TokenMLP 0.546± 0.003 0.534± 0.002 2.277± 0.008

Self-Attention
No Processing 0.552± 0.005 0.542± 0.003 2.283± 0.008
TokenMLP 0.561± 0.008 0.545± 0.005 2.306± 0.019

Self-Attention

MLP Token-Mixer
No Processing 0.668± 0.014 0.615± 0.007 2.393± 0.018
TokenMLP 0.631± 0.014 0.592± 0.008 2.398± 0.022

No Mixing
No Processing 0.543± 0.009 0.533± 0.006 2.266± 0.021
TokenMLP 0.543± 0.004 0.535± 0.003 2.264± 0.003

Self-Attention
No Processing 0.547± 0.004 0.540± 0.005 2.275± 0.017
TokenMLP 0.546± 0.007 0.536± 0.006 2.276± 0.016

Table 3.6: Errors for best models on ETTh1 dataset with Lin = 512 including standard
deviations for a total of five runs. Entries marked in red are the best result for each T and
entries marked in blue are the second best.
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Time Mixer MLP Token-Mixer No Mixing Self-Attention
dmixing d nlayers dmixing d nlayers dmixing d nlayers

Lin T Token Processor Variate Mixer

96

96

No Processing
MLP Token-Mixer 128 128 2 128 64 3 32 512 2
No Mixing 128 256 3 - 256 2 - 256 3
Self-Attention 32 512 2 - 128 3 - 64 1

TokenMLP
MLP Token-Mixer 64 64 1 64 128 1 32 64 1
No Mixing 128 256 2 - 512 3 - 256 3
Self-Attention 32 256 2 - 256 2 - 128 2

192

No Processing
MLP Token-Mixer 32 256 3 64 32 2 32 128 2
No Mixing 128 256 3 - 64 3 - 128 2
Self-Attention 128 128 3 - 64 3 - 128 1

TokenMLP
MLP Token-Mixer 64 256 3 64 64 3 64 64 3
No Mixing 128 128 3 - 256 1 - 256 3
Self-Attention 128 256 3 - 64 1 - 64 1

336

No Processing
MLP Token-Mixer 32 64 3 32 256 3 32 128 1
No Mixing 64 512 3 - 128 1 - 64 2
Self-Attention 32 256 3 - 64 3 - 32 3

TokenMLP
MLP Token-Mixer 64 64 3 64 64 1 32 64 2
No Mixing 64 256 3 - 256 2 - 128 3
Self-Attention 64 128 3 - 64 2 - 256 2

512

No Processing
MLP Token-Mixer 64 64 2 128 64 3 32 128 3
No Mixing 128 512 2 - 128 3 - 128 1
Self-Attention 32 256 3 - 32 2 - 64 1

TokenMLP
MLP Token-Mixer 32 64 3 32 64 2 32 32 3
No Mixing 128 256 3 - 256 2 - 128 1
Self-Attention 64 32 3 - 32 2 - 32 3

512

96

No Processing
MLP Token-Mixer 64 64 2 32 32 2 32 64 1
No Mixing 128 32 2 - 32 3 - 64 3
Self-Attention 128 32 2 - 32 3 - 64 1

TokenMLP
MLP Token-Mixer 128 64 2 32 64 2 64 64 1
No Mixing 128 64 3 - 64 1 - 256 1
Self-Attention 64 128 3 - 64 2 - 32 1

192

No Processing
MLP Token-Mixer 64 32 3 32 32 1 64 32 3
No Mixing 128 128 3 - 32 1 - 32 3
Self-Attention 32 32 2 - 32 2 - 64 1

TokenMLP
MLP Token-Mixer 32 64 2 32 32 1 32 64 2
No Mixing 32 64 2 - 64 3 - 64 1
Self-Attention 128 32 1 - 64 3 - 32 2

336

No Processing
MLP Token-Mixer 32 64 2 64 32 3 32 64 2
No Mixing 64 128 2 - 64 3 - 32 2
Self-Attention 32 64 2 - 64 3 - 32 1

TokenMLP
MLP Token-Mixer 64 32 3 32 64 2 32 32 1
No Mixing 128 64 1 - 64 1 - 32 1
Self-Attention 64 32 2 - 32 1 - 64 3

512

No Processing
MLP Token-Mixer 32 32 2 128 32 1 64 32 3
No Mixing 128 32 3 - 32 3 - 32 1
Self-Attention 32 64 1 - 32 3 - 32 3

TokenMLP
MLP Token-Mixer 32 32 2 32 32 1 64 32 1
No Mixing 64 32 1 - 64 2 - 32 1
Self-Attention 128 32 2 - 64 2 - 32 2

Table 3.7: Fitted hyperparameters for different choices of token-mixers and token processors
in various settings for the ETTh1 dataset.
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A.7. We advise the reader to also take a look at the results in the appendix. We observe
the following:

• We do not observe major stability issues for the models.

• We observe similar results for all three evaluation metrics. One might remark that the
use of self-attention along the time-axis brings about a slight relative improvement in
the l∞ (mean maximum error) evaluation metric.

• We observe that the best architectures strongly depend on the choice of the dataset,
Lin and T . This requires a more detailed analysis which we conduct below.

• Two major trends can be observed, while their strength depends on the dataset at
hand:

– We generally tend to favor the use of no token-mixer along the variate-axis or
the use of self-attention as a variate-mixer. Using MLP token-mixers along the
variate-axis is rarely competitive. Using self-attention is only slightly worse than
not using any token-mixer along the variate-axis.

– As opposed to the case of the variate-axis, we want to use token-mixers along
the time-axis. We tend to see the pattern that self-attention performs better for
larger Lin and T relative to the MLP token-mixer for mixing along the time-axis,
which is particularly pronounced for the weather dataset.

While we cannot give any theoretical reasons for the observed, we interpret these results
as follows: The comparisons of the self-attention mechanism seem to yield the best perfor-
mance in settings where many of them can be conducted or long-range patterns have to be
found, i.e. large Lin or T . This agrees with the dominance of Transformers in NLP, where
this model architecture yielded a breakthrough in many applications and especially in the
understanding of long texts.

The rare strength of self-attention as the variate-mixer for the weather dataset could be
connected with the relatively low correlation between the variates in the weather dataset
(see appendix A.6). Such a possible relation should be explored further in the next chapter.

Hyperparameter dependence

For practical reasons, it is extremely useful to have an overview of the dependence of model
performance on its hyperparameters. This also informs the choice of hyperparameters for
models that appear later in this thesis. We want to give an overview of how the model
hyperparameters d, nlayers and dmixing affect the model performance. We restrict ourselves
to visualise the case Lin = T = 96. We further reduce the interdependencies between the
different hyperparameters in our plots by selecting the best performing model (in terms of l2

error) for each fixed hyperparameter value. The relative dependence on the hyperparameters
is shown for all datasets in Figures 3.4, 3.5 and 3.6. We plot the relative dependence, i.e.
for the hyperparameters h1, . . . , hn we observe the prediction l2-error eh1 , . . . , ehn in which
case we plot

hk 7→
ehk

min{eh1 , . . . , ehn}
.
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Figure 3.4: Dependence of the model performance on the hyperparameter d. Dashed lines
indicate that the MLP token-processor was not used in the model.

This allows us to compare hyperparameter dependencies across several datasets.

We observe in Figure 3.4 that lower model dimensions d seem to be preferred in cases
where an MLP token-mixer is used to mix along the variate-axis. In cases where we do
not use the MLP token-mixer, the situation is less clear. The relationship between d and
model performance does not seem to be monotonic when mixing with self-attention along the
variate-axis. Surprisingly, we observe monotonic but strongly dependendent (on the dataset)
relation when we mix with self-attention along the time-axis and do not mix along the
variate-axis. In these cases, we suggest fitting this hyperparameter in practical applications.

We cannot see a clear pattern between model performance and nlayers in Figure 3.5. The
actual relationship seems to depend mostly on the dataset used.

In cases where an MLP token-mixer is used, we observe in Figure 3.6 that we prefer lower
values for dmixing when mixing along the variate-axis. As we can see, this relationship
depends on how strong the dependence of the different variates is. When mixing along the
time-axis, higher values for dmixing improve model performance. This is interesting since it
shows that the semantic information along the time-axis requires a larger hidden dimension
in the MLP token-mixer.

In all cases, the use of the MLP token processor can positively or negatively affect model
performance, and we do not observe a strict preference depending on particular hyperpa-
rameter combinations.
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Figure 3.5: Dependence of the model performance on the hyperparameter nlayers. Dashed
lines indicate that the MLP token-processor was not used in the model.
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Figure 3.6: Dependence of the model performance on the hyperparameter dmixing. Dashed
lines indicate that the MLP token-processor was not used in the model. Some plots are
empty because no MLP token-mixer was used in these cases.
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Performance Promotion by Component in Different Settings

We now want to analyse in greater detail how the performance of the model changes de-
pending on the configuration of the FlexibleTransformer, i.e. the token-mixers and token-
processors used, and the setting, i.e. Lin and T . Before running the experiments, we
expected that certain model components would perform better in some settings than in
others, for the following reasons:

• The innate structure of mixing across time- and variate-axes is different. While we
have temporal dependencies in time-mixing, the variates themselves are interchange-
able. This may make self-attention better suited to mixing along the variate-axis due
to its permutation equi-variance.

• The structure of long-term and short-term forecasts is different. In long-term forecast-
ing, it is much more important to capture long-range patterns in the data. The thesis
of the literature on the application of Transformers to time-series is that Transformer-
based models are well suited to extracting non-linear long-range patterns in time-series
data.

We show the promotion of performance by using the token-mixers and token-processors
described in this chapter over not using any token-mixer (respectively token-processor) in
Figure 3.7 for the ETTh1 dataset. The plots for the other datasets can be found in appendix
A.7. The reader is advised to take a look at them.

Before analysing performance promotion, it should be noted that the baseline in Figure 3.7
is no mixing. The shown relative performance value is computed by

1− MSE of model with respective model-component (along axis)

MSE of model without token-mixer (respectively token-processor) (along axis)
.

This is not equivalent to having no token-mixers at all, but simply marks the relative
improvement by fixing the time-mixer (or variate-mixer or token-processor) to a proper
token-mixer (or token-processor) along the respective axis instead of not mixing along this
axis.

We observe clear patterns in Figure 3.7: Fixing the token-processor has a better effect for
larger forecast horizons T . This is shared for all datasets. The relative effect of setting the
MLP token-mixer to mix along the variate-axis is worse than setting the variate-mixer to
self-attention. This is consistent with our previous evaluation results. The slight prefer-
ence for MLP token-mixing along the time-axis can also be observed in Figure 3.7. The
dependence on the effects described above is (almost monotonically) stronger for longer
forecast horizons T . The choice between Lin ∈ {96, 512} doubles the effect on the choice of
token-mixer, but has a negligible effect on the choice of token-processor. The nature of the
patterns observed in this study are fairly insensitive to the dataset at hand, as can be seen
for the other datasets in appendix A.7. The only difference is that we have a vertical shift
for some of the datasets with a generally better or worse performance. We attribute this to
the unique properties of the datasets.

As a rough guide we can say the following: For longer forecast horizons T and longer
input time series Lin we have to be more careful with the choice of the right token-mixer
and token-processor along the time-axis. For shorter forecasts, we would rather not use
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Figure 3.7: Performance promotion by using different token-mixers and token-processors for
the ETTh1 dataset. The baseline is not mixing (and respectively not processing). Positive
values indicate that using the best model with the respective token-mixer/token-processor
along the respectve axis is better than the best model with not using a token-mixer/token-
processor along the respective axis.

the token-processor as opposed to for longer forecast horizons. We can generally advise
against using a token-mixer along the variate-axis. The use of the token-processor should
be determined based on T . For longer forecasting horizons, it might be useful to use a
token-processor.

Model Size

We also want to look at the relationship between model size and performance. In particular,
we are interested in whether there are models that are small but still perform well. Model
size is mainly influenced by the choice of hyperparameters that influence the size of the
models’ layers. Figure 3.8 shows this relationship. Using the MLP token-mixer to mix
along the time-axis, using the MLP token-processor and not using any token-mixers to mix
along the variate-axis seems to be a good compromise in most situations where low model
size is paramount.
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Chapter 4

Contextualisation in the
FlexibleTransformer

The objective of this chapter is to conduct a systematic analysis of the contextualisation
patterns in the FlexibleTransformer. This analysis will be conducted by examining different
token-mixing schemes along different axes and by using different methods. To the author’s
knowledge, this is the first such study in the context of time-series.

The general approach is as follows: In order to relate the token representation at each step
in the forward network flow to the inputs, feature attribution methods will be employed.
Subsequently, we examine contextualisation patterns and apply a methodology analogous
to the norm-based analysis proposed in [Kob+21]. Afterwards, we conduct a series of
comprehensive experiments to find the relationship between contextualisation patterns and
the properties of the input time-series.

The idea for this research was inspired by Kobayashi et al., who analysed the contextuali-
sation patterns of feed-forward networks in BERT [Dev+19] and GPT [Bro+20] models in
[Kob+24].

Our contributions in this chapter are the following:

• Extend the norm-based analysis to the time-variate-token framework.

• Decompose all token-mixers in the time-variate-token framework and adapt the results
from [Kob+21] for self-attention, layer normalisation and residual connections and the
results from [Kob+24] for MLPs to this extended setting.

• Change the attribution scores to be end-to-end attribution: In contrast to the ap-
proaches proposed in [Kob+21; Kob+24], our method does not compute attribution
scores for a single layer in isolation. Instead, we relate the outputs of each layer to
the inputted time-series. This approach has the advantage of respecting that some
updates performed by later layers are relatively unimportant because the inputs have
already been scaled down.

• As we construct an end-to-end feature attribution, we are able to provide interpretable

45
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time-series Transformer models.

In the initial section of this chapter, we present the contextualisation approach previously
outlined. This allows us to demonstrate how model forecasts can be related to input time-
series data. Subsequently, we employ the contextualisation approach to conduct a compre-
hensive study of the FlexibleTransformer in the latter part of the chapter.

4.1 Decomposition Analysis

The purpose of this analysis is to examine how specific model components influence the
internal data representation, with the objective of identifying the crucial components in
the FlexibleTransformer. The approach presented below is based on the concept of norm-
based analysis, which was popularised in [Kob+21; Kob+24]. Kobayashi et al. decomposes
model components for BERT and GPT and study how the norm of each token changes
from one layer to the next. We adopt the idea of decomposing a layer’s output but do not
consider the previous layer’s output as the baseline for decomposition; rather, we consider
the inputted time-series. A more detailed discussion of this topic can be found in section
4.1.2. The residual connections enable a coupling between a layer’s output and its input,
which allows us to avoid relying on norms and instead study the change of the whole token
vectors in X . The concrete contextualisation metrics, that we use to measure the changes
in contextualisation throughout the model, will be introduced in section 4.1.1.

We will now introduce the relevant formal definitions and concepts that will be used through-
out this chapter. We will place ourselves in the time-variate-token framework with token
space T = X I , where we typically have X = Rd with d being the model dimension. We
consider a time-series X ∈ RNin×Lin of length Lin with Nin variates as the input.

Definition 4.1. Let M : RNin×Lin → RNin×T be a FlexibleTransformer time-series fore-
casting model and let the model steps Min : RNin×Lin → T , Mk : T → T for k ∈ {1, . . . ,K}
and Mout : T → RNin×T factorise the model in the sense of

M =Mout ◦MK ◦ · · · ◦M2 ◦M1 ◦Min.

Let 1 ≤ k ≤ K. Then the cumulative intermediate model step corresponding to k is given
by

M̃k :=Mk ◦ · · · ◦M1 ◦Min. (4.1)

In practice, these model steps are simply the token-mixer layers, token-processor layers,
normalisation layers, residual connections, possible embeddings and decoder layers that we
use to build the FlexibleTransformer. A cumulative intermediate model step has outputs
in the token-space T = X I .

The aim is to express each component of each token in M̃k(X), i.e. (M̃k(X)i)j for i ∈ I
and j ∈ {1, . . . , d}, as a linear combination of elements of the inputted time-series X. This
will be achieved in the following definition, where the relevant notion will be introduced.

Definition 4.2. Let M̃ : RNin×Lin → T be a cumulative intermediate model step. The
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decomposition of M̃ given X ∈ RNin×Lin is (F M̃ (X), bM̃ (X)), whereas

F M̃ (X) :=
(
(F M̃n,l(X, i))(n,l)∈{1,...,Nin}×{1,...,Lin}

)
i∈I
∈
((

Rd
)Nin×Lin

)I

bM̃ (X) :=
(
bM̃ (X, i)

)
i∈I
∈
(
Rd
)I

such that

M̃(X)i =
∑

n∈{1,...,Nin}
l∈{1,...,Lin}

F M̃n,l(X, i) + bM̃ (X, i) ∈ Rd.

We can see that F M̃ (X) provides a decomposition of a cumulative intermediate model step
M̃ in the sense that the cumulative intermediate model step’s output can be directly related
to the input sequence.

Remark 4.1. We remark that the decomposition (F M̃ (X), bM̃ (X)) is not unique. In fact,

we have to carefully make sure that we capture the idea that F M̃n,l(X, i) is the contribution

of the l-th timestamp of the n-th variate for input X at token i after the application of M̃ .
This idea is not captured in definition 4.2. This is only non-trivial in cases where M̃ is
non-linear (i.e. SelfAttn, TokenMLP, MLPTokenMixer and LayerNorm).

We have tried to find a definition that captures this idea. One possibility is the following: We
have thought about introducing the concept of context in the definition above and requiring

F M̃n,l(X, i) = fi,n,l(Xn,l, ci(X)),

for i ∈ I, fi,n,l : R× C → Rd. Here ci : RNin×Lin → C denotes context that is shared for all
n, l. We can proof that the decomposition of SelfAttn, that we provide below in lemma 4.2,
and the decompositions of LayerNorm would satisfy this extended version of the definition
above. For example, in the case of self-attention, the context would mainly capture the
attention scores. However, we cannot relate the decomposition of MLPTokenMixer and
TokenMLP to this definition because of the use of integrated gradients.

4.1.1 Contextualisation Metrics

The contextualisation of two model components can now be compared using contextual-
isation metrics. While there is a contextualisation metrics in the norm-based approach
proposed in [Kob+24], we propose an additional metric based on amplification that does
not fit within the norm-based approach, but rather uses the unique structure of our decom-
position.

Definition 4.3. Let F M̃ (X), bM̃ (X) and F
˜̃M (X), b

˜̃M (X) be two decompositions in the
sense of definition 4.2. Let

gCM : RJ × RJ → R,

where J := I × {1, . . . , Nin} × {1, . . . , Lin} × {1, . . . , d}. Then the contextualisation metric
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CM
M̃→ ˜̃M

based on gCM is a map

CM
M̃, ˜̃M

: RNin×Lin → R

X 7→ gCM

((
F M̃n,l(X, i)j

)
(i,n,l,j)∈J

,

(
F

˜̃M
n,l(X, i)j

)
(i,n,l,j)∈J

)
.

The goal of the contextualisation metric is to capture the changes of relevances of tokens

before and after the application of one or several model layers, i.e. where ˜̃M = S ◦ M̃ and
S : T → T . We typically choose S to be either one specific layer, i.e.

S =Mk, M̃ =Mk−1 ◦ · · · ◦M1 ◦Min

for 1 ≤ k ≤ K or can alternatively also capture cumulative contextualisation behaviour by
choosing

S =Mk ◦ · · · ◦M1, M̃ =Min.

Let us begin by presenting a contextualisation metric from the literature that is part of the
norm-based approach.

Spearman Contextualisation Metric in the Norm-based Approach

In the norm-based approach, we consider the norm ∥Fn,l(X, i)∥ instead of the individual

components of Fn,l(X, i) ∈ X . This simplifies the comparison of F M̃ (X) and F
˜̃M (X).

In [Kob+24], the authors introduce a contextualisation metric based on the Spearman rank
correlation coefficient.

Definition 4.4. The Spearman mixing-metric is a contextualisation metric that is based

on gSpearman. Let F
M̃ (X),F

˜̃M (X) and J be as in definition 4.3. Then

gSpearman

((
F M̃n,l(X, i)j

)
(i,n,l,j)∈J

,

(
F

˜̃M
n,l(X, i)j

)
(i,n,l,j)∈J

)

:= 1− ρS
((
∥F M̃n,l(X, i)∥2

)
i,n,l

,

(
∥F ˜̃M

n,l(X, i)∥2
)
i,n,l

)
.

We remind the reader of the definition of the Spearman rank correlation coefficient in
appendix A.4.

The Spearman mixing metric is an interesting approach to mixing tokens in that it treats
mixing as a permutation of their relative importance (in the sense of their norm). However,
this can lead to issues in practice if the amplitude of the tokens varies greatly and there
are only a few important tokens having large norms. The non-dominant tokens (with small
norms) do not significantly influence the model’s prediction, but may greatly alter the
Spearman mixing metric.

Thus, we want to introduce another contextualisation metric that does not compare norms
on the token-level.
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Amplification Mixing-Metric

A significant challenge when comparing two decompositions F M̃ (X) and F
˜̃M (X) is that the

scales of these two decompositions are not necessarily aligned. If we are able to compare
them on the same scale, we can simply consider the difference between them and then
average out the absolute values of the differences. This leads us to consider the amplification
mixing-metric.

Definition 4.5. The amplification mixing-metric is a contextualisation metric that is based

on gamp. Let F
M̃ (X),F

˜̃M (X) and J be as in definition 4.3. Then

gamp

((
F M̃n,l(X, i)j

)
(i,n,l,j)∈J

,

(
F

˜̃M
n,l(X, i)j

)
(i,n,l,j)∈J

)

:=
1

|I|NinLind

∑
i∈I

∥∥∥∥∥∥∥
F M̃n,l(X, i)j − µ

(
F M̃

)
σ
(
F M̃ (X)

) −
F

˜̃M
n,l(X, i)j − µ

(
F

˜̃M
)

σ
(
F

˜̃M (X)
)


n,l,j

∥∥∥∥∥∥∥
1

where

µ(F (X)) :=
1

|I|NinLind

∑
(i′,n′,l′,j′)∈J

Fn′,l′(X, i
′)j′

σ(F (X)) =

 1

|I|NinLind

∑
(i′,n′,l′,j′)∈J

(Fn′,l′(X, i
′)j′ − µ(F (X)))2

 1
2

We will see examples of these contextualisation metrics once we have decomposed the Flex-
ibleTransformer.

4.1.2 Advantages of Decomposing over Attention Scores

These techniques were originally developed for the purpose of analysing Transformer lan-
guage models with the objective of a deeper insight into the self-attention mixing operation.
A naive approach would be to consider simply attention scores as the key object in a de-
composition approach, i.e. the matrix(

SoftMax

(
ϕ
(
q
(h)
i ,k

(h)
j′

)
j′∈I

)
j

)
(i,j)∈I×I

in equation (2.4). However, as [Kob+21] argues, this overlooks the crucial point that the

queries (q
(h)
i )i∈I and keys (k

(h)
j )j∈I have been projected into Rdattn using linear layers.

These linear layers can already recombine, amplify and dampen certain tokens. Accord-
ing to Kobayashi et al., the analysis of attention scores is meaningless if isolated. The
decomposition approach takes all these surrounding operations into account.

However, we believe that the approach proposed by Kobayashi et al. does not fully address
the issue. While the model is composed of each component in a linear manner, with each
component decomposed into its input, the analysis does not combine the results of multiple
decompositions of successive components.
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4.2 Decomposition of the FlexibleTransformer

The key ingredient for the norm-based approach introduced in the previous section is the
decomposition (F M̃ (X), bM̃ (X)) of M̃ given X ∈ RNin×Lin . Hence, we have to decompose

• the different input embeddings,

• layer normalisation and residual connection operations,

• the different token-mixers (MLP token-mixer and self-attention) and

• the TokenMLP token-processor.

In order to relate the forecast to the input time-series in the same fashion, it is also necessary
to decompose the linear decoder.

The proposed strategy is as follows: Assume that ˜̃M = S ◦ M̃ , where we have already

decomposed M̃ . Hence, we compute (F
˜̃M (X), b

˜̃M (X)) based on (F M̃ (X), bM̃ (X)).

We move the decomposition of the residual connection and layer normalisation to the ap-
pendix, as their decomposition is not central to our exposition. As an example, in order to
provide the reader with a basic understanding of the definitions, we will nevertheless carry
out the decomposition of the single token input embedding of the vanilla Transformer in
the main text.

For the sake of brevity, we implicitly assume that (n, l) ∈ {1, . . . , Nin} × {1, . . . , Lin} and
(m, k) ∈ {1, . . . , N} × {1, . . . , L}. We further make use of the Dirac delta δx,y, that equals
one if x and y agree and zero else.

Lemma 4.1. The decomposition of the single token input embedding is given by

F STIEmb
n,l (X, (1, k)) =W:,nXn,kδk,l

bSTIEmb(X, (1, k)) = b

where W ∈ Rd×Nin , b ∈ Rd denote the weight matrix and the bias of the linear layer of the
single token input embedding.

Proof. We want to write

SingleTokenInputEmb (X)(1,k) = LinNin→d

(
XNin×L

)
k

= LinNin→d(X:,k)

=
∑

n∈{1,...,Nin}
l∈{1,...,Lin}

F STIB
n,l (X, (1, k)) + bSTIB(X, (1, k)).
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With the definition of the linear layer, we get

LinNin→d (X:,k) =WX:,k + b

=
∑

n∈{1,...,Nin}

W:,nXn,k + b

=
∑

n∈{1,...,Nin}
l∈{1,...,Lin}

W:,nXn,lδk,l + b.

This concludes the proof.

In the next proofs, we will be somewhat briefer and will focus on the decomposition of
the key steps. In the remainder of this section, we will decompose the major components
of the FlexibleTransformer that are of particular interest to us. We will begin with the
decomposition of self-attention, which is relatively straightforward. Then, we will turn to
the MLP-based components.

The non-linearity of their activation function necessitates the utilisation of a specialised
technique, namely integrated gradients, which was originally introduced in [STY17]. Having
introduced and justified this technique, it is then employed in the decomposition of the MLP
token-mixer and MLP token-processor.

4.2.1 Decomposition of Self-Attention

This section builds upon the ideas presented in [Kob+21] by extending them to the time-
variate-token paradigm.

While our formalism allows for the straightforward application of self-attention along both
the time- and variate-axes in the time-variate-token paradigm, we limit our discussion to the
case where self-attention is applied along the time-axis, i.e. SelfAttntime. The decomposition
for self-attention along the variate-axis is analogous to the decomposition for self-attention
along the time-axis. However, the components of (m, k) = i ∈ I and (n, l) ∈ {1, . . . , Nin}×
{1, . . . , Lin} must be interchanged, respectively. We have the following result.

Lemma 4.2. Let M̃ : RNin×Lin → T be the cumulative intermediate model step before
the application of self-attention with H heads. Let (F M̃ (X), bM̃ (X)) be the decomposition
up until right before the self-attention component. The decomposition of M̃ together with
self-attention is

F SAtime◦M̃
n,l (X, (m, k)) =

H∑
h=1

L∑
k′=1

W (out,h)A
(h,m)
k,k′ W (V,h)F M̃n,l(X, (m, k

′)),

bSAtime◦M̃ (X, (m, k)) =
H∑
h=1

(
L∑

k′=1

(
W (out,h)A

(h,m)
k,k′

(
W (V,h)bM̃ (X, (m, k)) + b(V,h)

))
+ b(out,h)

)

where W (V,h), b(V,h) and W (out,h), b(out,h) denote the weights and biases of Lin
(V,h)
d→dattn

and

Lin
(out,h)
dattn→d for h = 1, . . . ,H and

A
(h,m)
k,k′ := SoftMax

(
ϕ
(
Lin

(Q,h)
d→dattn

(
M̃(X)m,k

)
,Lin

(K,h)
d→dattn

(
M̃(X)m,p

))
p∈{1,...,L}

)
k′
∈ R.
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Proof. The proof consists merely of cleverly rewriting (SelfAttntime ◦ M̃)(X)m,k from defi-
nition 2.5. In each SelfAttntime operation, we compute an attention score matrix for each
token (m, k). Based on definitions 2.5 and 3.2, we identify the (k, k′)-th component of the
attention score matrix as A(h,m) ∈ RL×L.

This allows us to write using definitions 2.5 and 3.2 and the decomposition of M̃ given X

M̃(X)(m,k) =
∑

n∈{1,...,Nin}
l∈{1,...,Lin}

F M̃n,l(X, (m, k)) + bM̃ (X, (m, k))

that:

SelfAttntime(M̃(X))(m,k)

=

H∑
h=1

Lin
(out,h)
dattn→d

(
L∑

k′=1

A
(h,m)
k,k′ Lin

(V,h)
d→dattn

(M̃(X)m,k′)

)

=

H∑
h=1

[
W (out,h)

(
L∑

k′=1

A
(h,m)
k,k′

(
W (V,h)M̃(X)m,k′ + b(V,h)

))
+ b(out,h)

]

=
H∑
h=1

W (out,h)

 L∑
k′=1

A
(h,m)
k,k′

W (V,h)

 ∑
n∈{1,...,Nin}
l∈{1,...,Lin}

F M̃n,l(X, (m, k
′)) + bM̃ (X, (m, k′))


+b(V,h)

))
+ b(out,h)

]
=

∑
n∈{1,...,Nin}
l∈{1,...,Lin}

H∑
h=1

L∑
k′=1

W (out,h)A
(h,m)
k,k′ W (V,h)F M̃n,l(X, (m, k

′))

+
H∑
h=1

(
L∑

k′=1

(
W (out,h)A

(h,m)
k,k′

(
W (V,h)bM̃ (X, (m, k′)) + b(V,h)

))
+ b(out,h)

)

We can identify the postulated expression for F SAtime◦M̃
n,l (X, (m, k)).

4.2.2 Integrated Gradients for Feature Attribution

Before proceeding to the decomposition of the MLP token-mixer and the MLP token-
processor, it is necessary to motivate and introduce a technique for the decomposition
of the non-linear activation function g in the MLP.

The decomposition of self-attention is relatively straightforward due to the linear structure
of recombining the tokens through the value projection with the attention scores as weights.
However, with the non-linear activation in the MLP, we are now in a different position
because a simple linear decomposition is not possible anymore. Consequently, we pursue
the approach proposed in [Kob+24], which involves utilising integrated gradients (IG) to
decompose this non-linear activation. Kobayashi et al. were the first to apply IG to the
MLP structure in language transformer models.
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The method of integrated gradients is a valuable contribution to the diverse range of feature
attribution approaches. Previous works on this topic have included the use of the prod-
uct of the model’s gradients and the features [Bae+09], deconvolutional networks [ZF14],
and guided backpropagation in convolutional neural networks [Spr+14]. Furthermore, the
layer-wise relevancy propagation approach proposed in [Bin+16] and the Deep Lift method
developed in [SGK17] should be mentioned. The IG approach taken by Sundararajan, Taly,
and Yan in [STY17] is axiomatic in nature. In this approach, axioms are postulated for
feature attribution methods. Path methods are identified as the only feature decomposition
methods that satisfy these axioms. IG represents a specific instance of a path method, and
arguably represents the simplest such instance.

In this section, we aim to provide a concise overview of the axiomatic approach described
above, as it plays a pivotal role in our ability to decompose the FlexibleTransformer. We
will present the axioms postulated in [STY17] and introduce path methods. Finally, we will
conclude by introducing the IG method.

Axioms for Feature Attribution Methods

The following definition of a feature attribution method is a slight modification of definition
1 in [STY17].

Definition 4.6. Let g : Rk → R represent a neural network and let x ∈ Rk be an input to
g. An attribution of the prediction of g at input x relative to a baseline input x′ ∈ Rk is a
vector Ag(x, x

′) ∈ Rk where Ag(x, x
′)i is the contribution of xi to the prediction g(x).

The selection of the baseline input x′ can be thought of as a zero prediction. In image
processing tasks, this could be the black image. Another basic strategy is to choose x′ such
that g(x′) = 0, which is consistent with the completeness axiom that we present shortly.

Sundararajan, Taly, and Yan postulate the following four axioms for an attribution Ag for
g:

1. Sensitivity: An attribution Ag for g is said to satisfy the sensitivity axiom if for all
g which do not depend (mathematically) on the i0-th component of its input x for
i0 ∈ {1, . . . , k}, then Ag(x, x′)i0 = 0 holds for all x, x′ ∈ Rk.

2. Linearity: An attribution A is said to satisfy the linearity axiom if the map

A : F(Rk,R)→ F(Rk × Rk,R)
g 7→ Ag

is linear. Here, F(Rk,R) and F(Rk × RK ,R) represent the set of functions from Rk
and Rk × Rk to R.

3. Completeness: An attribution Ag for a model g is said to satisfy the completeness
axiom if

g(x)− g(x′) =
k∑
i=1

Ag(x, x
′)i.

4. Implementation invariance: Two networks g and g′ are said to be functionally
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equivalent if they agree as functions from g, g′ : Rk → R despite having different
implementations. We require that an attribution is invariant with respect to the
implementation, i.e. for two functionally equivalent networks g, g′, we require Ag =
Ag′ .

For instance, it can be demonstrated that the gradients∇xg are implementation invari-
ant. However, popular methods such as DeepLift and layer-wise relevancy propagation
do not adhere to this implementation invariance, as they utilise discrete gradients for
which the chain rule does not hold.

Concrete counterexamples for the stated violations of these axioms for popular methods
can be found in appendix B of [STY17].

Path Methods

We can formulate a class of attributions that we call path methods. It has been demonstrated
that path methods are the only attribution methods that satisfy all the axioms above. We
are however not going to prove the latter result and refer the interested reader to [Fri04,
Theorem 1] for a proof and a formal definition of the axiomns.

Definition 4.7. Let γx,x′ ∈ C∞([0, 1],Rk) be a smooth path from γx,x′(0) = x′ to γx,x′(1) =
x. Then, the path integrated gradient (PIG) for a function g ∈ C1(Rk,R) is given by

PIGγx,x′ ,g :=

∫ 1

0
∇g(γx,x′(t)) γ′x,x′(t) dt

We can observe that path integrated gradients satisfy inplementation invariance because
they are defined only using the gradients of the function g. It is immediate from the
fundamental theorem of calculus that we further have

g(x)− g(x′) =
k∑
i=1

PIG
γx,x′ ,g

i

since

k∑
i=1

PIG
γx,x′ ,g

i =

∫ 1

0

k∑
i=1

∂

∂xi
g(γx,x′(t)) (γx,x′)

′
i(t) dt =

∫ 1

0

∂

∂t
(g ◦ γx,x′)(t) dt = g(x)− g(x′).

This also proves that path methods satisfy the completeness axiom. We further remark that
completeness is a very desirable property and is ideally suited for our goal of decomposing
the MLP-based components of the FlexibleTransformer. The linearity and sensitivity axiom
follow from the linearity of the gradient and the fact that ∂/∂xi0g(xi0) = 0 if g does not
depend on the i0-th component.

The path integrated gradients introduced above have been known and used in the cost-
sharing literature in economics and also go under the name Aumann-Shapley method [AS74].

Integrated Gradients as the Unique Symmetry-Preserving Path Integrated Gra-
dient Method

The consideration of another desirable property of the attribution method, that we call
symmetry-preservation, leads us to integrated gradients. We say that an attribution method
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Ag for g is symmetry-preserving if for all pairs (i, j) ∈ {1, . . . , k}2, i < j such that

g(x) = g(x0, . . . , xi−1, xj , xi+1, . . . , xj−1, xi, xj+1, . . . , xk) for all x ∈ Rk

we have
Ag(x, x

′)i = Ag(x, x
′)j for all x, x′ ∈ Rk,

where xi = xj and x
′
i = x′j . Let us now define IG.

Definition 4.8. Integrated gradients is an integrated path gradient method with the path
γ̃x,x′(t) := (1− t)x′ + tx. We write IGg(x, x′) := PIGγ̃x,x′ ,g.

IG is not only appealing because of its simplicity thanks to the straight line path, but also
thanks to the following proposition that is proven in [STY17, Appendix A].

Proposition 4.1. The integrated gradients method is the unique integrated path method
that satisfies symmetry-preservation.

4.2.3 Decomposition of the MLP Token-Mixer

Recall that the MLP token-mixer was defined in definition 3.5

MLPTokenMixer
(
X̂
)
:=
[
Reshape(A,d)

(
MLPdA→dmixing→dA,g

(
FlattenJ

(
X̂
)))]

A×d
,

where X̂ ∈ XJ with J = {1, . . . , A}. The concrete choice of A depends on whether the
MLP token-mixer is applied along the time- or the variate-axis. As with the decomposition
of self-attention, we only consider the case where the MLP token-mixer is applied along
the time-axis, i.e. we decompose MLPTokenMixertime. We continue to use the naming
conventions from the previous section on decomposing self-attention.

We decompose the j-th component of the token at position (m, k) with the previous ap-
plication of a cumulative intermediate model step M̃ : RNin×Lin → T . As before, we write
X̃ = M̃(X) with model input X ∈ RNin×Lin . Using the definition of MLPTokenMixer, we
can write(

MLPTokenMixertime

(
M̃(X)

)
(m,k)

)
j

=MLPdL→dmixing→dL,g

((
M̃(X)(m,1)

)
1
· · ·
(
M̃(X)(m,1)

)
d

· · · · · · · · ·
(
M̃(X)(m,L)

)
1
· · ·
(
M̃(X)(m,L)

)
d

)
kd+j

The MLP has one hidden layer and hence is composed of linear input and linear output
projections with weights W (0) ∈ Rdmixing×dL, b(0) ∈ Rdmixing and W (1) ∈ RdL×dmixing , b(1) ∈
RdL respectively to and from Rdmixing with a non-linear activation g in between. We can
write ι : X̂ 7→W (0)FlattenJ (X̂) + b(0) for X̂ ∈ XJ and

FPre g
n,l (X,m) :=W (0)

(
F M̃n,l(X, (m, 1))1 · · ·F M̃n,l(X, (m, 1))d

· · · · · · · · · F M̃n,l(X, (m,L))1 · · ·F M̃n,l(X, (m,L))d
)

bPre g(X,m) :=W (0)
(
bM̃ (X, (m, 1))1 · · · bM̃ (X, (m, 1))d

· · · · · · · · · bM̃ (X, (m,L))1 · · · bM̃ (X, (m,L))d

)
+ b(0)
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so that

ι
((
M̃(X)N×L

)
m

)
=

∑
n∈{1,...,Nin}
l∈{1,...,Lin}

FPre g
n,l (X,m) + bPre g(X,m) ∈ Rdhidden

We now face the non-linear activation function g : R → R. As we however do not want to
consider the sum

∑
n,l F

Pre g
n,l (X,m) + bPre g(X,m) as the sole information that we input to

g, but rather the individual contributions (FPre g
n,l (X,m))n,l and b

Pre g(X,m), we define

g̃ : RNinLin+1 → R

x 7→ g

 ∑
n∈{1,...,Nin}
l∈{1,...,Lin}

x(n−1)Lin+l + xNinLin+1

 .

Applying the feature attribution method IG to g̃ with baseline 0, we get for the p-th
component of the activated hidden representation

g

 ∑
n∈{1,...,Nin}
l∈{1,...,Lin}

FPre g
n,l (X,m)p + bPre g(X,m)p


=

∑
n∈{1,...,Nin}
l∈{1,...,Lin}

IGg̃
(n−1)Lin+l

((
FPre g
1,1 (X,m)p · · · FPre g

1,Lin
(X,m)p

· · · FPre g
Nin,1

(X,m)p · · · FPre g
Nin,Lin

(X,m)p bPre g(X,m)p

)
,0
)

+ IGg̃
NinLin+1

((
FPre g
1,1 (X,m)p · · · FPre g

1,Lin
(X,m)p

· · · FPre g
Nin,1

(X,m)p · · · FPre g
Nin,Lin

(X,m)p bPre g(X,m)p

)
,0
)
.

Together with the output projection, we have proven the following lemma.

Lemma 4.3. Let M̃ : RNin×Lin → T be the model part before the application of the
MLP token-mixer. Let (F M̃ (X), bM̃ (X)) be the decomposition up until right before the
MLP token-mixer component with hidden dimension dmixing and activation function g. The
decomposition of MLPTokenMixertime ◦ M̃ is given by

FMLPTokenMixertime◦M̃
n,l (X, (m, k))j

=

dmixing∑
p=1

W
(1)
kd+j,pIG

g̃
(n−1)Lin+l

((
FPre g
1,1 (X,m)p · · · FPre g

1,Lin
(X,m)p

· · · FPre g
Nin,1

(X,m)p · · · FPre g
Nin,Lin

(X,m)p bPre g(X,m)p

)
,0
)
,
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and

bMLPTokenMixertime◦M̃ (X, (m, k))j

=

dmixing∑
p=1

W
(1)
kd+j,pIG

g̃
NinLin+1

((
FPre g
1,1 (X,m)p · · · FPre g

1,Lin
(X,m)p

· · · FPre g
Nin,1

(X,m)p · · · FPre g
Nin,Lin

(X,m)p bPre g(X,m)p

)
,0
)
+ b

(1)
j ,

where j ∈ {1, . . . , d} and

FPre g
n,l (X,m) :=W (0)

(
F M̃n,l(X, (m, 1))1 · · ·F M̃n,l(X, (m, 1))d

· · · · · · · · · F M̃n,l(X, (m,L))1 · · ·F M̃n,l(X, (m,L))d
)

bPre g(X,m) :=W (0)
(
bM̃ (X, (m, 1))1 · · · bM̃ (X, (m, 1))d

· · · · · · · · · bM̃ (X, (m,L))1 · · · bM̃ (X, (m,L))d

)
+ b(0).

4.2.4 Decomposition of the MLP Token-Processor

The decomposition of the MLP token-processor is very similar to the decomposition of the
MLP token-mixer, because again we have an MLP as the key part to be decomposed with
IG. We will not give the proof of the following lemma, because it is essentially the same as
the proof of lemma 4.3.

Lemma 4.4. Let M̃ : RNin×Lin → T be the model part before the application of the MLP
token-processor. Let (F M̃ (X), bM̃ (X)) be the decomposition up until right before the MLP
token-processor component with hidden dimension dhidden and activation function g. The
decomposition of M̃ together with the MLP token-processor is given by

FTokenMLP◦M̃
n,l (X, i)j

=

dhidden∑
p=1

W
(1)
j,p IG

g̃
(n−1)Lin+l

((
FPre g
1,1 (X, i)p · · · FPre g

1,Lin
(X, i)p

· · · FPre g
Nin,1

(X, i)p · · · FPre g
Nin,Lin

(X, i)p bPre g(X, i)p

)
,0
)

and

bTokenMLPtime◦M̃ (X, i)j

=

dhidden∑
p=1

W
(1)
j,p IG

g̃
NinLin+1

((
FPre g
1,1 (X, i)p · · · FPre g

1,Lin
(X, i)p

· · · FPre g
Nin,1

(X, i)p · · · FPre g
Nin,Lin

(X, i)p bPre g(X, i)p

)
,0
)
+ b

(1)
j ,

where j ∈ {1, . . . , d} and

FPre g
n,l (X, i) :=W (0)

(
F M̃n,l(X, i)1 · · ·F M̃n,l(X, i)d

)
bPre g(X, i) :=W (0)bM̃ (X, i) + b(0).
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4.3 Experimental Contextualisation Analysis

We want to apply the theory developed in the previous sections to practice and analyse
the contextualisation of different components in the FlexibleTransformer. It would be very
nice if we could decompose the models from the experimental part of the previous chapter.
However, the number of integrals to be computed for the IG-attribution of an MLP token-
processor is O(dhiddenNinLinNL). This makes it impractical to use this decomposition in
large models, and is a natural goal for future research to make contextualisation analysis and
interpretability available to large real-world applications. While we were able to compute
the decomposition for several batches of size 32 on an Nvidia GA100, we were unable to
compute the model decomposition for the entire ETTh1 test dataset (17420 timestamps in
the original time series) in less than a day, which prevents us from performing meaningful
large-scale analysis. We only present some examples of contextualisation in section 4.4.

So we construct smaller, artificial data that we think is suitable to study the contextuali-
sation patterns of different FlexibleTransformer components.

4.3.1 Synthetic Data Generation

We have the following goals in mind when constructing synthetic datasets to study contex-
tualisation:

• Dataset size: We want the dataset to allow for a study with significantly lower Lin

and Nin to reduce the total computational load of the IG-attribution.

• Different ratios Lin/Nin: We are interested in how the model behaves in different
scenarios. This reflects the challenges encountered in the real world, as classical time-
series data have very few variates, while many modern applications have hundreds to
thousands of variates.

• Different strengths of coupling between the variates: We want to interpolate between
the extreme cases of independent variates and the scenario where the variates are
highly coupled in the sense that it is necessary to use all other variates to predict each
of them.

A key consideration is to decide on the nature of the interaction between the variates.
Options include the following

• Periodic data: This is quite close to real-world applications, since most real-world
datasets have some periodicity. On the one hand, a form of independence of the
variates can be introduced by considering period lengths that are relatively prime to
each other. On the other hand, a dependence of the variates can be achieved if the
periods are multiples of each other. A disadvantage of this is that the periods can
still become relatively large in the dependent case. The problem of overfitting to data
seen during training can be alleviated to some extent by adding noise.

• Purely random data: We can achieve any kind of (in)dependence by, for example,
controlling the covariance of a Gaussian process. While this is conceptually further
away from real datasets than the previous aspect, the strength of this approach lies
in the complete control (and easy mathematical analysis) of the process.
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After careful consideration and experimental exploration, we decided against the conceptu-
ally appealing choice of using Gaussian processes because it is very difficult to actually train
our models to detect patterns in such purely random data. We observed highly unstable
training behaviour with a strong dependence on the (random) weight initialisation in cases
where we chose non-trivial covariance functions for the Gaussian process. Examples for
covariance functions that we have tried include shift relations of certain variates (some vari-
ates are predictable with other variates), variates as means of other variates, and non-linear
interactions. Particularly in settings with large Nin, it was almost impossible to fit models
reliably to the data. We observed a strong dependence on the weight initialisation. This
negative result for Gaussian processes is contrasted with the use of periodic data. Here we
can cleanly construct datasets that have the desired properties.

Construction of Periodic Data

As motivated above, we want to use data based on periodic patterns. A basic approach is as
follows: We fix Nin ∈ {2k : k ∈ N} and Lin to fit our computing resources. To control the
interaction between the Nin variates, we group them into blocks of size B ∈ {1, 2, 4, . . . , Nin},
where the total number of blocks is Nin/B. Each block has an associated frequency, which
we use to construct the variates that belong to that block. We perturb the variates with
Gaussian noise. Thus, for the periods p1, . . . , pNin/B, we have for the variate n

Xn,l = sin

(
2πl

pk

)
+ γen,l (en′,l′)n′∈{1,...,Nin}

l′∈{1,...,Lin}
∼ N (0, 1) i.i.d.,

where k = ⌈n/B⌉, for l ∈ {1, . . . , Lin} and γ > 0.

Our specific choices for the experiments in this section, which are within our computational
limits, are as follows:

Lin = 20

Nin ∈ {16, 32}
B ∈ {2, 4, 8, 16}

{p1, . . . , pB} = {p > 10 : p prime}
γ = 0.3

Figure 4.1 shows this data in the case, where Lin = 40, Nin = 16, B = 4, γ = 0.3. We can
observe that the data is split into several blocks.

4.3.2 Setup

The goal of this experiment is to better understand the contextualisation behaviour of
the token-mixers and token-processor introduced in chapter 3. Therefore, we look at the
token-processor and the token-mixers

TMtime,TMvariate ∈ {SA2,MLP16
TM}

TP = MLP4
TP.
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Figure 4.1: Example of periodic data with Lin = 40, Nin = 16, B = 4, γ = 0.3. Sample
time-series (left) and correlation plot (right) show that the data is split into blocks of size
B = 4. We use a larger Lin as compared to our experiments only for visualisation purposes.

To keep the experiment small, we fix H, dmixing and dhidden. We further use the following
model and training hyperparameters:

d = 8

nlayers = 1

dropout = 0.1

learning rate = 0.05

learning rate scheduler = constant

The patch embedding with patch length one serves as the embedding.

4.3.3 Results and Analysis

Table 4.1 shows the results of the standard evaluation metrics. We consider the contextual-
isation of each component and the contextualisation of each cumulative intermediate model
step. The following naming convention allows us to effectively refer to model components:
We use two-letter abbreviations for each model component

Tm : Time-Mixer Vm : Variate-Mixer

Tp : Token-Processor Ln : Layer Normalisation

and chain several of these abbreviations together. For example, a 1-layer FlexibleTrans-
former with time- and variate-mixing and a token-processor would correspond to TmL-
nVmLnTpLn, and if we consider the same model only up to the variate-mixing step without
the subsequent layer normalisation and token-processing, we would write TmLnVm.

In Table 4.2 we show the contextualisation for each individual component. To emphasise
that we are only considering one component, we underline the component for which we are
calculating the contextualisation metrics, i.e. TmLnVm for an isolated contextualisation
study of the variate-mixer.
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MSE MAE MMaxError
N B Time Mixer Variate Mixer

16

2
MLP Token-Mixer

MLP Token-Mixer 0.196 0.355 0.818
Self-Attention 0.189 0.347 0.808

Self-Attention
MLP Token-Mixer 0.184 0.343 0.795
Self-Attention 0.396 0.508 1.122

4
MLP Token-Mixer

MLP Token-Mixer 0.167 0.321 0.770
Self-Attention 0.168 0.322 0.768

Self-Attention
MLP Token-Mixer 0.173 0.329 0.780
Self-Attention 0.326 0.455 1.018

8
MLP Token-Mixer

MLP Token-Mixer 0.170 0.335 0.769
Self-Attention 0.165 0.327 0.771

Self-Attention
MLP Token-Mixer 0.177 0.340 0.790
Self-Attention 0.189 0.345 0.818

16
MLP Token-Mixer

MLP Token-Mixer 0.176 0.338 0.767
Self-Attention 0.165 0.327 0.750

Self-Attention
MLP Token-Mixer 0.165 0.326 0.750
Self-Attention 0.165 0.326 0.748

32

2
MLP Token-Mixer

MLP Token-Mixer 0.218 0.376 0.853
Self-Attention 0.199 0.361 0.821

Self-Attention
MLP Token-Mixer 0.194 0.356 0.815
Self-Attention 0.449 0.530 1.132

4
MLP Token-Mixer

MLP Token-Mixer 0.184 0.340 0.794
Self-Attention 0.177 0.334 0.786

Self-Attention
MLP Token-Mixer 0.170 0.328 0.769
Self-Attention 0.420 0.521 1.131

8
MLP Token-Mixer

MLP Token-Mixer 0.191 0.350 0.815
Self-Attention 0.178 0.338 0.792

Self-Attention
MLP Token-Mixer 0.193 0.351 0.822
Self-Attention 0.340 0.466 1.049

16
MLP Token-Mixer

MLP Token-Mixer 0.165 0.324 0.771
Self-Attention 0.164 0.323 0.767

Self-Attention
MLP Token-Mixer 0.162 0.321 0.760
Self-Attention 0.201 0.356 0.833

Table 4.1: Evaluation metrics for contextualisation experiment.

We also analyse the contextualisation of the cumulative intermediate model steps in Table
4.3. Here we highlight the contextualisation by underlining all steps, i.e. TmLnVm for a
contextualisation study of all three model components up to the variate-mixer.

We can observe from the tabulated data that there seems to be a relation between B and the
error metrics which is also shown in Figure 4.2. In particular, we see that the discrepancies
in performance mostly occur in the setting where the block size B is small. For small
numbers of blocks, the models achieve similar performances in all three evaluation metrics.

However, there are a couple of notable observations. First, the empirical strength of the
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Component Tm TmLn TmLnVm TmLnVmLn TmLnVmLnTp TmLnVmLnTpLn
Contextualisation Metric spearman amp spearman amp spearman amp spearman amp spearman amp spearman amp

N B Time Mixer Variate Mixer

16

2
MLP Token-Mixer

MLP Token-Mixer 0.472 0.058 0.718 0.057 0.000 0.000 0.219 0.033 0.001 0.016 0.008 0.068
Self-Attention 0.705 0.100 0.629 0.098 0.050 0.009 0.022 0.075 0.000 0.004 0.001 0.053

Self-Attention
MLP Token-Mixer 0.771 0.072 0.000 0.050 0.000 0.000 0.586 0.082 0.000 0.003 0.000 0.086
Self-Attention 0.772 0.121 0.000 0.088 0.587 0.025 0.001 0.069 0.001 0.079 0.002 0.054

4
MLP Token-Mixer

MLP Token-Mixer 0.492 0.087 0.699 0.048 0.749 0.207 0.041 0.122 0.002 0.019 0.006 0.075
Self-Attention 0.467 0.050 0.716 0.090 0.267 0.107 0.008 0.098 0.002 0.023 0.003 0.082

Self-Attention
MLP Token-Mixer 0.771 0.096 0.000 0.044 0.660 0.207 0.040 0.202 0.001 0.031 0.011 0.141
Self-Attention 0.771 0.087 0.000 0.045 0.621 0.149 0.000 0.082 0.001 0.103 0.004 0.145

8
MLP Token-Mixer

MLP Token-Mixer 0.002 0.000 0.902 0.017 0.095 0.152 0.203 0.059 0.001 0.054 0.001 0.063
Self-Attention 0.781 0.190 0.582 0.093 0.511 0.311 0.003 0.200 0.000 0.035 0.001 0.171

Self-Attention
MLP Token-Mixer 0.770 0.015 0.000 0.023 0.876 0.200 0.088 0.070 0.019 0.067 0.023 0.084
Self-Attention 0.770 0.043 0.000 0.049 0.745 0.198 0.005 0.127 0.002 0.035 0.009 0.144

16
MLP Token-Mixer

MLP Token-Mixer 0.779 0.187 0.581 0.050 0.524 0.607 0.009 0.135 0.002 0.260 0.007 0.363
Self-Attention 0.590 0.056 0.665 0.042 0.433 0.129 0.008 0.083 0.001 0.031 0.002 0.049

Self-Attention
MLP Token-Mixer 0.771 0.099 0.000 0.071 0.668 0.293 0.029 0.115 0.009 0.130 0.024 0.211
Self-Attention 0.771 0.094 0.000 0.065 0.624 0.138 0.000 0.097 0.000 0.116 0.002 0.149

32

2
MLP Token-Mixer

MLP Token-Mixer 0.516 0.024 0.781 0.036 0.000 0.000 0.180 0.021 0.001 0.006 0.041 0.038
Self-Attention 0.760 0.058 0.706 0.056 0.296 0.014 0.048 0.055 0.000 0.003 0.018 0.049

Self-Attention
MLP Token-Mixer 0.773 0.046 0.000 0.027 0.000 0.000 0.700 0.051 0.000 0.002 0.000 0.053
Self-Attention 0.775 0.102 0.000 0.053 0.708 0.067 0.004 0.127 0.005 0.082 0.003 0.100

4
MLP Token-Mixer

MLP Token-Mixer 0.718 0.042 0.724 0.047 0.000 0.000 0.207 0.031 0.000 0.006 0.025 0.046
Self-Attention 0.754 0.061 0.710 0.066 0.125 0.008 0.033 0.055 0.000 0.000 0.006 0.034

Self-Attention
MLP Token-Mixer 0.773 0.048 0.000 0.027 0.000 0.000 0.701 0.060 0.000 0.006 0.000 0.053
Self-Attention 0.774 0.077 0.000 0.045 0.710 0.071 0.004 0.086 0.004 0.040 0.001 0.075

8
MLP Token-Mixer

MLP Token-Mixer 0.608 0.065 0.750 0.037 0.402 0.213 0.117 0.113 0.002 0.023 0.015 0.112
Self-Attention 0.778 0.125 0.700 0.078 0.438 0.205 0.005 0.167 0.000 0.000 0.001 0.125

Self-Attention
MLP Token-Mixer 0.774 0.055 0.000 0.048 0.000 0.000 0.701 0.061 0.000 0.004 0.000 0.047
Self-Attention 0.774 0.081 0.000 0.056 0.737 0.296 0.001 0.241 0.005 0.187 0.008 0.122

16
MLP Token-Mixer

MLP Token-Mixer 0.747 0.113 0.708 0.058 0.642 0.420 0.037 0.124 0.019 0.152 0.005 0.182
Self-Attention 0.777 0.138 0.701 0.063 0.403 0.242 0.003 0.195 0.000 0.016 0.001 0.131

Self-Attention
MLP Token-Mixer 0.774 0.061 0.000 0.055 0.523 0.166 0.290 0.099 0.005 0.078 0.010 0.117
Self-Attention 0.773 0.035 0.000 0.033 0.800 0.190 0.001 0.066 0.000 0.016 0.003 0.100

Table 4.2: Contextualisation metrics of individual model components. We present this table
with numerical values only for completeness. The reader may safely skip the detailed study
of this table.

Component Tm TmLn TmLnVm TmLnVmLn TmLnVmLnTp TmLnVmLnTpLn
Contextualisation Metric spearman amp spearman amp spearman amp spearman amp spearman amp spearman amp

N B Time Mixer Variate Mixer

16

2
MLP Token-Mixer

MLP Token-Mixer 0.472 0.058 0.904 0.073 0.904 0.073 0.904 0.082 0.904 0.078 0.904 0.078
Self-Attention 0.705 0.100 0.904 0.110 0.904 0.114 0.904 0.126 0.904 0.125 0.904 0.106

Self-Attention
MLP Token-Mixer 0.771 0.072 0.771 0.089 0.771 0.089 0.904 0.111 0.904 0.110 0.904 0.095
Self-Attention 0.772 0.121 0.771 0.126 0.904 0.140 0.904 0.128 0.904 0.138 0.904 0.146

4
MLP Token-Mixer

MLP Token-Mixer 0.492 0.087 0.904 0.085 0.906 0.197 0.906 0.173 0.906 0.172 0.906 0.157
Self-Attention 0.467 0.050 0.904 0.085 0.905 0.144 0.905 0.190 0.905 0.186 0.905 0.122

Self-Attention
MLP Token-Mixer 0.771 0.096 0.771 0.119 0.903 0.260 0.905 0.243 0.905 0.240 0.905 0.204
Self-Attention 0.771 0.087 0.771 0.111 0.904 0.221 0.904 0.221 0.904 0.197 0.904 0.140

8
MLP Token-Mixer

MLP Token-Mixer 0.002 0.000 0.903 0.017 0.906 0.151 0.906 0.149 0.906 0.134 0.906 0.111
Self-Attention 0.781 0.190 0.908 0.162 0.924 0.369 0.924 0.384 0.924 0.382 0.925 0.227

Self-Attention
MLP Token-Mixer 0.770 0.015 0.770 0.029 0.906 0.194 0.906 0.176 0.906 0.154 0.906 0.138
Self-Attention 0.770 0.043 0.770 0.057 0.904 0.195 0.904 0.188 0.904 0.180 0.904 0.128

16
MLP Token-Mixer

MLP Token-Mixer 0.779 0.187 0.907 0.170 0.952 0.608 0.952 0.544 0.953 0.477 0.954 0.135
Self-Attention 0.590 0.056 0.904 0.064 0.904 0.163 0.904 0.183 0.904 0.169 0.904 0.141

Self-Attention
MLP Token-Mixer 0.771 0.099 0.772 0.109 0.906 0.342 0.906 0.352 0.906 0.327 0.907 0.244
Self-Attention 0.771 0.094 0.772 0.120 0.905 0.233 0.905 0.253 0.905 0.219 0.906 0.144

32

2
MLP Token-Mixer

MLP Token-Mixer 0.516 0.024 0.932 0.043 0.932 0.043 0.932 0.045 0.932 0.045 0.932 0.040
Self-Attention 0.760 0.058 0.932 0.067 0.932 0.078 0.932 0.087 0.932 0.086 0.932 0.061

Self-Attention
MLP Token-Mixer 0.773 0.046 0.773 0.055 0.773 0.055 0.932 0.064 0.932 0.064 0.932 0.055
Self-Attention 0.775 0.102 0.774 0.097 0.932 0.161 0.932 0.134 0.932 0.092 0.932 0.100

4
MLP Token-Mixer

MLP Token-Mixer 0.718 0.042 0.932 0.061 0.932 0.061 0.932 0.061 0.932 0.061 0.932 0.056
Self-Attention 0.754 0.061 0.932 0.078 0.932 0.082 0.932 0.093 0.932 0.093 0.932 0.075

Self-Attention
MLP Token-Mixer 0.773 0.048 0.773 0.062 0.773 0.062 0.932 0.076 0.932 0.076 0.932 0.054
Self-Attention 0.774 0.077 0.774 0.092 0.932 0.151 0.932 0.133 0.932 0.125 0.932 0.132

8
MLP Token-Mixer

MLP Token-Mixer 0.608 0.065 0.932 0.065 0.934 0.208 0.934 0.183 0.934 0.185 0.934 0.102
Self-Attention 0.778 0.125 0.933 0.115 0.937 0.246 0.937 0.263 0.937 0.263 0.938 0.143

Self-Attention
MLP Token-Mixer 0.774 0.055 0.773 0.077 0.773 0.077 0.932 0.084 0.932 0.084 0.932 0.061
Self-Attention 0.774 0.081 0.774 0.095 0.933 0.347 0.932 0.258 0.932 0.143 0.932 0.122

16
MLP Token-Mixer

MLP Token-Mixer 0.747 0.113 0.933 0.097 0.961 0.402 0.963 0.349 0.962 0.300 0.962 0.140
Self-Attention 0.777 0.138 0.933 0.116 0.940 0.295 0.940 0.290 0.940 0.279 0.940 0.161

Self-Attention
MLP Token-Mixer 0.774 0.061 0.773 0.063 0.882 0.205 0.932 0.195 0.932 0.164 0.932 0.101
Self-Attention 0.773 0.035 0.773 0.034 0.932 0.196 0.932 0.211 0.932 0.213 0.932 0.138

Table 4.3: Contextualisation of cumulative intermediate model steps. We present this table
with numerical values only for completeness. The reader may safely skip the detailed study
of this table.
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Figure 4.2: Relationship between number of blocks B and model error for different archi-
tectures. The solid line shows the mean squared error, the dashed line the mean absolute
error and the dotted line the mean maximum error.

architecture using the MLP token-mixer along the time-axis and self-attention along the
variate-axis seems to be superior in settings where there is little sparsity in the correlations
between the different variates of the data (here B ∈ {4, 8, 16} in the case Nin = 16 and
B = 8 in the case Nin = 32). In the other cases, the use of self-attention along the time-
axis and MLP token-mixer along the variate axis appears to work better in high-sparsity
settings. This hints at a superior performance of self-attention along the variate-axis in
cases, where there are many dependent variates (also visually observable in Figure 4.2).
Secondly, we observe a sharp drop for the FlexibleTransformer configuration, which uses
self-attention to mix along the time- and variate-axes. We want to pay particular attention
to these results when analysing the contextualisation patterns of these models.

Relationship between Model Performance and Contextualisation

The goals of the contextualisation study were twofold before we began this study: First,
we wanted to better understand the internal flow of the model and better identify the
important architectural components for the FlexibleTransformer. Secondly, we had a vague
hope that there was a relationship between contextualisation and model performance. The
concrete hypothesis was that we could find a correlation between better performing models
and higher contextualisation.

While all the data has been presented in Tables 4.1, 4.2 and 4.3, let us visualise the rela-
tionship we are interested in. We plot this in Figures 4.3 for the case Nin = 16 and in 4.4
for the case Nin = 32.

There is no discernible pattern and, in particular, no negative correlation between the mean
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Figure 4.3: Relationship between contextualisation metrics and MSE for Nin = 16. Only
displays mean contextualisation for each FlexibleTransformer configuration.

MSE and the mean of any of the contextualisation metrics between different architectures.
Therefore, we also look at the data on a finer scale in Table 4.4 by computing the Pearson
correlation coefficients between the MSE and the contextualisation metrics for each token-
mixer along each axis and in each setting. Unfortunately, we cannot generally conclude
that higher contextualisation in either the time-mixer or the variate-mixer leads to better
model performance in terms of MSE.

Contextualisation Flow

Next, we want to pursue the first goal listed above and better understand which are the
important components of the FlexibleTransformer as measured by contextualisation. After
the previous negative result, it seems important to first answer whether our contextualisa-
tion metrics actually depend on factors that we can control. Therefore, we ask whether the
contextualisation of the variate-mixing step is higher in settings with larger blocks, where
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Figure 4.4: Relationship between contextualisation metrics and MSE for Nin = 32. Only
displays mean contextualisation for each FlexibleTransformer configuration.

Token-Mixer MLP Token-Mixer Self-Attention
Axis Time Variate Time Variate

Amplification Spearman Amplification Spearman Amplification Spearman Amplification Spearman
N B

16

2 0.175 0.204 0.079 -0.088 -0.008 0.073 0.382 0.117
4 0.290 -0.137 0.263 0.063 0.117 -0.243 0.244 -0.273
8 -0.098 -0.304 -0.096 -0.020 -0.276 -0.113 0.066 0.133
16 0.063 0.250 0.062 -0.117 -0.162 0.211 -0.043 0.323

32

2 0.361 -0.222 0.249 0.349 0.057 -0.085 0.021 -0.061
4 -0.125 0.458 -0.146 0.040 0.261 -0.279 -0.243 0.048
8 -0.072 -0.073 0.074 -0.167 0.015 -0.269 -0.070 -0.196
16 0.056 -0.156 0.127 -0.150 0.472 0.036 0.017 0.096

Table 4.4: Correlation computed over all test samples for all settings between contextuali-
sation metrics and MSE.
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Figure 4.5: Spearman contextualisation metric (dotted) and amplification contextualisation
mertic with respect to different sizes of blocks B.

more variates can be combined to achieve better forecasting results. In Figure 4.5 we observe
that contextualisation does not increase with increasing block size B in the time-mixer, but
that there is a sharp increase in contextualisation for both contextualisation metrics for the
variate-mixer. These results are consistent with our previous hypothesis.

Interestingly, we also observe an increase in the amplification contextualisation metric for
the token-processor which underlines the importance of token-processing in the (Flexi-
ble)Transformer architecture. The concrete role of token-processing is currently not prop-
erly understood. We can however point to [Gev+21; Gev+22] where research on the role of
the MLP token-processor is conducted.

To even better understand the internal dynamics within the model and to analyse the
interplay of the different components, we examine the contextualisation flow through our
network. We show the contextualisation of each individual model component and also the
contextualisation of the respective cumulative intermediate model step in Figure 4.6 for
Nin = 16 and in 4.7 for Nin = 32.

We can make the following observations:

• The choice of contextualisation metric has a strong influence on the qualitative result
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Figure 4.6: Contextualisation flow for Nin = 16. Bars indicate contextualisation of isolated
model step and line shows contextualisation for the respective cumulative intermediate
model step.
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Figure 4.7: Contextualisation flow for Nin = 32. Bars indicate contextualisation of isolated
model step and line shows contextualisation for the respective cumulative intermediate
model step.
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observed: If we measure the contextualisation for all model steps with the spearman
contextualisation metric, the effects of the layer normalisation and the token-processor
are hardly noticeable.

• In general, the cumulative contextualisation is not monotonic, as measured by the
amplification contextualisation metric. We have a strong contextualisation by the
token-mixers that is reversed by subsequent model steps (in particular by LayerNorm).
This pattern is most evident when the MLP token-mixer is used to mix along the
time-axis. The model seems to overshoot, which needs to be corrected by strong
contextualisation in the last LayerNorm layer.

• As expected, the contextualisation of individual model steps is greatest for the token-
mixers. This is most evident when measured by the Spearman contextualisation
metric.

• Comparing the contextualisation flow between the cases Nin = 16 and Nin = 32, we
observe a similar behaviour for the Spearman contextualisation metric (except for the
higher effect of the first LayerNorm). Furthermore, the cumulative contextualisation
measured by the amplification contextualisation metric is less variable in the case
Nin = 32 and the effect of the variate-mixer is particularly pronounced.

Conclusion

In conclusion, contrary to our hopes, we do not find a relationship between contextualisation
and model performance.

However, we find that the combination of mixing with the MLP token-mixer along the
time-axis and self-attention along the variate-axis is preferable in cases where there is litte
sparsity between the variates, i.e. when many variates have to be combined. Using the MLP
token-mixer along the variate-axis is preferable in settings where there is a high sparsity
between variates.

The contextualisation procedure carried out in this chapter appears to be appropriate and
able to capture the changing contextualisation that occurs in the model and which we can
relate to the synthetic datasets.

We have found that the cumulative contextualisation flow is surprisingly non-monotonic
in terms of the amplification contextualisation metric. A positive answer to the question
of whether a more monotonic cumulative contextualisation flow is associated with better
model performance would require a serious re-evaluation of the layer normalisation in the
Transformer architecture (at least for time-series applications). This requires careful exper-
imental design and is beyond the scope of this work.

4.4 Model Interpretability

This section shows how we can use the decomposition framework to interpret the output of
the model. We saw the decomposition of intermediate steps in the last section, which gave
us (F M̃ (X), bM̃ (X)).
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It is straightforward to also decompose the linear decoder, which leads us to have a decom-
position of each variate at each prediction timestamp. Thus we have

F complete(X) =

((
F complete
n,l (X, (m, t))

)
n∈{1,...,Nin}
l∈{1,...,Lin}

)
m∈{1,...,Nin}
t∈{1,...,T}

bcomplete(X) =
(
bcomplete(X, (m, t))

)
m∈{1,...,Nin}
t∈{1,...,T}

such that

FlexibleTransformer(X)m,t =
∑

n∈{1,...,Nin}
l∈{1,...,Lin}

F complete
n,l (X, (m, t)) + bcomplete(X, (m, t)),

for (m, t) ∈ {1, . . . , Nin} × {1, . . . , T}.

We present this model decomposition visually for a number of examples to illustrate the
strength of this approach for model interpretability tasks. In the examples below, we
show only the attribution of a predicted value and colour the values in the input sequence
according to F complete(X). Since we are not focusing on the architecture of the model in
this section, but only on the interpretability, we fix the architecture of the model whose
decomposition we show. We use the FlexibleTransformer with the MLP token-mixer to mix
along the time- and variate-axes.

We want to show the interpretability of the FlexibleTransformer in synthetic and real envi-
ronments, using the artificial datasets from the previous section, but also examples from the
benchmark datasets listed in appendix A.6. In all examples shown below, we interpret the
prediction of a timestamp from the first variate (also marked red in the plots). In Figure
4.8 we show an interpretability plot for the synthetic data from this chapter, which shows
that the model has learned well the block of variates relevant to the first variate. In Figure
4.9 we can see how different patterns affect the prediction. This type of interpretability plot
has the potential to inform expert decisions.
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Figure 4.8: Interpretability plot of synthetic dataset as described in section 4.3.1 with
Nin = 16, T = 10 and B = 4. Colour indicates value of F complete

n,l (X, (1, T/2)).
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Figure 4.9: Interpretability plots for samples from ETTh1 dataset with Lin = T = 96.
Colour indicates value of F complete

n,l (X, (1, T/2)).



Chapter 5

Efficient Attention Approximation
along Variates

We have seen in chapters 2 and 3 that we can apply self-attention along the variate-axis.
While efficient self-attention schemes have been thoroughly explored in transformer-based
time series forecasting models [LI+19; Zho+21; Liu+22a; Wu+21; Zho+22], the recent
need to apply self-attention along the variate-axis ([Liu+24] and chapter 3) requires us to
investigate attention approximation approaches in high-dimensional settings.

The time-complexity of self-attention is further exacerbated by the structure of modern
datasets. Often there are hundreds or even thousands of variates, and in time-critical
applications such as high-frequency trading, we cannot rely on methods that only reduce
the training time of such models, but also require reduced time-complexity during inference.

To the author’s knowledge, the only approach that has been explored to make self-attention
along the variate-axis more efficient has been proposed in [Liu+24]. The authors’ approach
is to exploit the fact that we do not use positional encoding for embedding along the variate-
axis, and thus can simply drop variates during training. This is only made possible by the
permutation equi-variance of self-attention. The main disadvantage of this approach is that
we use only some of the variates in each training iteration, and we cannot use this approach
during inference and still benefit from the interdependencies between all the variates.

Therefore, we want to take a first step towards exploring existing attention approximation
schemes for variate-mixing. Since a sequence of tokens along the variate-axis does not have
the same properties as a time-series, we rely on general-purpose attention approximation
schemes instead of those mentioned in the literature review in chapter 2.

There are many general approaches to improve transformer inference [Chi+23]. Examples
include pruning, quantisation, hardware-aware optimisation, and the design of efficient at-
tention approximation schemes. We will focus on the latter. Two polar opposites in the
literature on attention approximation schemes are methods that focus on finding the best
approximation of the most important key-value pairs [KKL20] or those that focus on finding
a low-dimensional representation of the attention matrix [Wan+20; Qin+22; Cho+21]. We
call these two approaches sparse attention approximation and low-rank attention approxi-

73



74 CHAPTER 5. EFFICIENT ATTENTION APPROXIMATION ALONG VARIATES

mation. We want to study the locality sensitive hashing (LSH) method from the Reformer
model [KKL20] as a method with sparse attention approximation and fast attention via
positive orthorgonal random features (FAVOR+) from the Performer model [Cho+21] as a
method with a low-rank method for efficient attention approximation in high-variate set-
tings.

In the first part of the chapter, we give a theoretical presentation of the attention ap-
proximation methods FAVOR+ and LSH. We then introduce metrics that we use in our
experiments to relate model performance to properties of the attention matrix and the data.
Finally, we perform numerical experiments on synthetic data and relate model performance
to the previously introduced metrics.

5.1 FAVOR+

Fast Attention Via positive Orthorgonal Random features (FAVOR+) is an approach for
efficient attention approximation presented by Choromanski et al. in [Cho+21]. It can also
be applied to kernelisable attention approximation for kernels beyond the SoftMax-kernel
introduced in chapter 2.

As in chapter 2, let Q = (qj)j∈J , K = (kj)j∈J and V = (vj)j∈J denote the queries, keys
and values for one attention head that mixes along variates. Since J := {1, . . . , N} we can
identify Q,K and V with matrices in RN×dattn . We recall the definition of the attention
head as

AttnHead(Q,K,V)i =
N∑
j=1

SoftMax
(
ϕ (qi,ki′)i′∈{1,...,N}

)
j
vj .

Definition 5.1. Let K : Rdattn × Rdattn → R+ and AttnHead as in equation (5.1). If we
have

AttnHead(Q,K,V) = D−1AV Aij := K(Qi,Kj) D := diag(A1N ),

for all Q,K,V ∈ RN×dattn , then we call AttnHead kernelisable with the kernel K and
A ∈ RN×N the (unnormalised) attention matrix for Q,K,V ∈ RN×dattn .

The term D−1 corresponds to the normalisation of the kernel to yield a probability measure
on the set of keys and 1N ∈ RN is the vector of ones.

It is immediate to see that AttnHead is kernelisable with

K(Qi,Kj) := exp

(
QiKt

j√
dattn

)
(5.1)

since we have SoftMax-activations and the scaled dot-product as the similarity kernel. We
can now introduce the FAVOR+ mechanism.

Definition 5.2. Let (Ω,F ,P) be a probability space. If there is ψ : Rdattn → Map
(
Ω,Rr+

)
for some r ∈ N such that

K(q,k) = E
[
ψ(q)t ψ(k)

]
(5.2)
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holds for all q,k ∈ Rdattn , we call ψ in accordance with K and define the estimator ̂AttnHead
for AttnHead by

̂AttnHeadψ(Q,K,V) := D̂−1
(
Q′
((

K′)tV)) ,
where

Q′
i := ψ(Qi) K′

i := ψ(Ki) D̂ := diag
(
Q′
((

K′)t 1N))
We further call ψ(x) a random feature map and the brackets define the order of computation.

Typically, we choose r ≪ N and have a reduced computational complexity of O(Nrdattn)

for ̂AttnHeadψ. We give theoretical estimates for the errors of the estimator after we have
identified concrete ψ for the AttnHead from chapter 2.

5.1.1 Kernels

We want to find probability spaces (Ω,F ,P) and maps ψ in accordance with the kernel K
defined in equation (5.1) that allow us to find estimators for AttnHead as described above.

Let m ∈ N. To motivate the concrete choice of ψ for FAVOR+, we start with a naive choice
for such a random feature map. We will only see the downsides of this choice after we
have introduced it. One possibility is to have independent random variables X1, . . . , Xm ∼
N (0, 1√

dattn
Idattn) and define

ψtrig
m (x)(ω) :=

1√
m

exp

( ∥x∥2
2
√
dattn

)
(sin(X1(ω)

tx), . . . , sin(Xm(ω)
tx),

cos(X1(ω)
tx), . . . , cos(Xm(ω)

tx)).

The proof of the following lemma relies on ideas from [RR07].

Lemma 5.1. ψtrig
m satisfies equation (5.2).

Proof. We can identify the characteristic function of Xj for j ∈ {1, . . . ,m} as

E
[
exp

(
iXt

j(q − k)
)]

= exp

(
−∥q − k∥2

2
√
dattn

)
.

Since the right-hand side is real, we have

E
[
exp

(
iXt

j(q − k)
)]

= E
[
cos(Xt

j(q − k))
]
.

The trigonometric identity

cos(x− y) = sin(x) sin(y) + cos(x) cos(y)
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for x, y ∈ R leads to

E
[
ψtrig(q)tψtrig(k)

]
=

1

m
exp

(∥q∥2 + ∥k∥2
2
√
dattn

)
E

 m∑
j=1

(
sin(Xt

jq) sin(X
t
jk) + cos(Xt

jq) cos(X
t
jk)
)

=exp

(∥q∥2 + ∥k∥2
2
√
dattn

)
E
[
cos(Xt(q − k))

]
=exp

(
qtk√
dattn

)
.

This concludes the proof.

It turns out that ψtrig
m leads to a high variance of the estimator ̂AttnHeadψtrig

since most
of the values of A are close to zero which is the region where sin is the most unstable.
This is theoretically undermined by [Cho+21, Lemma 2], which states that the variance
of ψtrig

m (q)tψtrig
m (k) is of order O(1/K(q,k)2) for q,k ∈ B ⊂ Rdattn with bounded B and

fixed m. Furthermore, having random feature kernels (strictly speaking, ψtrig cannot be
a random feature map since it can possibly be negative) that can take on negative values
includes the risk of exacerbating numerical instabilities that can lead to absurd behaviour
(e.g. entries of D being negative). Thus, Choromanski et al. propose a robust mechanism
consisting of positive random features for SoftMax. The following lemma corresponds to
Lemma 1 in [Cho+21].

Lemma 5.2. Let q,k ∈ Rdattn and denote u = q + k. With independent X1, . . . , Xm ∼
N (0, 1√

dattn
Idattn) and the kernel K given in equation (5.1), we have that the random feature

maps defined by

ψ+
m(x) :=

1√
m

exp

(
− ∥x∥2
2
√
dattn

)(
exp

(
Xt

1x√
dattn

)
, . . . , exp

(
Xmx√
dattn

))
are in accordance with K.

Proof. We introduce a factor of one and compute

exp

(∥q + k∥2
2
√
dattn

)
= exp

(∥q + k∥2
2
√
dattn

)
(2π
√
dattn)

−dattn/2
∫
Rdattn

exp

(
−∥x− (q + k)∥2

2
√
dattn

)
dx

= (2π
√
dattn)

−dattn/2
∫
Rdattn

exp

(
− ∥x∥2
2
√
dattn

+
xt(q + k)√

dattn
− ∥q + k∥2

2
√
dattn

+
∥q + k∥2
2
√
dattn

)
dx

= (2π
√
dattn)

−dattn/2
∫
Rdattn

exp

(
− ∥x∥2
2
√
dattn

+
xt(q + k)√

dattn

)
dx

= (2π
√
dattn)

−dattn/2
∫
Rdattn

exp

(
− ∥x∥2
2
√
dattn

)
exp

(
xtq√
dattn

)
exp

(
xtk√
dattn

)
dx

= E

[
exp

(
Xt
jq√
dattn

)
exp

(
Xt
jk√
dattn

)]
.
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for any j ∈ {1, . . . ,m}. The lemma now follows directly from this observation

E
[
ψ+
m(q)

tψ+
m(k)

]
=

1

m
exp

(
−∥q∥

2 + ∥k∥2
2
√
dattn

)
E

 m∑
j=1

exp

(
Xt
jq√
dattn

)
exp

(
Xt
jk√
dattn

)
= exp

(
−∥q∥

2 + ∥k∥2
2
√
dattn

)
exp

(∥q + k∥2
2
√
dattn

)
= exp

(
qtk√
dattn

)
= K(q,k)

We conclude the proof by observing that ψ+
m(x)(w) > 0 for all x ∈ Rdattn , ω ∈ Ω.

The following result shows that the kernel estimator arising from ψtrig
m has a higher asymp-

totic variance than the one corresponding to ψ+
m.

We refer the reader to [Cho+21, Lemma 2] for the purely computational proof.

Lemma 5.3. The following is true:

Var(ψtrig
m (q)tψtrig

m (k)) =
exp

(
∥q+k∥2√
dattn

)(
1− exp

(
−∥q−k∥2√

dattn

))2
2mK(q,k)2

Var(ψ+
m(q)

tψ+
m(k)) =

1

m
exp

(∥q + k∥2√
dattn

)(
1− exp

(
−∥q + k∥2√

dattn

))2

K(q,k)2

Lemma 5.3 shows that as K(q,k)→ 0, we have

Var(ψtrig
m (q)tψtrig

m (k))→∞, Var(ψ+
m(q)

tψ+
m(k))→ 0.

We can further reduce the variance by requiring the random variables X1, . . . , Xm to be
orthogonal. We denote the orthogonalised version of ψ+

m as ψort+
m . Orthogonality can

be achieved in practice by using the Gram-Schmidt orthogonalisation procedure. We do
not spell out the proof, that ψort+

m is still in accordance with K, since it simply suffices

to acknowledge, that for each j ∈ {1, . . . ,m} we have Xj ∼ N (0,
Idattn√
dattn

), because the

multivariate normal distribution is isotropic. The independence was not necessary to show
the unbiasedness of the estimator.

Theorem 2 in [Cho+21] asserts that this method can further reduce the variance of the
estimator for K.

Lemma 5.4. For 0 < m ≤ dattn, we have

Var(ψort+
m (q)tψort+

m (k))

≤ Var(ψ+
m(q)

tψ+
m(k))−

2(m− 1)

m(d+ 2)

(
K(q,k)− exp

(
−∥q∥

2 + ∥k∥2
2

))2

.
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5.2 Locality Sensitive Hashing Attention

We want to contrast the exposition of FAVOR+ with a sparse attention approximation
method, namely locality-sensitive hashing (LSH) proposed in [KKL20] for the Reformer
model.

The basic assumption behind LSH attention is sparsity of the attention matrix, i.e. that
only few query-key pairs contribute to the SoftMax in the AttnHead operation. Hence, we
can approximate SoftMax(ϕ(qi,ki′)

N
i′=1) by only considering the pairs (qi,ki′), for which

ϕ(qi,ki′) is large.

Since ϕ denotes a similarity kernel, we want to group “similar” query-key pairs together.
This can be achieved with an appropriate locality-sensitive hashing method which groups
similar (in a sense depending on the concrete LSH method) queries and keys together.

Since, we have ϕ(q,k) = qtk/
√
dattn for the standard attention, that we consider in this

work, Kitaev, Kaiser, and Levskaya propose to use an LSH scheme that is based on angular
distance [And+15]. We now explore the rough idea of this concept.

5.2.1 The Hash Function

As previously mentioned, we use the hash function to establish “closeness” between queries
and keys. We can formulate simple requirements for the hash function such that we can
control the number of possible hash buckets.

It is beyond the scope of this work to formally introduce the concrete LSH function (practical
cross-polytope LSH) and the associated theoretical results. Rather, we want to present the
rough idea. Andoni et al. solve a version of the Approximate Near Neighbour Problem
in [And+15]. To this end, they propose a hash family called cross-polytope LSH. Cross-
polytope LSH works in dimension d ∈ N by hashing a point x ∈ Rd by computing

arg inf
{±ei}1≤i≤d

fx where fx(y) :=

∥∥∥∥ y

∥y∥ −
Ax

∥Ax∥

∥∥∥∥ ,
where {ei}1≤i≤d denotes the euclidian basis of Rd and A ∈ Rd×d is a random matrix with
Gaussian entries.

It turns out that the computation of Ax is of time-complexity O(d2), which is too expensive
for practical applications (we want to go below square complexity). To solve this problem
Andoni et al. propose to use feature hashing which consists of computing the cross-polytope
hash not in Rd as described above but in Rd′ . This can be achieved by considering not
A ∈ Rd×d, but Ã ∈ Rd′×d with d′ ≪ d. The resulting number of possible hashes is 2d′ in
this case.

5.2.2 Attention Approximation

Recall that

AttnHead(Q,K,V)i =
N∑
j=1

SoftMax
(
ϕ (qi,ki′)i′∈{1,...,N}

)
j
vj .
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Let P standard
i = {1, . . . , N} denote the set of keys that each query pays attention to. We

want to find smaller P̃i for each i ∈ {1, . . . , N} such that

̂AttnHead(Q,K,V)i =
∑
j∈P̃i

SoftMax
(
ϕ (qi,ki′)i′∈P̃i

)
j
vj .

To find suitable sets (P̃i)i∈{1,...,N}, we carry out the construction in several steps.

Step 1: Given the hash function h we can define

P
(1)
i := {j ∈ {1, . . . , N} : h(qi) = h(kj)}.

The sets P
(1)
i encode the idea that a query should only pay attention to keys that are similar

in the sense of the hash function.

Step 2: We want to have an equal number of keys and queries in each bucket so that we
can easily compute full attention within each bucket. One way to achieve this is to identify
keys with queries and thus modify the attention mechanism slightly. This equates to

P
(2)
i := {j ∈ {1, . . . , N} : h(qi) = h (qj)} .

In other words we now have that

h(qi) = h(qj) ⇔ P
(2)
i = P

(2)
j

compared to as before. We remark that the resulting operation is not equivalent to standard
self-attention. We restrict the flexibility of the attention mechanism by not using the key

embedding Lin
(K)
d→dattn

for the keys, but instead using the query embedding LinQd→dattn
We

can also phrase this differently by just setting ki := qi.

Step 3: We repeat the process from the previous steps several times to reduce the likelihood
of similar queries falling into different buckets due to artefacts in the hashing function. To
do this, let nrounds ∈ N be the number of iterations and h(1), . . . , h(nrounds) be different hash
functions. This lets us define

P
(3)
i :=

nrounds⋃
r=1

P
(2,r)
i

where P
(2,r)
i denotes P

(2)
i with hash function h(r), i.e.

P
(2,r)
i :=

{
j ∈ {1, . . . , N} : h(r)(qi) = h(r) (qj)

}
.

Step 4: The sets P
(3)
i can still be of vastly different size for different indices i ∈ {1, . . . , N}.

Hence, we rebalance into equally sized buckets of size m = N/nbuckets. An easy way
to achieve such a rebalancing is to sort all indices by their first appearance in a bucket.

More formally, let P̃
(3)
1 := P

(3)
1 and iteratively P̃

(3)
i = P

(3)
i \ P̃ (3)

i−1 for i ∈ {2, . . . , N}. Let

(t
(i)
j )

j∈{1,...,|P̃ (3)
i |} be an enumeration for each P̃

(3)
i , i.e.

P̃
(3)
i := {q

t
(i)
1

, . . . , q
t
(i)

|P̃ (3)
i

|

}.
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and denote pi := |P̃ (3)
i |. Then, we can define the permutation (s(j))j∈{1,...,N} by

s(j) = t
(nj+1)

j−
∑nj

l=1 pl
nj = sup

{
n ∈ {0, 1, . . . , N − 1} :

n∑
l=1

pl < j

}
.

We now essentially reorder the queries (qj)j∈{1,...,N} with the permutation j 7→ s(j) to get
(qs(j))j∈{1,...,N}. Here, the queries are sorted by their first appearance in a bucket and the
buckets’ queries appear as subsequences. We now cut into new buckets of size m with This
leads us to consider

P̃i := s−1

({⌊
i− 1

m

⌋
+ 1, . . . ,

⌈
i

m

⌉})
which defines buckets of equal size (up to boundary effects).

5.3 Experiments

Our goal is to experimentally compare LSH attention and the FAVOR+ mechanism to
efficiently compute attention along the variate-axis. In this section, we first introduce the
experimental setting and the datasets we use for this comparison. We then present the
results and dive into the analysis. Our general hypothesis is that higher sparsity in the
data favours the LSH mechanism, while the FAVOR+ mechanism performs better in a
low-sparsity setting.

The general experimental structure is as follows: We construct data with different degrees of
sparsity (in an appropriate sense). We then fit a standard FlexibleTransformer model that
uses self-attention along the variate-axis to these data. We briefly present one measure that
allows us to measure sparsity in the attention score matrix and another measure that we can
use directly on the data. We then fit the respective models with the standard self-attention
mechanism along the variate-axis replaced by the LSH and FAVOR+ mechanisms. This
allows us to test the hypothesis formulated above.

5.3.1 Measures for Sparsity

We introduce a measure that can be computed directly from the data and one measure that
requires a trained standard self-attention along the variate-axis.

Correlation Sparsity

This model-independent measure is quite simple. The idea is that sparsity is characterised
by a sparse correlation matrix of the variates for a time-series X ∈ RNin×Lin . Let C ∈
RNin×Nin be the correlation matrix of the variates computed over the entire time-series X.
We normalise the correlation matrix with the l1 norm to RNin×Nin

C̃ij :=
|Cij |
∥C∥1

so that C̃ corresponds to a probability distribution µC on {1, . . . , Nin}2 and ∥ · ∥1 is the l1

norm. This allows us to compute sparsity as the Kullback-Leibler divergence between µC
and µU := U({1, . . . , Nin}2):

CorrSparsity(X) := KL(µC ∥µU ) =
Nin∑
i,j=1

µC({(i, j)}) log
(
µC({(i, j)})
µU ({(i, j)})

)
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Attention Entropy

Suppose we are given a concrete FlexibleTransformer configuration. We will usually want
to consider the configuration in which we want to replace the standard self-attention, which
mixes along the variate-axis, with one of the efficient self-attention approximation schemes.
For this measure, however, we consider the full standard self-attention because we need to
access the attention score matrix. Let A ∈ RNin×Nin be the attention score matrix for some
concrete input, i.e.

Aij = SoftMax
(
ϕ(qi,ki′)i′=1,...,Nin

)
j
.

It is immediately clear that A is a stochastic matrix in the sense that
∑Nin

j=1Aij = 1 for
all i ∈ {1, . . . , Nin}. Therefore, we can get a measure of the sparsity of this attention score
matrix by considering the mean of the entropy of each row, i.e.

AttnEntropy(A) := − 1

Nin

Nin∑
i=1

Nin∑
j=1

Aij log(Aij).

We will see concrete examples of these metrics when we introduce the datasets for the
experiments in this chapter.

5.3.2 Setup

We want to control the sparsity of our data. Therefore, we will continue to use the datasets
we constructed in section 4.3.1. More concretely, we want to work in a higher dimen-
sional setting (in which it is still feasible to compute standard self-attention to compute
AttnEntropy). So our concrete choices are

Nin ∈ {64, 128, 256}
B ∈ {4, 8, 16, 32, 64}
γ = 0.3.

Figure 5.1 shows the absolute correlation for the datasets defined above and Table 5.1 shows
the sparsity metrics we introduced above.

Since in chapter 3 we found the choice of the MLP token-mixer to be promising in con-
junction with self-attention along the variate-axis, we use this configuration of the Flexible-
Transformer to test the efficient self-attention mechanisms. Since we are not investigating
token-mixing along the time-axis, we simply fix Lin = T = 96. We know the appropriate
hyperparameters for the FlexibleTransformer from previous experiments and fix them as

d = 64

dmixing = 64

dhidden = 256

nlayers = 1

For the LSH mechanism, we use the values nrounds = 4 and the bucket size m = 4 from the
original paper [KKL20]. The standard choice for the number of random features in FAVOR+
is dattn log(dattn). We run the experiments with the following training hyperparameters:

dropout = 0.1

learning rate = 10−4

learning rate scheduler = constant
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Nin = 64, B = 4 Nin = 128, B = 4 Nin = 256, B = 4

Nin = 64, B = 8 Nin = 128, B = 8 Nin = 256, B = 8

Nin = 64, B = 16 Nin = 128, B = 16 Nin = 256, B = 16

Nin = 64, B = 32 Nin = 128, B = 32 Nin = 256, B = 32

Nin = 64, B = 64 Nin = 128, B = 64 Nin = 256, B = 64

0.0
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Figure 5.1: Absolute correlation between variates for different choices of Nin and B. Note
that we get artifacts as we increase Nin/B which is due to having finite Lin.
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AttnEntropy CorrelationSparsity
Nin B

64

4 2.482 0.499
8 2.347 0.538
16 2.838 0.499
32 3.577 0.227
64 4.145 0.001

128

4 3.740 0.301
8 2.908 0.503
16 3.239 0.542
32 3.488 0.488
64 4.228 0.459

256

4 4.986 0.187
8 4.288 0.297
16 4.435 0.488
32 3.771 0.534
64 4.228 0.459

Table 5.1: Measures for sparsity evaluated on the data that we use in this chapter’s ex-
periments. Note that the measures for sparsity are non-monotonic due to the artifacts in
the data as observed in Figure 5.1. This is not a problem since we only need that different
datasets have different properties that we measure with the attention entropy and the cor-
relation sparsity.

5.3.3 Results and Analysis

We present the results in Table 5.2 and also visualise the relative performance of LSH over
FAVOR+ in Figure 5.2.

First of all, we note that both methods perform as well as the standard self-attention. We
do observe the expected behaviour that models with larger B perform (ever so slightly)
better because more examples from the same period are available.

Contrary to our hypothesis that LSH performs better in sparse settings, we do not observe
a difference in the performance of the models in terms of mean squared error. This may
however be mostly due to the fact that both methods perform as well as the full self-attention
and can hence be seen as perfectly sufficient to approximate self-attention in these settings.
In all cases, FAVOR+ performs slightly better.

A reason for the above could be the following: We might have chosen Nin too small in
our experiments as we are able to approximate (in the sense of final model performance)
self-attention in both settings. By increasing Nin, we lose the control of comparing with full
self-attention as we are simply not able to fit models including full self-attention in very big
settings.
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Mechanism FAVOR+ LSH Standard Attention
MAE MMaxError MSE MAE MMaxError MSE MAE MMaxError MSE

Nin B

64

4 0.320 1.092 0.161 0.323 1.101 0.163 0.323 1.101 0.163
8 0.322 1.101 0.163 0.323 1.104 0.163 0.323 1.104 0.164
16 0.325 1.108 0.165 0.322 1.098 0.162 0.322 1.098 0.162
32 0.320 1.096 0.160 0.321 1.100 0.162 0.319 1.095 0.160
64 0.319 1.093 0.160 0.318 1.088 0.159 0.318 1.087 0.158

128

4 0.319 1.093 0.160 0.321 1.099 0.162 0.320 1.096 0.161
8 0.319 1.094 0.160 0.322 1.102 0.163 0.322 1.102 0.163
16 0.320 1.095 0.161 0.322 1.101 0.163 0.322 1.100 0.163
32 0.323 1.105 0.164 0.321 1.099 0.162 0.321 1.099 0.162
64 0.319 1.090 0.159 0.321 1.096 0.161 0.319 1.091 0.160

256

4 0.321 1.099 0.162 0.323 1.104 0.164 0.325 1.109 0.165
8 0.320 1.098 0.161 0.322 1.103 0.163 0.320 1.097 0.161
16 0.320 1.096 0.161 0.322 1.101 0.163 0.322 1.100 0.163
32 0.322 1.102 0.162 0.322 1.103 0.163 0.322 1.103 0.163
64 0.319 1.090 0.159 0.321 1.096 0.161 0.319 1.091 0.160

Table 5.2: Test errors for LSH and FAVOR+ on all datasets.
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Figure 5.2: Relative advantage of using LSH over FAVOR+ for all datasets. We plot the
sparsity measures on the axes, the size of the circle indicates B and the color is the mean
squared error for the respective LSH-based model over the mean squared error for the
FAVOR+-based model minus one.
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Mechanism Data Properties FAVOR+ LSH
CorrSparsity MAE MMaxError MSE MAE MMaxError MSE

Nin B

1024

4 0.279 0.323 1.103 0.165 0.323 1.102 0.165
128 0.694 0.380 1.301 0.266 0.379 1.298 0.265
512 0.545 0.559 1.916 0.581 0.559 1.917 0.581
1024 0.287 0.798 2.731 0.999 0.798 2.731 0.999

Table 5.3: Experiment results for increased number of variates Nin.

Modifications of the Experiment

At this stage, we cannot draw any further conclusions from this experiment alone. Therefore,
we want to extend the previous setting and replace the data we use to create this experiment.
Note that increasing Nin prevents us from calculating the AttnEntropy measure and the full
self-attention model as a baseline. Nevertheless, we suggest repeating the above experiment
with data where Nin is larger.

Increase Nin

We repeat the previous experiment, but with synthetic data that now has significantly more
variates. More concretely, we choose

Nin = 1024

B ∈ {4, 128, 512, 1024}.

We do not evaluate the attention entropy metric as we are not able to train models with
standard self-attention along the variate-axis for this value of Nin. Hence, we only show
the correlation sparsity in Table 5.3. As we can see, both models perform approximately
equally well. We cannot observe a difference between the models’ performances. The
only relationship that we can observe is between B and the model performance, which
differentiates this large setting from the previous experiment, where we did not observe such
a positive correlation between B and MSE, MAE and MMaxError. We can now observe
that FAVOR+ as well as LSH both fail to learn anything in the case where B = 1024 and
perform better in high sparsity settings.

Conclusion

We cannot find a difference in performance for the two efficient attention approximation
mechanisms LSH and FAVOR+ and observe that they are both able to approximate full
self-attention in modestly large settings. Both seem to be equally well suited for the artificial
tasks that we have tested them in.

However, while we still observe the same performance by both FAVOR+ and LSH, their
performance degrades in large settings where we have many highly correlated variates.

From a theoretical standpoint, it seems to be interesting to further investigate general prop-
erties of LSH and FAVOR+ especially in settings where the input tokens are semantically
very similar (our low sparsity case).
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It would also be interesting to experimentally study self-attention in well-controlled, general
settings (not necessarily in the context of time-series) with differing degrees of semantic
similarity between the tokens that are fed into self-attention.

From the standpoint of time-series forecasting, we do not think, that both of these points
are particularly urgent, as we do have working efficient attention approximation schemes
that work well in modelstly large and high sparsity settings.



Chapter 6

Conclusion

We want to conclude this thesis by highlighting the main findings and giving an outlook on
future avenues of research within the framework introduced in this work.

After having introduced the vanilla Transformer and having given an overview of current
developments within the literature applying Transformers to time-series, we have identified
the need to systematise and unify the analysis of various model architectures including
PatchTST [Nie+23], iTransformer [Liu+24] and TSMixer [Che+23]. This has led us to
introduce and study the FlexibleTransformer which is a model that allows us to flexibly
generalise many of the previous models and even study yet unexplored architectures.

In thorough experiments, we have explored a wide range of possible configurations of the
FlexibleTransformer, conducted a hyperparameter study and investigated the trade-off be-
tween model size and performance. We have identified architectures mainly mixing along
the time-axis as promising.

To better understand the key moving parts in the FlexibleTransformer architecture, we
modified the contextualisation approach from [Kob+24; Kob+21] to fit the time-series set-
ting. Extending the previous results to a cumulative decomposition allows us to provide in-
terpretable time-series models. Furthermore, we analysed the contextualisation of different
model components. We could not confirm the hypothesis that a stronger contextualisation is
associated with better model performance. Future research that analyses individual model
components on a more granular basis, by for example boosting or restraining individual
components can maybe shed more light on this relationship.

As modern applications oftentimes require models to deal with hundreds to thousands
of variates, the question for efficient attention mechanisms along the variate-axis arises.
We analyse how two popular general-purpose attention approximation schemes perform in
various settings. We have experimentally observed that both of the considered attention
approximation schemes have performed equally well and we did not find a relationship
between the inductive bias of the attention approximation scheme and constructed metrics
measuring properties of the data aimed at identifying these inductive biases.
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Outlook

This work explores new concepts and many questions have arisen. We think that we have
provided a thorough analysis of the FlexibleTransformer in classical terms. Since the ap-
plication of self-attention along the variate-axis did not emerge as strikingly powerful and
since we have identified efficient self-attention approximation schemes that work well along
the variate-axis, we do not identify the further improvement of efficient attention along the
variate-axis as particularly urgent.

The contextualisation approach to Transformer-based time-series models appears to be the
most promising idea from this work and should be explored further. In particular, we
identify the following two questions that should be explored in future research:

• A more fine-grained analysis of the relationship between contextualisation and model
performance. In particular, can we modify individual components that have been
identified with the contextualisation approach discussed in this work and observe a
performance gain by boosting this component such that it can contextualise even
more?

• More efficient feature attribution methods for the MLP-based model components.
As mentioned in chapter 4, we had to restrict the experiments in size due to very
long runtimes. To allow for larger contextualisation studies and real-world model
interpretability, more efficient contextualisation approaches are needed.
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Appendix

A.1 Notation for Application of Model-Components

We establish the convention that model components written in bold letters are vectorised
versions, where the component is applied along the first level index set, i.e.

M
(
(xi)i∈I

)
:= (M(xi))i∈I ,

where

M : X → X
M : X I → X I

and xi ∈ X for i ∈ I.

Oftentimes, we consider objects X = (xi)i∈I ∈ X I , where I = I1 × I2 × · · · × Ik. We want
to extract one dimension of this index set with the idea of applying M on a slice of X.
Hence, we introduce the following notation

XI1×···×Il−1×Il×Il+1×···Ik

:=
((
X(i1,...,il−1,il,il+1,...,ik)

)
il∈Il

)
(i1,...,il−1,il+1,...,ik)∈I1×···×Il−1×Il+1×···×Ik

∈
(
X Il
)I1×···×Il−1×Il+1×···×Ik .

(A.1)

that marks the dimension of interest with an underline. In the case, where Ij = {1, . . . , aj}
with aj ∈ N for j ∈ {1, . . . , k}, we may equivalently write Xa1×···×al−1×al×al+1×···×ak for the
lefthandside in equation (A.1).

We also want to be able to reverse this operation and hence introduce the following notation
for an index set of the form I = A×B∨

A×B
X := (xa,b)(a,b)∈A×B for X =

(
(xa,b)a∈A

)
b∈B ∈

(
XA
)B

and
∨
A×B

X := (xa,b)(a,b)∈A×B for X =
(
(xa,b)b∈B

)
a∈A ∈

(
XB
)A
.
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A.2 Common Components of Neural Nets

We use the term for “learnable weights” when we refer to weights that are subject to
optimisation during the model learning stage. The components introduced in this section
can be considered standard. As we, however, pay attention to formality, we want to define
them nevertheless.

Linear Layer

The probably most basic building block is a linear layer.

Definition A.1. The linear layer LinA→B : RA → RB has learnable weights W ∈ RB×A,
b ∈ RB and is given by

LinA→B(x) =Wx+ b

for x ∈ RA.

Multilayer Perceptron

The multilayer perceptron (MLP) is also often called “feed-forward layer” in the literature.
We, however, think that MLP is more descriptive compared to feed-forward layer.

Definition A.2. The multilayer perceptron (MLP) with H hidden layers, input layer size
din, hidden layer size dhidden, output layer size dout and activation function g : R → R is a
function

MLPdin→H×dhidden→dout
,g : Rdin → Rdout

and is defined as

x(0) := g(W (0)x+ b(0))

x(h) := g
(
W (h)x(h−1) + b(h)

)
for h = 1, . . . ,H − 1

MLPdin→H×dhidden→dout
,g(x) :=W (H)x(H−1) + b(H)

for x ∈ Rdin , whereW (0) ∈ Rdhidden×din , b(0) ∈ Rdhidden ,W (h) ∈ Rdhidden×dhidden , b(h) ∈ Rdhidden
for h = 1, . . . ,H − 1 and W (H) ∈ Rdout×dhidden , b(H) ∈ Rdout are learnable weights. The
function g : Rdhidden → Rdhidden is the component-wise application of g.

A.3 Flatten and Reshape

The operations of flattening and reshaping a vector are not very important in the grander
scheme of things, but we want to define them nevertheless for formal completeness. The
concrete definitions of these operations are fairly similar to popular implementations in
most well-known deep learning libraries.

Definition A.3. Let J ⊂ I, where I is the index set of a token space. Let J = {j1, . . . , jJ}
be an enumeration of J and let X = (xji)i∈{1,...,J} ∈

(
Rd
)J

. The flattening operation maps

to Rd |J | and is concretely given by

FlattenJ (X)p = (xji)k ,

where p = id+ k and k ∈ {0, . . . , d− 1}.
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We can analoguously define the reshaping operation:

Definition A.4. Let y ∈ Rd1×···×dK×d, d =
∏N
i=K+1 di and 0 ≤ K ≤ N . Then, we define

Reshape(d1,...,dN )(y)i1,...,iN := yi1,i2,...,iK ,iK+1dK+2···dN+iK+2dK+3···dN+···+iN

where ij ∈ {1, . . . , dj} for j ∈ {1, . . . , N}.

A.4 Spearman Rank Correlation Coefficient

The Spearman rank correlation coefficient is a non-parametric measure of rank correlation.
Let n ∈ N and X := (xi)i∈{1,...,n} and Y := (yi)i∈{1,...,n}, whereas xi, yi ∈ R for i ∈
{1, . . . , n}. Denote R : Rn → {1, . . . , n}n a rank function, i.e. i 7→ R(z)i is a bijection on
{1, . . . , n} and zR(z)k ≤ zR(z)l for 1 ≤ l < k ≤ n for z ∈ Rn. Then

ρS (X,Y ) :=

∑n
i=1

(
R(xi)− 1

n

∑n
j=1R(xj)

)(
R(yi)− 1

n

∑n
j=1R(yj)

)
(∑n

i=1

(
R(xi)− 1

n

∑n
j=1R(xj)

)2) 1
2
(∑n

i=1

(
R(yi)− 1

n

∑n
j=1R(yj)

)2) 1
2

defines the spearman rank correlation coefficient ρS . We have ρS ∈ [−1, 1], whereas ρS
being close to one hints at a positive monotonic relation between X and Y and ρS being
close to minus one at a negative monotonic relation.

A.5 Further Decompositions

We decompose the operations ResConn and LayerNorm. We fix the token space T = X I

with arbitrary I and X = Rd and write X ∈ RNin×Lin for the input time-series.

Lemma A.1. Let M̃ : RNin×Lin → T be the model part before the application of the
LayerNorm component. Let (F M̃ (X), bM̃ (X)) be the decomposition up until right be-
fore the LayerNorm component with weights γ ∈ Rd and β ∈ Rd. The decomposition of
LayerNorm ◦ M̃ is given by

FLayerNorm◦M̃
n,l (X, i) = γ ⊙ 1

σ̂(M̃(X)i)

(
F M̃n,l(X, i)−

1

d

d∑
k=1

F M̃n,l(X, i)k

)

bLayerNorm◦M̃ (X, i) = γ ⊙ 1

σ̂(M̃(X)i)

(
bM̃ (X, i)− 1

d

d∑
k=1

bM̃ (X, i)k

)
+ β



92 APPENDIX A. APPENDIX

Proof. We compute for i ∈ I

LayerNorm ◦ M̃(X)i = γ ⊙ M̃(X)i − µ̂(M̃(X)i)

σ̂(M̃(X)i)
+ β

= γ ⊙ 1

σ̂(M̃(X)i)

 ∑
n∈{1,...,Nin}
l∈{1,...,Lin}

F M̃n,l(X, i) + bM̃ (X, i)

−1

d

d∑
k=1

 ∑
n∈{1,...,Nin}
l∈{1,...,Lin}

F M̃n,l(X, i)k + bM̃ (X, i)k


+ β

=
∑

n∈{1,...,Nin}
l∈{1,...,Lin}

γ ⊙ 1

σ̂(M̃(X)i)

(
F M̃n,l(X, i)−

1

d

d∑
k=1

F M̃n,l(X, i)k

)

+ γ ⊙ 1

σ̂(M̃(X)i)

(
bM̃ (X, i)− 1

d

d∑
k=1

bM̃ (X, i)k

)
+ β.

This concludes the proof.

Lemma A.2. Let M̃ : RNin×Lin → T be the model part before the application of the
ResConnS component with S : T → T . Let (F M̃ (X), bM̃ (X)) be the decomposition up

until right before the ResConn and (F S◦M̃ (X), bS◦M̃ (X) be decomposition of S ◦ M̃ . The
decomposition of ResConnS ◦ M̃ is given by

FResConnS◦M̃
n,l (X, i) = FS◦M̃n,l (X, i) + F M̃ (X, i)

bResConnS◦M̃ (X, i) = bS◦M̃ (X, i) + bM̃ (X, i)

Proof. We compute

ResConnS ◦ M̃(X)i = S(M̃(X))i + M̃(X)i

=
∑

n∈{1,...,Nin}
l∈{1,...,Lin}

(
FS◦M̃n,l (X, i) + F M̃ (X, i)

)
+ bS◦M̃ (X, i) + bM̃ (X, i)

A.6 Benchmark Datasets Used in Experiments

In the field of time-series forecasting, several key datasets are commonly used to evaluate
model performance. This section introduces the datasets utilized in our study: ETTh1,
ETTh2, ETTm1, ETTm2, electricity and weather. To give a rough overview, Table A.1
compiles key figures for each of the datasets. We now want to give a short description and
their respective goals for each dataset.
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Nin number of datapoints mean correlation between variates
Dataset

ETTh1 7 17420 0.329
ETTh2 7 17420 0.345
ETTm1 7 69680 0.331
ETTm2 7 69680 0.345
electricity 321 26304 0.464
weather 21 52696 0.163

Table A.1: Key figures for the benchmark datasets that were used in this work.

ETT (Electricity Transformer Temperature) Datasets

The ETT datasets consist of four parts: ETTh1, ETTh2, ETTm1, and ETTm2. These
datasets were proposed by [Zho+21], come from the State Grid Corporation of China and
include data at two different resolutions: hourly (h) and minute (m). The subsets are:

• ETTh1: Hourly data from one transformer, showing its temperature over time.

• ETTh2: Hourly data from a second transformer, similar to ETTh1 but from another
source.

• ETTm1: Minute-level data from one transformer, offering more detailed time inter-
vals.

• ETTm2: Minute-level data from a second transformer, similar to ETTm1 but from
another source.

It should be noted that the electricity transformer has no connection with the Transformer
models explored in this work. These datasets are useful for testing models’ ability to handle
both long-term and short-term patterns in time-series data.

Electricity Dataset

The electricity dataset includes the electricity usage of 321 customers, recorded every 15
minutes over several years. This dataset helps evaluate models for forecasting electric-
ity demand, highlighting their ability to capture regular patterns and sudden changes in
consumption.

Weather Dataset

The weather dataset contains meteorological data from the Weather Station of Max Planck
Institute for Biogeochemistry. It includes 21 different weather variables, such as tempera-
ture, humidity and wind speed, recorded every 10 minutes. This dataset is important for
models focused on forecasting weather conditions, requiring them to handle multiple types
of data.



94 APPENDIX A. APPENDIX

TP No Processing TokenMLP
Metric MAE MSE MAE MSE
d 32 64 128 256 512 32 64 128 256 512 32 64 128 256 512 32 64 128 256 512

VM TM nlayers

MLP128
TM

MLP128
TM

1 0.498 0.494 0.491 0.517 0.513 0.521 0.509 0.502 0.529 0.527 0.490 0.483 0.485 0.511 0.519 0.498 0.486 0.485 0.521 0.537
2 0.487 0.491 0.485 0.501 0.505 0.490 0.505 0.494 0.514 0.519 0.489 0.482 0.492 0.504 0.526 0.494 0.484 0.492 0.501 0.549
3 0.494 0.488 0.487 0.499 0.510 0.505 0.496 0.493 0.503 0.533 0.491 0.485 0.487 0.517 0.519 0.496 0.483 0.480 0.542 0.540

No Mixing
1 0.477 0.472 0.468 0.472 0.474 0.489 0.478 0.470 0.482 0.486 0.473 0.469 0.466 0.463 0.467 0.477 0.469 0.464 0.461 0.465
2 0.474 0.468 0.465 0.467 0.468 0.481 0.471 0.464 0.461 0.468 0.472 0.467 0.464 0.462 0.465 0.474 0.467 0.460 0.456 0.459
3 0.474 0.467 0.465 0.463 0.471 0.479 0.467 0.461 0.458 0.464 0.472 0.465 0.461 0.463 0.471 0.472 0.460 0.452 0.453 0.468

SA
1 0.475 0.473 0.470 0.481 0.482 0.483 0.474 0.464 0.479 0.480 0.474 0.470 0.473 0.474 0.484 0.478 0.470 0.468 0.468 0.485
2 0.476 0.470 0.469 0.474 0.497 0.481 0.469 0.470 0.469 0.496 0.474 0.477 0.471 0.475 0.482 0.475 0.480 0.476 0.468 0.477
3 0.473 0.472 0.470 0.480 0.475 0.474 0.472 0.460 0.473 0.467 0.476 0.474 0.473 0.466 0.471 0.478 0.473 0.466 0.458 0.465

MLP32
TM

MLP32
TM

1 0.497 0.491 0.488 0.487 0.506 0.528 0.518 0.511 0.502 0.528 0.490 0.482 0.478 0.488 0.496 0.503 0.493 0.488 0.499 0.504
2 0.496 0.491 0.487 0.490 0.490 0.520 0.512 0.503 0.503 0.500 0.491 0.486 0.482 0.477 0.512 0.502 0.498 0.489 0.479 0.518
3 0.494 0.490 0.487 0.482 0.495 0.515 0.508 0.496 0.488 0.499 0.493 0.481 0.482 0.484 0.503 0.502 0.485 0.483 0.483 0.520

No Mixing
1 0.481 0.475 0.472 0.478 0.483 0.502 0.490 0.485 0.496 0.506 0.474 0.467 0.467 0.465 0.464 0.480 0.475 0.473 0.465 0.461
2 0.480 0.473 0.470 0.467 0.472 0.491 0.486 0.480 0.464 0.477 0.473 0.471 0.464 0.462 0.463 0.480 0.475 0.465 0.459 0.456
3 0.480 0.474 0.469 0.472 0.468 0.489 0.487 0.474 0.472 0.467 0.474 0.475 0.470 0.465 0.467 0.479 0.481 0.473 0.458 0.459

SA
1 0.477 0.473 0.480 0.477 0.477 0.486 0.479 0.479 0.473 0.477 0.475 0.470 0.473 0.476 0.485 0.483 0.476 0.483 0.477 0.487
2 0.477 0.472 0.475 0.481 0.490 0.481 0.475 0.476 0.478 0.488 0.481 0.472 0.471 0.486 0.480 0.489 0.478 0.472 0.488 0.478
3 0.476 0.472 0.471 0.476 0.483 0.480 0.472 0.466 0.472 0.483 0.476 0.474 0.478 0.479 0.479 0.480 0.476 0.477 0.480 0.478

MLP64
TM

MLP64
TM

1 0.497 0.498 0.490 0.494 0.501 0.522 0.522 0.506 0.507 0.515 0.491 0.484 0.480 0.497 0.516 0.502 0.496 0.486 0.505 0.525
2 0.496 0.490 0.484 0.495 0.493 0.516 0.509 0.495 0.499 0.506 0.491 0.482 0.480 0.515 0.521 0.502 0.490 0.485 0.533 0.535
3 0.491 0.491 0.483 0.493 0.504 0.497 0.507 0.492 0.501 0.524 0.488 0.486 0.495 0.484 0.510 0.489 0.492 0.506 0.479 0.536

No Mixing
1 0.480 0.473 0.468 0.470 0.485 0.497 0.486 0.473 0.477 0.511 0.472 0.466 0.463 0.465 0.465 0.478 0.471 0.462 0.468 0.464
2 0.479 0.472 0.469 0.463 0.466 0.494 0.482 0.473 0.459 0.462 0.472 0.467 0.464 0.466 0.467 0.476 0.471 0.463 0.466 0.462
3 0.478 0.471 0.466 0.464 0.466 0.490 0.476 0.466 0.458 0.463 0.473 0.467 0.467 0.465 0.471 0.476 0.465 0.465 0.456 0.462

SA
1 0.477 0.473 0.479 0.473 0.482 0.486 0.478 0.481 0.471 0.478 0.474 0.469 0.470 0.471 0.483 0.481 0.472 0.471 0.472 0.481
2 0.477 0.473 0.469 0.474 0.482 0.484 0.478 0.468 0.467 0.478 0.476 0.475 0.467 0.483 0.474 0.480 0.476 0.463 0.480 0.468
3 0.479 0.475 0.478 0.469 0.475 0.484 0.480 0.475 0.463 0.468 0.478 0.477 0.475 0.480 0.472 0.482 0.483 0.473 0.475 0.466

No Mixing

MLP128
TM

1 0.514 0.503 0.508 0.523 0.529 0.553 0.531 0.532 0.555 0.566 0.499 0.514 0.516 0.523 0.523 0.522 0.523 0.533 0.548 0.551
2 0.517 0.510 0.530 0.522 0.527 0.530 0.541 0.566 0.551 0.557 0.502 0.491 0.532 0.545 0.535 0.509 0.501 0.558 0.580 0.560
3 0.524 0.519 0.523 0.517 0.535 0.534 0.537 0.545 0.541 0.569 0.509 0.535 0.519 0.531 0.529 0.523 0.563 0.537 0.560 0.560

MLP32
TM

1 0.502 0.498 0.500 0.504 0.505 0.539 0.532 0.535 0.540 0.537 0.495 0.491 0.495 0.497 0.515 0.516 0.514 0.518 0.512 0.541
2 0.510 0.508 0.509 0.506 0.518 0.548 0.543 0.529 0.523 0.554 0.491 0.494 0.504 0.503 0.523 0.508 0.516 0.521 0.523 0.549
3 0.513 0.511 0.508 0.514 0.515 0.555 0.551 0.527 0.538 0.532 0.496 0.491 0.494 0.499 0.507 0.520 0.503 0.508 0.515 0.522

MLP64
TM

1 0.508 0.506 0.504 0.518 0.529 0.548 0.522 0.539 0.545 0.555 0.500 0.496 0.516 0.522 0.534 0.525 0.520 0.524 0.540 0.574
2 0.498 0.514 0.516 0.537 0.534 0.512 0.554 0.543 0.581 0.570 0.495 0.488 0.510 0.526 0.534 0.513 0.504 0.517 0.546 0.569
3 0.507 0.515 0.514 0.538 0.514 0.519 0.554 0.542 0.589 0.544 0.501 0.489 0.513 0.534 0.533 0.526 0.497 0.527 0.554 0.580

No Mixing
1 0.499 0.496 0.495 0.495 0.497 0.538 0.535 0.535 0.535 0.539 0.477 0.473 0.470 0.470 0.483 0.494 0.488 0.484 0.480 0.495
2 0.498 0.495 0.497 0.496 0.500 0.537 0.535 0.538 0.539 0.546 0.479 0.476 0.472 0.469 0.471 0.496 0.491 0.484 0.481 0.481
3 0.499 0.495 0.495 0.496 0.497 0.538 0.535 0.535 0.538 0.545 0.480 0.474 0.470 0.477 0.476 0.496 0.488 0.484 0.492 0.484

SA
1 0.484 0.482 0.489 0.483 0.489 0.507 0.504 0.515 0.505 0.513 0.478 0.474 0.483 0.491 0.499 0.494 0.491 0.503 0.507 0.511
2 0.484 0.485 0.491 0.493 0.497 0.508 0.508 0.510 0.518 0.522 0.479 0.479 0.481 0.488 0.485 0.495 0.497 0.499 0.502 0.499
3 0.485 0.482 0.492 0.492 0.500 0.506 0.498 0.511 0.521 0.522 0.484 0.485 0.481 0.484 0.487 0.500 0.502 0.491 0.501 0.507

SA

MLP128
TM

1 0.500 0.497 0.509 0.556 0.514 0.528 0.519 0.531 0.613 0.542 0.492 0.490 0.514 0.546 0.580 0.510 0.504 0.536 0.582 0.657
2 0.506 0.494 0.501 0.585 0.579 0.528 0.515 0.517 0.665 0.654 0.494 0.487 0.501 0.587 0.544 0.502 0.497 0.513 0.659 0.581
3 0.505 0.491 0.498 0.536 0.559 0.528 0.494 0.512 0.569 0.612 0.510 0.502 0.553 0.554 0.567 0.520 0.506 0.602 0.604 0.619

MLP32
TM

1 0.489 0.495 0.488 0.498 0.501 0.510 0.518 0.507 0.520 0.525 0.497 0.490 0.481 0.502 0.513 0.520 0.507 0.493 0.526 0.537
2 0.495 0.493 0.477 0.496 0.516 0.514 0.514 0.484 0.512 0.537 0.501 0.485 0.492 0.512 0.507 0.521 0.494 0.500 0.530 0.534
3 0.502 0.486 0.497 0.492 0.501 0.521 0.500 0.514 0.507 0.523 0.488 0.487 0.492 0.520 0.552 0.500 0.498 0.490 0.541 0.607

MLP64
TM

1 0.497 0.491 0.490 0.492 0.513 0.520 0.508 0.506 0.500 0.536 0.494 0.491 0.494 0.520 0.533 0.513 0.508 0.504 0.551 0.561
2 0.496 0.486 0.479 0.534 0.518 0.514 0.499 0.488 0.582 0.546 0.494 0.485 0.502 0.532 0.567 0.511 0.491 0.517 0.563 0.633
3 0.502 0.490 0.549 0.501 0.567 0.523 0.500 0.599 0.522 0.623 0.501 0.487 0.504 0.573 0.563 0.520 0.489 0.525 0.632 0.621

No Mixing
1 0.475 0.470 0.472 0.476 0.469 0.489 0.477 0.470 0.472 0.472 0.476 0.470 0.472 0.472 0.479 0.487 0.478 0.475 0.476 0.484
2 0.472 0.472 0.468 0.477 0.472 0.485 0.479 0.469 0.478 0.472 0.476 0.471 0.468 0.476 0.474 0.488 0.480 0.471 0.478 0.475
3 0.473 0.469 0.472 0.475 0.477 0.484 0.475 0.472 0.473 0.491 0.477 0.471 0.472 0.470 0.472 0.490 0.478 0.478 0.471 0.481

SA
1 0.473 0.474 0.476 0.505 0.491 0.486 0.481 0.480 0.522 0.504 0.481 0.475 0.477 0.478 0.486 0.492 0.482 0.483 0.484 0.492
2 0.476 0.477 0.490 0.497 0.486 0.488 0.483 0.499 0.506 0.495 0.476 0.484 0.481 0.496 0.496 0.487 0.491 0.488 0.502 0.509
3 0.474 0.474 0.478 0.481 0.491 0.486 0.482 0.486 0.485 0.496 0.482 0.488 0.483 0.485 0.487 0.496 0.496 0.490 0.489 0.495

Table A.2: Raw experiment results for Lin = 96 and T = 192 on ETTh1 dataset.

A.7 Further Experiment Results for Chapter 3

We present the experimental results for the cases that we have left out in the main text for
the sake of brevity.

Raw Results

The raw experiment results for the configurations Lin ∈ {96, 512}, T ∈ {96, 192, 336, 720},
that have not been treated in chapter 3, can be found in Tables A.2, A.3, A.4, A.5, A.6,
A.7 and A.8.

Architecture Comparison

We show the architecture comparison results for the datasets ETTh2, ETTm1, ETTm2 and
weather and for the cases Lin = 96 and Lin = 512 in Tables A.9, A.10, A.11, A.12, A.13,
A.14, A.15 and A.16.
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TP No Processing TokenMLP
Metric MAE MSE MAE MSE
d 32 64 128 256 512 32 64 128 256 512 32 64 128 256 512 32 64 128 256 512

VM TM nlayers

MLP128
TM

MLP128
TM

1 0.546 0.541 0.544 0.576 0.583 0.606 0.594 0.588 0.651 0.669 0.539 0.536 0.580 0.587 0.626 0.575 0.572 0.642 0.646 0.735
2 0.540 0.539 0.560 0.544 0.567 0.587 0.589 0.608 0.586 0.633 0.529 0.527 0.561 0.576 0.621 0.560 0.554 0.606 0.634 0.729
3 0.544 0.547 0.567 0.566 0.562 0.586 0.593 0.622 0.625 0.626 0.533 0.535 0.555 0.572 0.590 0.567 0.563 0.591 0.635 0.675

No Mixing
1 0.508 0.503 0.503 0.503 0.508 0.544 0.534 0.531 0.533 0.545 0.504 0.499 0.500 0.499 0.500 0.529 0.521 0.523 0.519 0.518
2 0.506 0.510 0.502 0.500 0.501 0.536 0.542 0.529 0.526 0.516 0.506 0.500 0.498 0.498 0.499 0.530 0.521 0.513 0.515 0.508
3 0.506 0.501 0.498 0.496 0.502 0.533 0.524 0.517 0.509 0.516 0.506 0.498 0.499 0.499 0.504 0.528 0.516 0.516 0.506 0.521

SA
1 0.508 0.506 0.511 0.524 0.518 0.535 0.529 0.527 0.551 0.543 0.512 0.505 0.507 0.508 0.526 0.542 0.528 0.530 0.531 0.555
2 0.507 0.507 0.511 0.518 0.543 0.531 0.534 0.531 0.542 0.578 0.507 0.510 0.518 0.535 0.523 0.530 0.537 0.535 0.565 0.548
3 0.510 0.507 0.512 0.517 0.528 0.536 0.529 0.534 0.534 0.551 0.508 0.509 0.509 0.513 0.515 0.529 0.533 0.535 0.528 0.529

MLP32
TM

MLP32
TM

1 0.547 0.540 0.539 0.556 0.575 0.612 0.604 0.595 0.633 0.668 0.534 0.526 0.527 0.567 0.599 0.580 0.563 0.561 0.619 0.679
2 0.537 0.539 0.533 0.557 0.557 0.590 0.596 0.582 0.622 0.611 0.532 0.515 0.538 0.575 0.574 0.570 0.546 0.575 0.640 0.628
3 0.538 0.531 0.536 0.544 0.551 0.593 0.581 0.586 0.593 0.605 0.533 0.536 0.535 0.572 0.564 0.570 0.576 0.565 0.613 0.621

No Mixing
1 0.511 0.508 0.509 0.512 0.517 0.550 0.547 0.552 0.559 0.574 0.505 0.498 0.503 0.497 0.502 0.532 0.526 0.534 0.515 0.523
2 0.512 0.506 0.502 0.499 0.509 0.550 0.538 0.535 0.521 0.537 0.504 0.499 0.496 0.503 0.509 0.531 0.522 0.515 0.530 0.537
3 0.511 0.505 0.504 0.500 0.508 0.546 0.536 0.532 0.521 0.538 0.507 0.500 0.500 0.504 0.503 0.531 0.520 0.514 0.519 0.515

SA
1 0.507 0.507 0.506 0.519 0.523 0.537 0.538 0.536 0.541 0.554 0.509 0.505 0.518 0.526 0.515 0.539 0.535 0.547 0.559 0.540
2 0.510 0.506 0.510 0.512 0.517 0.539 0.532 0.529 0.535 0.544 0.509 0.524 0.507 0.512 0.540 0.536 0.551 0.535 0.536 0.571
3 0.509 0.510 0.505 0.503 0.509 0.534 0.531 0.527 0.521 0.526 0.517 0.507 0.506 0.512 0.547 0.546 0.533 0.527 0.533 0.586

MLP64
TM

MLP64
TM

1 0.551 0.541 0.541 0.565 0.562 0.621 0.597 0.599 0.644 0.636 0.533 0.526 0.552 0.581 0.608 0.570 0.562 0.595 0.647 0.706
2 0.540 0.534 0.552 0.554 0.571 0.594 0.582 0.611 0.610 0.634 0.529 0.522 0.563 0.578 0.583 0.564 0.548 0.614 0.637 0.662
3 0.535 0.537 0.554 0.548 0.559 0.583 0.586 0.603 0.602 0.618 0.529 0.523 0.554 0.574 0.593 0.561 0.544 0.592 0.637 0.675

No Mixing
1 0.513 0.506 0.504 0.509 0.508 0.555 0.544 0.536 0.549 0.545 0.503 0.502 0.499 0.500 0.503 0.528 0.528 0.525 0.527 0.519
2 0.509 0.505 0.502 0.504 0.500 0.543 0.537 0.529 0.531 0.518 0.502 0.499 0.497 0.497 0.500 0.526 0.520 0.515 0.515 0.511
3 0.508 0.505 0.501 0.499 0.497 0.540 0.531 0.525 0.514 0.508 0.505 0.498 0.496 0.495 0.500 0.528 0.515 0.509 0.502 0.507

SA
1 0.510 0.506 0.514 0.517 0.518 0.540 0.538 0.540 0.553 0.539 0.506 0.506 0.511 0.512 0.525 0.532 0.529 0.535 0.537 0.550
2 0.507 0.505 0.510 0.522 0.517 0.532 0.531 0.536 0.552 0.537 0.506 0.507 0.510 0.536 0.521 0.530 0.534 0.539 0.570 0.546
3 0.511 0.511 0.503 0.524 0.541 0.534 0.532 0.526 0.549 0.572 0.508 0.513 0.509 0.520 0.526 0.531 0.530 0.524 0.541 0.548

No Mixing

MLP128
TM

1 0.563 0.557 0.619 0.592 0.614 0.642 0.631 0.737 0.685 0.727 0.543 0.542 0.583 0.633 0.610 0.600 0.588 0.654 0.753 0.702
2 0.566 0.577 0.587 0.573 0.619 0.645 0.651 0.667 0.643 0.748 0.543 0.569 0.594 0.596 0.594 0.595 0.625 0.675 0.669 0.666
3 0.567 0.567 0.579 0.581 0.566 0.639 0.628 0.648 0.656 0.644 0.549 0.582 0.591 0.597 0.574 0.602 0.641 0.669 0.682 0.638

MLP32
TM

1 0.554 0.564 0.563 0.570 0.582 0.629 0.653 0.654 0.649 0.675 0.548 0.537 0.537 0.582 0.624 0.608 0.589 0.592 0.642 0.725
2 0.559 0.574 0.575 0.609 0.581 0.637 0.676 0.664 0.747 0.655 0.548 0.534 0.550 0.626 0.572 0.606 0.585 0.607 0.720 0.632
3 0.565 0.571 0.573 0.562 0.602 0.646 0.661 0.650 0.623 0.709 0.540 0.538 0.569 0.562 0.579 0.588 0.580 0.621 0.635 0.653

MLP64
TM

1 0.565 0.555 0.563 0.585 0.616 0.649 0.637 0.645 0.669 0.741 0.550 0.527 0.566 0.582 0.621 0.613 0.571 0.621 0.659 0.729
2 0.566 0.558 0.586 0.590 0.602 0.640 0.627 0.675 0.686 0.710 0.545 0.543 0.589 0.559 0.610 0.599 0.590 0.650 0.608 0.711
3 0.570 0.587 0.609 0.563 0.582 0.649 0.686 0.721 0.631 0.670 0.532 0.577 0.598 0.590 0.590 0.579 0.634 0.663 0.662 0.661

No Mixing
1 0.528 0.526 0.525 0.526 0.529 0.588 0.588 0.584 0.589 0.596 0.511 0.506 0.506 0.507 0.505 0.547 0.540 0.542 0.543 0.540
2 0.528 0.525 0.525 0.526 0.527 0.587 0.585 0.585 0.589 0.593 0.510 0.508 0.506 0.504 0.509 0.547 0.545 0.540 0.538 0.543
3 0.528 0.526 0.526 0.525 0.529 0.588 0.587 0.587 0.586 0.592 0.513 0.508 0.506 0.506 0.510 0.550 0.544 0.540 0.541 0.544

SA
1 0.515 0.517 0.523 0.534 0.529 0.562 0.560 0.573 0.597 0.588 0.511 0.510 0.520 0.522 0.525 0.547 0.545 0.564 0.562 0.561
2 0.517 0.518 0.538 0.537 0.547 0.563 0.561 0.596 0.606 0.612 0.514 0.509 0.537 0.527 0.538 0.551 0.544 0.584 0.570 0.592
3 0.517 0.515 0.557 0.551 0.543 0.559 0.556 0.632 0.628 0.598 0.517 0.516 0.517 0.528 0.545 0.555 0.549 0.555 0.569 0.604

SA

MLP128
TM

1 0.552 0.551 0.585 0.620 0.631 0.617 0.610 0.658 0.725 0.760 0.542 0.551 0.589 0.620 0.657 0.597 0.594 0.653 0.717 0.805
2 0.556 0.563 0.582 0.647 0.664 0.623 0.620 0.645 0.783 0.821 0.550 0.568 0.606 0.590 0.690 0.597 0.618 0.692 0.666 0.882
3 0.550 0.589 0.585 0.611 0.647 0.609 0.660 0.651 0.718 0.799 0.571 0.587 0.587 0.600 0.586 0.622 0.655 0.658 0.688 0.665

MLP32
TM

1 0.546 0.529 0.533 0.585 0.570 0.607 0.578 0.576 0.662 0.633 0.545 0.522 0.579 0.558 0.581 0.603 0.563 0.642 0.609 0.660
2 0.539 0.544 0.570 0.656 0.604 0.592 0.600 0.643 0.816 0.701 0.526 0.531 0.572 0.603 0.581 0.568 0.562 0.632 0.697 0.643
3 0.552 0.546 0.566 0.619 0.613 0.611 0.603 0.619 0.723 0.717 0.531 0.549 0.556 0.616 0.573 0.573 0.594 0.591 0.718 0.653

MLP64
TM

1 0.543 0.539 0.541 0.628 0.647 0.604 0.592 0.584 0.744 0.799 0.536 0.537 0.559 0.584 0.596 0.583 0.582 0.608 0.640 0.673
2 0.546 0.558 0.567 0.641 0.630 0.602 0.624 0.627 0.777 0.767 0.538 0.542 0.603 0.666 0.602 0.591 0.578 0.688 0.804 0.684
3 0.542 0.559 0.558 0.611 0.647 0.593 0.622 0.616 0.705 0.751 0.542 0.555 0.599 0.615 0.590 0.586 0.596 0.681 0.716 0.662

No Mixing
1 0.508 0.510 0.515 0.518 0.524 0.541 0.538 0.543 0.550 0.558 0.510 0.504 0.509 0.504 0.511 0.545 0.534 0.536 0.529 0.540
2 0.508 0.505 0.513 0.515 0.523 0.539 0.531 0.540 0.545 0.558 0.507 0.508 0.502 0.511 0.514 0.542 0.537 0.528 0.538 0.543
3 0.510 0.509 0.511 0.511 0.508 0.541 0.536 0.536 0.537 0.534 0.512 0.509 0.500 0.508 0.520 0.545 0.539 0.523 0.538 0.553

SA
1 0.507 0.510 0.525 0.533 0.511 0.538 0.540 0.557 0.580 0.541 0.505 0.516 0.520 0.515 0.520 0.538 0.545 0.556 0.551 0.554
2 0.510 0.513 0.530 0.532 0.523 0.540 0.541 0.562 0.565 0.552 0.511 0.515 0.528 0.511 0.535 0.543 0.544 0.563 0.535 0.571
3 0.508 0.514 0.548 0.522 0.522 0.537 0.546 0.593 0.547 0.557 0.518 0.529 0.512 0.525 0.524 0.550 0.569 0.540 0.549 0.560

Table A.3: Raw experiment results for Lin = 96 and T = 336 on ETTh1 dataset.

Promotion Results

We show the evaluation plots for the performance promotion for the datasets ETTh2,
ETTm1, ETTm2 and weather in Figures A.1, A.2, A.3 and A.4.
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Figure A.1: Performance promotion by using different token-mixers and token-processors
for the ETTh2 dataset. The baseline is not mixing (and respectively not processing).
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Figure A.2: Performance promotion by using different token-mixers and token-processors
for the ETTm1 dataset. The baseline is not mixing (and respectively not processing).
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Figure A.3: Performance promotion by using different token-mixers and token-processors
for the ETTm2 dataset. The baseline is not mixing (and respectively not processing).
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Figure A.4: Performance promotion by using different token-mixers and token-processors
for the weather dataset. The baseline is not mixing (and respectively not processing).
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TP No Processing TokenMLP
Metric MAE MSE MAE MSE
d 32 64 128 256 512 32 64 128 256 512 32 64 128 256 512 32 64 128 256 512

VM TM nlayers

MLP128
TM

MLP128
TM

1 0.574 0.578 0.592 0.605 0.603 0.651 0.646 0.663 0.681 0.686 0.565 0.596 0.621 0.640 0.644 0.620 0.652 0.696 0.741 0.746
2 0.577 0.590 0.583 0.587 0.588 0.650 0.649 0.637 0.646 0.654 0.561 0.608 0.596 0.627 0.631 0.604 0.667 0.646 0.703 0.728
3 0.575 0.578 0.583 0.579 0.583 0.621 0.626 0.637 0.632 0.640 0.562 0.585 0.631 0.627 0.618 0.601 0.626 0.714 0.728 0.706

No Mixing
1 0.532 0.535 0.532 0.530 0.531 0.578 0.586 0.578 0.575 0.579 0.531 0.529 0.524 0.532 0.527 0.566 0.567 0.556 0.567 0.555
2 0.532 0.528 0.529 0.528 0.524 0.575 0.569 0.571 0.563 0.553 0.531 0.527 0.525 0.527 0.531 0.566 0.562 0.560 0.559 0.566
3 0.530 0.527 0.525 0.524 0.526 0.570 0.565 0.562 0.555 0.555 0.529 0.532 0.526 0.525 0.537 0.562 0.568 0.552 0.543 0.563

SA
1 0.538 0.536 0.540 0.539 0.552 0.582 0.575 0.581 0.576 0.594 0.535 0.535 0.542 0.545 0.549 0.577 0.573 0.589 0.586 0.593
2 0.532 0.532 0.532 0.545 0.554 0.569 0.570 0.571 0.584 0.604 0.533 0.536 0.531 0.547 0.557 0.568 0.572 0.569 0.591 0.605
3 0.534 0.538 0.543 0.547 0.563 0.569 0.579 0.582 0.580 0.609 0.537 0.547 0.539 0.544 0.547 0.570 0.590 0.572 0.576 0.583

MLP32
TM

MLP32
TM

1 0.578 0.566 0.563 0.581 0.594 0.668 0.648 0.636 0.656 0.684 0.570 0.556 0.602 0.593 0.643 0.632 0.606 0.673 0.655 0.751
2 0.564 0.566 0.573 0.568 0.574 0.642 0.642 0.645 0.614 0.641 0.567 0.556 0.593 0.603 0.612 0.625 0.602 0.645 0.668 0.688
3 0.564 0.557 0.565 0.581 0.569 0.637 0.622 0.623 0.652 0.628 0.561 0.560 0.598 0.594 0.595 0.615 0.598 0.656 0.650 0.664

No Mixing
1 0.537 0.531 0.532 0.537 0.539 0.587 0.581 0.586 0.596 0.604 0.529 0.525 0.526 0.526 0.525 0.567 0.562 0.565 0.561 0.563
2 0.533 0.532 0.530 0.530 0.526 0.581 0.579 0.579 0.574 0.564 0.534 0.528 0.525 0.523 0.533 0.575 0.564 0.562 0.557 0.561
3 0.532 0.529 0.525 0.526 0.525 0.577 0.572 0.566 0.555 0.559 0.533 0.530 0.526 0.526 0.532 0.574 0.569 0.552 0.550 0.553

SA
1 0.536 0.535 0.542 0.552 0.550 0.579 0.580 0.583 0.608 0.596 0.539 0.535 0.535 0.537 0.564 0.586 0.577 0.582 0.575 0.618
2 0.534 0.532 0.557 0.549 0.559 0.574 0.573 0.606 0.589 0.608 0.544 0.535 0.538 0.548 0.555 0.592 0.576 0.581 0.590 0.601
3 0.537 0.534 0.531 0.536 0.570 0.575 0.572 0.568 0.566 0.625 0.536 0.542 0.538 0.549 0.560 0.576 0.584 0.575 0.591 0.606

MLP64
TM

MLP64
TM

1 0.579 0.571 0.581 0.594 0.600 0.668 0.653 0.658 0.682 0.699 0.560 0.565 0.599 0.632 0.637 0.613 0.616 0.659 0.725 0.735
2 0.562 0.567 0.588 0.575 0.589 0.629 0.609 0.652 0.633 0.656 0.557 0.574 0.597 0.624 0.603 0.605 0.625 0.654 0.693 0.676
3 0.571 0.566 0.578 0.594 0.589 0.637 0.617 0.637 0.668 0.661 0.570 0.586 0.583 0.602 0.584 0.629 0.636 0.624 0.669 0.642

No Mixing
1 0.534 0.532 0.532 0.535 0.535 0.583 0.580 0.583 0.589 0.599 0.531 0.525 0.525 0.525 0.534 0.566 0.561 0.562 0.559 0.567
2 0.533 0.528 0.530 0.527 0.530 0.578 0.571 0.575 0.565 0.560 0.530 0.525 0.523 0.525 0.529 0.566 0.562 0.556 0.559 0.554
3 0.533 0.526 0.525 0.524 0.530 0.577 0.564 0.561 0.559 0.564 0.532 0.526 0.525 0.523 0.532 0.570 0.558 0.553 0.546 0.555

SA
1 0.539 0.535 0.544 0.538 0.553 0.583 0.578 0.585 0.575 0.610 0.536 0.537 0.540 0.550 0.547 0.577 0.579 0.577 0.598 0.589
2 0.535 0.531 0.536 0.549 0.556 0.574 0.571 0.575 0.593 0.606 0.537 0.542 0.538 0.559 0.560 0.573 0.587 0.578 0.615 0.612
3 0.533 0.534 0.541 0.556 0.550 0.570 0.572 0.575 0.593 0.589 0.534 0.533 0.535 0.555 0.558 0.568 0.569 0.571 0.595 0.609

No Mixing

MLP128
TM

1 0.594 0.623 0.616 0.634 0.636 0.698 0.723 0.712 0.744 0.758 0.574 0.631 0.609 0.635 0.631 0.640 0.726 0.681 0.733 0.729
2 0.599 0.609 0.626 0.604 0.622 0.674 0.697 0.732 0.684 0.728 0.574 0.624 0.623 0.622 0.624 0.636 0.711 0.710 0.715 0.710
3 0.594 0.582 0.606 0.609 0.604 0.661 0.636 0.686 0.706 0.687 0.617 0.614 0.642 0.622 0.620 0.695 0.703 0.745 0.703 0.707

MLP32
TM

1 0.596 0.587 0.595 0.599 0.617 0.705 0.689 0.700 0.719 0.739 0.571 0.560 0.571 0.621 0.642 0.646 0.614 0.648 0.710 0.760
2 0.598 0.600 0.595 0.590 0.585 0.705 0.706 0.697 0.669 0.656 0.582 0.553 0.607 0.610 0.640 0.663 0.608 0.690 0.702 0.752
3 0.601 0.613 0.609 0.591 0.622 0.710 0.729 0.714 0.675 0.729 0.575 0.585 0.584 0.600 0.612 0.652 0.643 0.659 0.674 0.702

MLP64
TM

1 0.590 0.590 0.585 0.618 0.636 0.689 0.694 0.678 0.726 0.777 0.570 0.586 0.603 0.638 0.640 0.645 0.649 0.678 0.745 0.741
2 0.595 0.593 0.620 0.602 0.602 0.694 0.687 0.728 0.692 0.677 0.581 0.597 0.627 0.596 0.645 0.658 0.663 0.717 0.659 0.759
3 0.600 0.598 0.609 0.613 0.603 0.705 0.676 0.702 0.712 0.691 0.556 0.592 0.625 0.610 0.638 0.610 0.651 0.716 0.685 0.744

No Mixing
1 0.550 0.548 0.546 0.546 0.550 0.621 0.620 0.615 0.617 0.627 0.538 0.534 0.539 0.536 0.539 0.591 0.585 0.591 0.588 0.592
2 0.549 0.548 0.548 0.547 0.547 0.619 0.621 0.620 0.618 0.619 0.537 0.534 0.535 0.531 0.540 0.586 0.583 0.585 0.581 0.591
3 0.550 0.549 0.544 0.549 0.546 0.620 0.621 0.613 0.621 0.616 0.541 0.536 0.533 0.536 0.534 0.592 0.585 0.584 0.587 0.583

SA
1 0.544 0.544 0.552 0.551 0.563 0.606 0.608 0.626 0.618 0.642 0.544 0.541 0.549 0.551 0.551 0.601 0.593 0.605 0.604 0.613
2 0.541 0.546 0.551 0.565 0.559 0.596 0.611 0.625 0.638 0.639 0.539 0.549 0.549 0.572 0.570 0.589 0.604 0.608 0.650 0.634
3 0.542 0.548 0.577 0.552 0.565 0.598 0.612 0.660 0.618 0.637 0.542 0.553 0.555 0.565 0.570 0.594 0.611 0.609 0.630 0.649

SA

MLP128
TM

1 0.584 0.574 0.646 0.650 0.665 0.674 0.637 0.775 0.784 0.809 0.575 0.627 0.625 0.636 0.645 0.645 0.720 0.720 0.737 0.757
2 0.579 0.631 0.622 0.638 0.646 0.649 0.735 0.706 0.747 0.753 0.572 0.612 0.650 0.637 0.624 0.633 0.685 0.759 0.743 0.720
3 0.589 0.599 0.626 0.650 0.651 0.665 0.668 0.725 0.762 0.779 0.600 0.607 0.625 0.651 0.641 0.655 0.676 0.718 0.781 0.756

MLP32
TM

1 0.577 0.564 0.582 0.629 0.644 0.662 0.634 0.656 0.749 0.775 0.577 0.563 0.582 0.581 0.595 0.662 0.621 0.654 0.638 0.662
2 0.575 0.566 0.598 0.611 0.606 0.661 0.625 0.676 0.718 0.688 0.561 0.564 0.615 0.635 0.601 0.623 0.619 0.698 0.749 0.682
3 0.599 0.566 0.570 0.609 0.659 0.695 0.621 0.614 0.684 0.792 0.559 0.582 0.628 0.634 0.634 0.616 0.637 0.713 0.740 0.746

MLP64
TM

1 0.579 0.566 0.586 0.616 0.637 0.667 0.631 0.662 0.707 0.749 0.572 0.573 0.595 0.613 0.615 0.644 0.631 0.660 0.685 0.716
2 0.580 0.567 0.595 0.638 0.616 0.664 0.628 0.665 0.762 0.717 0.566 0.605 0.595 0.626 0.657 0.625 0.668 0.661 0.706 0.821
3 0.580 0.568 0.638 0.619 0.644 0.651 0.618 0.756 0.707 0.769 0.571 0.628 0.668 0.687 0.610 0.618 0.714 0.820 0.844 0.707

No Mixing
1 0.538 0.543 0.539 0.546 0.548 0.582 0.586 0.577 0.588 0.591 0.542 0.535 0.532 0.530 0.555 0.592 0.576 0.573 0.575 0.617
2 0.541 0.542 0.545 0.551 0.545 0.589 0.581 0.593 0.601 0.589 0.540 0.536 0.537 0.535 0.549 0.586 0.581 0.582 0.576 0.594
3 0.539 0.538 0.541 0.552 0.549 0.584 0.580 0.583 0.600 0.594 0.540 0.532 0.535 0.551 0.540 0.587 0.574 0.578 0.592 0.582

SA
1 0.537 0.538 0.566 0.551 0.567 0.583 0.578 0.615 0.602 0.632 0.536 0.534 0.556 0.561 0.565 0.582 0.581 0.606 0.614 0.627
2 0.537 0.539 0.567 0.569 0.546 0.581 0.587 0.621 0.629 0.586 0.538 0.540 0.557 0.556 0.553 0.587 0.585 0.606 0.599 0.599
3 0.536 0.551 0.579 0.554 0.547 0.580 0.597 0.644 0.588 0.590 0.538 0.554 0.563 0.575 0.568 0.580 0.599 0.607 0.631 0.631

Table A.4: Raw experiment results for Lin = 96 and T = 512 on ETTh1 dataset.
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TP No Processing TokenMLP
Metric MAE MSE MAE MSE
d 32 64 128 256 512 32 64 128 256 512 32 64 128 256 512 32 64 128 256 512

VM TM nlayers

MLP128
TM

MLP128
TM

1 0.460 0.461 0.475 0.484 0.504 0.429 0.439 0.448 0.471 0.493 0.451 0.461 0.453 0.490 0.492 0.421 0.429 0.422 0.469 0.476
2 0.464 0.474 0.472 0.475 0.481 0.430 0.449 0.446 0.464 0.467 0.451 0.446 0.449 0.468 0.490 0.422 0.411 0.414 0.443 0.477
3 0.459 0.460 0.469 0.487 0.495 0.428 0.431 0.446 0.468 0.494 0.454 0.453 0.466 0.480 0.501 0.422 0.416 0.440 0.462 0.500

No Mixing
1 0.445 0.448 0.453 0.468 0.464 0.421 0.429 0.434 0.456 0.457 0.440 0.438 0.439 0.446 0.450 0.408 0.406 0.404 0.417 0.426
2 0.439 0.440 0.444 0.454 0.455 0.404 0.413 0.422 0.445 0.434 0.439 0.439 0.443 0.450 0.458 0.403 0.404 0.415 0.419 0.432
3 0.441 0.440 0.446 0.446 0.457 0.410 0.408 0.418 0.420 0.443 0.439 0.437 0.450 0.450 0.451 0.403 0.401 0.419 0.419 0.427

SA
1 0.440 0.441 0.453 0.467 0.490 0.407 0.414 0.432 0.451 0.498 0.443 0.441 0.443 0.446 0.487 0.410 0.408 0.414 0.415 0.486
2 0.442 0.442 0.445 0.454 0.463 0.405 0.410 0.409 0.425 0.446 0.441 0.446 0.445 0.453 0.459 0.405 0.411 0.411 0.423 0.433
3 0.448 0.445 0.446 0.448 0.492 0.414 0.407 0.415 0.415 0.474 0.447 0.446 0.454 0.461 0.454 0.412 0.410 0.425 0.434 0.428

MLP32
TM

MLP32
TM

1 0.461 0.458 0.467 0.477 0.506 0.439 0.441 0.454 0.466 0.496 0.452 0.450 0.444 0.457 0.486 0.427 0.426 0.416 0.431 0.461
2 0.460 0.459 0.471 0.476 0.511 0.435 0.438 0.454 0.463 0.511 0.451 0.447 0.448 0.462 0.476 0.421 0.418 0.416 0.438 0.458
3 0.457 0.455 0.468 0.473 0.489 0.435 0.430 0.441 0.457 0.480 0.445 0.450 0.449 0.464 0.479 0.412 0.411 0.417 0.434 0.462

No Mixing
1 0.459 0.457 0.462 0.469 0.487 0.437 0.446 0.452 0.465 0.497 0.437 0.442 0.437 0.440 0.456 0.405 0.416 0.410 0.411 0.438
2 0.449 0.444 0.454 0.453 0.464 0.424 0.418 0.438 0.429 0.461 0.439 0.441 0.442 0.449 0.453 0.406 0.407 0.410 0.426 0.435
3 0.445 0.443 0.446 0.459 0.464 0.419 0.413 0.417 0.442 0.454 0.447 0.442 0.443 0.443 0.450 0.412 0.408 0.413 0.409 0.421

SA
1 0.440 0.442 0.448 0.447 0.485 0.409 0.412 0.427 0.422 0.477 0.445 0.443 0.449 0.449 0.477 0.419 0.414 0.417 0.422 0.469
2 0.443 0.442 0.440 0.448 0.478 0.407 0.408 0.405 0.420 0.463 0.445 0.443 0.441 0.444 0.458 0.412 0.407 0.408 0.414 0.434
3 0.448 0.444 0.445 0.463 0.451 0.412 0.409 0.405 0.434 0.427 0.445 0.443 0.448 0.454 0.462 0.409 0.408 0.413 0.425 0.452

MLP64
TM

MLP64
TM

1 0.462 0.473 0.486 0.492 0.516 0.436 0.450 0.464 0.489 0.520 0.450 0.448 0.458 0.464 0.496 0.425 0.420 0.427 0.436 0.477
2 0.456 0.451 0.461 0.484 0.500 0.427 0.423 0.441 0.463 0.502 0.450 0.445 0.445 0.466 0.477 0.420 0.414 0.411 0.443 0.454
3 0.459 0.460 0.463 0.467 0.503 0.433 0.433 0.435 0.443 0.505 0.449 0.448 0.454 0.469 0.481 0.416 0.419 0.427 0.445 0.470

No Mixing
1 0.448 0.453 0.455 0.464 0.489 0.423 0.433 0.440 0.457 0.519 0.441 0.441 0.440 0.456 0.456 0.410 0.414 0.410 0.437 0.438
2 0.445 0.443 0.449 0.451 0.464 0.418 0.413 0.426 0.430 0.453 0.439 0.439 0.442 0.444 0.457 0.403 0.406 0.413 0.418 0.427
3 0.443 0.444 0.442 0.448 0.451 0.410 0.416 0.415 0.424 0.432 0.445 0.442 0.440 0.448 0.454 0.412 0.406 0.406 0.417 0.422

SA
1 0.441 0.443 0.445 0.447 0.482 0.409 0.413 0.419 0.424 0.465 0.443 0.446 0.446 0.454 0.468 0.411 0.418 0.419 0.429 0.453
2 0.446 0.447 0.444 0.453 0.470 0.412 0.413 0.406 0.426 0.448 0.446 0.444 0.447 0.450 0.469 0.413 0.410 0.416 0.422 0.455
3 0.445 0.444 0.447 0.448 0.457 0.408 0.407 0.414 0.416 0.430 0.447 0.446 0.442 0.447 0.463 0.410 0.410 0.404 0.416 0.449

No Mixing

MLP128
TM

1 0.499 0.484 0.496 0.527 0.535 0.483 0.470 0.482 0.518 0.537 0.477 0.472 0.498 0.548 0.591 0.463 0.450 0.484 0.552 0.626
2 0.486 0.503 0.507 0.540 0.521 0.474 0.495 0.497 0.540 0.515 0.476 0.484 0.513 0.537 0.529 0.456 0.467 0.513 0.539 0.531
3 0.502 0.516 0.518 0.513 0.528 0.490 0.504 0.515 0.509 0.534 0.516 0.489 0.511 0.514 0.550 0.509 0.473 0.500 0.505 0.566

MLP32
TM

1 0.474 0.480 0.504 0.522 0.515 0.458 0.472 0.500 0.539 0.522 0.471 0.474 0.512 0.517 0.535 0.453 0.464 0.508 0.511 0.544
2 0.474 0.502 0.492 0.521 0.516 0.458 0.487 0.473 0.528 0.516 0.474 0.467 0.492 0.517 0.544 0.460 0.447 0.481 0.532 0.561
3 0.490 0.507 0.516 0.528 0.542 0.478 0.502 0.516 0.529 0.562 0.477 0.473 0.506 0.510 0.551 0.458 0.453 0.496 0.499 0.552

MLP64
TM

1 0.477 0.478 0.515 0.517 0.516 0.461 0.467 0.505 0.516 0.508 0.474 0.514 0.536 0.523 0.525 0.458 0.507 0.550 0.523 0.522
2 0.487 0.499 0.516 0.508 0.544 0.476 0.481 0.507 0.494 0.549 0.478 0.471 0.500 0.562 0.547 0.459 0.448 0.481 0.586 0.562
3 0.512 0.515 0.514 0.528 0.544 0.497 0.510 0.504 0.534 0.548 0.470 0.499 0.515 0.520 0.529 0.451 0.494 0.512 0.517 0.536

No Mixing
1 0.470 0.468 0.467 0.473 0.482 0.453 0.453 0.454 0.466 0.473 0.452 0.447 0.450 0.452 0.457 0.425 0.421 0.427 0.431 0.441
2 0.470 0.468 0.467 0.477 0.478 0.455 0.454 0.454 0.465 0.476 0.450 0.451 0.450 0.454 0.463 0.423 0.424 0.426 0.433 0.445
3 0.467 0.466 0.466 0.473 0.480 0.451 0.452 0.454 0.466 0.475 0.455 0.449 0.450 0.451 0.454 0.429 0.423 0.426 0.429 0.433

SA
1 0.460 0.456 0.459 0.463 0.472 0.436 0.434 0.440 0.445 0.460 0.458 0.453 0.457 0.458 0.470 0.433 0.428 0.433 0.434 0.460
2 0.457 0.456 0.458 0.470 0.477 0.432 0.432 0.433 0.459 0.455 0.457 0.454 0.458 0.464 0.481 0.430 0.426 0.437 0.448 0.477
3 0.452 0.455 0.458 0.467 0.481 0.424 0.429 0.437 0.447 0.467 0.457 0.455 0.457 0.463 0.484 0.428 0.430 0.432 0.440 0.475

SA

MLP128
TM

1 0.461 0.476 0.493 0.540 0.529 0.439 0.461 0.481 0.562 0.526 0.463 0.478 0.514 0.543 0.561 0.439 0.450 0.507 0.542 0.578
2 0.471 0.482 0.526 0.519 0.535 0.449 0.467 0.528 0.513 0.536 0.463 0.480 0.509 0.553 0.528 0.440 0.460 0.498 0.574 0.526
3 0.479 0.519 0.538 0.528 0.523 0.456 0.515 0.546 0.542 0.518 0.468 0.510 0.530 0.566 0.534 0.446 0.503 0.525 0.593 0.537

MLP32
TM

1 0.458 0.450 0.463 0.504 0.514 0.437 0.426 0.438 0.497 0.505 0.454 0.465 0.471 0.475 0.504 0.430 0.436 0.444 0.450 0.495
2 0.466 0.461 0.490 0.488 0.522 0.452 0.440 0.475 0.475 0.519 0.455 0.464 0.462 0.532 0.559 0.428 0.441 0.441 0.527 0.573
3 0.463 0.474 0.486 0.541 0.542 0.444 0.455 0.474 0.565 0.548 0.463 0.457 0.500 0.529 0.505 0.440 0.432 0.501 0.533 0.495

MLP64
TM

1 0.466 0.466 0.515 0.538 0.535 0.449 0.448 0.506 0.555 0.548 0.455 0.450 0.465 0.503 0.520 0.430 0.424 0.436 0.483 0.514
2 0.466 0.467 0.471 0.541 0.535 0.445 0.442 0.450 0.547 0.531 0.464 0.460 0.490 0.539 0.589 0.446 0.437 0.472 0.537 0.639
3 0.478 0.477 0.491 0.511 0.508 0.463 0.459 0.473 0.494 0.501 0.470 0.477 0.523 0.526 0.517 0.448 0.457 0.529 0.530 0.523

No Mixing
1 0.444 0.440 0.446 0.451 0.461 0.419 0.411 0.415 0.421 0.437 0.445 0.444 0.445 0.444 0.447 0.416 0.416 0.414 0.410 0.417
2 0.444 0.439 0.440 0.450 0.448 0.415 0.411 0.407 0.419 0.421 0.448 0.442 0.448 0.450 0.463 0.421 0.413 0.417 0.422 0.441
3 0.440 0.438 0.445 0.443 0.448 0.409 0.406 0.414 0.414 0.422 0.446 0.442 0.449 0.443 0.449 0.419 0.411 0.419 0.411 0.424

SA
1 0.443 0.439 0.444 0.458 0.495 0.414 0.408 0.413 0.428 0.488 0.444 0.448 0.482 0.452 0.531 0.416 0.418 0.454 0.424 0.536
2 0.446 0.442 0.453 0.465 0.476 0.415 0.409 0.423 0.435 0.456 0.446 0.452 0.455 0.477 0.484 0.419 0.424 0.423 0.457 0.468
3 0.450 0.445 0.463 0.486 0.551 0.420 0.413 0.433 0.469 0.586 0.454 0.449 0.473 0.481 0.521 0.428 0.419 0.450 0.461 0.519

Table A.5: Raw experiment results for Lin = 512 and T = 96 on ETTh1 dataset.
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TP No Processing TokenMLP
Metric MAE MSE MAE MSE
d 32 64 128 256 512 32 64 128 256 512 32 64 128 256 512 32 64 128 256 512

VM TM nlayers

MLP128
TM

MLP128
TM

1 0.503 0.503 0.544 0.564 0.565 0.499 0.497 0.555 0.582 0.583 0.498 0.524 0.549 0.555 0.568 0.486 0.525 0.562 0.559 0.593
2 0.498 0.516 0.513 0.532 0.538 0.488 0.522 0.507 0.532 0.547 0.494 0.510 0.524 0.544 0.551 0.482 0.502 0.526 0.553 0.573
3 0.504 0.532 0.524 0.541 0.557 0.496 0.539 0.528 0.557 0.587 0.487 0.511 0.524 0.540 0.546 0.467 0.505 0.516 0.556 0.572

No Mixing
1 0.474 0.474 0.481 0.488 0.495 0.461 0.467 0.473 0.498 0.508 0.469 0.469 0.471 0.474 0.491 0.448 0.450 0.456 0.468 0.485
2 0.471 0.472 0.476 0.475 0.488 0.457 0.458 0.460 0.457 0.480 0.474 0.471 0.476 0.481 0.485 0.453 0.447 0.455 0.467 0.473
3 0.470 0.469 0.470 0.474 0.478 0.450 0.450 0.449 0.457 0.454 0.470 0.475 0.478 0.485 0.496 0.446 0.454 0.459 0.463 0.480

SA
1 0.477 0.476 0.476 0.481 0.490 0.457 0.457 0.459 0.466 0.488 0.473 0.475 0.475 0.498 0.528 0.449 0.455 0.461 0.496 0.550
2 0.475 0.476 0.478 0.483 0.515 0.451 0.453 0.456 0.473 0.522 0.475 0.477 0.479 0.475 0.545 0.450 0.460 0.462 0.453 0.572
3 0.479 0.474 0.477 0.493 0.533 0.456 0.450 0.456 0.484 0.550 0.478 0.475 0.499 0.495 0.531 0.454 0.453 0.502 0.494 0.543

MLP32
TM

MLP32
TM

1 0.499 0.499 0.515 0.523 0.553 0.492 0.502 0.523 0.543 0.579 0.494 0.486 0.511 0.539 0.551 0.484 0.473 0.519 0.541 0.574
2 0.492 0.496 0.512 0.542 0.539 0.486 0.490 0.511 0.550 0.551 0.487 0.479 0.517 0.529 0.547 0.473 0.461 0.510 0.529 0.560
3 0.495 0.493 0.508 0.525 0.546 0.489 0.484 0.511 0.533 0.546 0.480 0.488 0.489 0.507 0.542 0.465 0.480 0.474 0.496 0.545

No Mixing
1 0.480 0.482 0.487 0.492 0.506 0.476 0.481 0.494 0.503 0.526 0.468 0.466 0.470 0.475 0.500 0.448 0.448 0.451 0.465 0.504
2 0.476 0.479 0.475 0.487 0.501 0.461 0.469 0.459 0.489 0.508 0.473 0.465 0.473 0.483 0.485 0.449 0.443 0.457 0.469 0.476
3 0.483 0.472 0.476 0.483 0.485 0.467 0.456 0.468 0.474 0.491 0.473 0.474 0.480 0.480 0.497 0.450 0.449 0.455 0.461 0.490

SA
1 0.475 0.473 0.479 0.475 0.508 0.455 0.457 0.464 0.462 0.517 0.474 0.475 0.477 0.492 0.495 0.455 0.459 0.464 0.487 0.495
2 0.476 0.476 0.483 0.485 0.511 0.450 0.450 0.461 0.468 0.514 0.473 0.478 0.472 0.490 0.490 0.450 0.461 0.456 0.479 0.485
3 0.477 0.476 0.486 0.478 0.497 0.451 0.454 0.471 0.462 0.501 0.479 0.480 0.480 0.483 0.503 0.456 0.459 0.460 0.470 0.510

MLP64
TM

MLP64
TM

1 0.499 0.501 0.509 0.535 0.572 0.501 0.497 0.522 0.561 0.624 0.494 0.501 0.552 0.534 0.544 0.486 0.493 0.559 0.544 0.553
2 0.492 0.520 0.535 0.532 0.531 0.487 0.521 0.535 0.532 0.536 0.492 0.492 0.523 0.543 0.563 0.485 0.480 0.520 0.557 0.587
3 0.492 0.502 0.511 0.531 0.519 0.483 0.501 0.501 0.546 0.505 0.488 0.492 0.539 0.537 0.556 0.472 0.477 0.553 0.546 0.594

No Mixing
1 0.474 0.483 0.489 0.500 0.494 0.461 0.480 0.492 0.531 0.507 0.467 0.466 0.473 0.473 0.487 0.447 0.446 0.457 0.456 0.484
2 0.473 0.470 0.472 0.488 0.488 0.455 0.458 0.458 0.497 0.493 0.471 0.468 0.475 0.483 0.490 0.446 0.447 0.451 0.463 0.480
3 0.473 0.472 0.479 0.478 0.495 0.457 0.454 0.467 0.464 0.510 0.476 0.474 0.480 0.478 0.481 0.451 0.454 0.457 0.462 0.467

SA
1 0.473 0.475 0.476 0.489 0.520 0.455 0.460 0.461 0.487 0.536 0.473 0.481 0.475 0.477 0.520 0.453 0.470 0.458 0.465 0.527
2 0.477 0.476 0.475 0.476 0.510 0.453 0.452 0.454 0.456 0.514 0.475 0.476 0.479 0.476 0.502 0.453 0.453 0.462 0.457 0.496
3 0.478 0.479 0.478 0.484 0.499 0.455 0.455 0.461 0.469 0.493 0.481 0.477 0.474 0.482 0.500 0.461 0.453 0.450 0.464 0.499

No Mixing

MLP128
TM

1 0.541 0.541 0.586 0.569 0.556 0.573 0.551 0.614 0.578 0.562 0.526 0.539 0.588 0.618 0.633 0.542 0.544 0.640 0.671 0.694
2 0.541 0.549 0.569 0.586 0.605 0.560 0.547 0.586 0.614 0.655 0.534 0.556 0.623 0.614 0.621 0.543 0.583 0.690 0.663 0.690
3 0.550 0.589 0.575 0.608 0.595 0.572 0.619 0.597 0.661 0.629 0.535 0.555 0.628 0.611 0.634 0.545 0.578 0.696 0.656 0.714

MLP32
TM

1 0.523 0.526 0.595 0.621 0.610 0.533 0.544 0.678 0.699 0.673 0.505 0.532 0.550 0.597 0.645 0.508 0.549 0.573 0.635 0.728
2 0.539 0.545 0.564 0.618 0.585 0.559 0.575 0.598 0.695 0.632 0.531 0.543 0.542 0.638 0.652 0.550 0.570 0.553 0.739 0.748
3 0.553 0.539 0.617 0.577 0.673 0.593 0.561 0.672 0.605 0.802 0.509 0.514 0.564 0.590 0.684 0.510 0.518 0.604 0.633 0.829

MLP64
TM

1 0.520 0.524 0.574 0.584 0.593 0.534 0.535 0.594 0.619 0.638 0.512 0.514 0.621 0.597 0.609 0.516 0.513 0.684 0.627 0.664
2 0.534 0.551 0.572 0.589 0.568 0.555 0.560 0.590 0.630 0.575 0.528 0.544 0.569 0.603 0.610 0.537 0.558 0.596 0.649 0.660
3 0.556 0.558 0.581 0.589 0.633 0.580 0.567 0.616 0.632 0.719 0.516 0.664 0.565 0.585 0.613 0.521 0.800 0.591 0.617 0.645

No Mixing
1 0.489 0.490 0.492 0.500 0.500 0.485 0.486 0.492 0.505 0.504 0.480 0.476 0.474 0.496 0.490 0.466 0.464 0.461 0.492 0.487
2 0.491 0.490 0.492 0.492 0.498 0.492 0.489 0.489 0.493 0.502 0.482 0.477 0.477 0.480 0.482 0.469 0.464 0.464 0.470 0.475
3 0.491 0.491 0.489 0.496 0.503 0.488 0.488 0.488 0.497 0.506 0.477 0.474 0.478 0.478 0.485 0.463 0.461 0.466 0.471 0.482

SA
1 0.484 0.484 0.487 0.501 0.496 0.474 0.472 0.481 0.508 0.503 0.483 0.489 0.485 0.494 0.494 0.472 0.481 0.477 0.489 0.497
2 0.482 0.482 0.484 0.500 0.508 0.470 0.471 0.472 0.503 0.516 0.483 0.483 0.483 0.498 0.510 0.469 0.472 0.472 0.503 0.517
3 0.484 0.484 0.502 0.510 0.515 0.474 0.470 0.498 0.519 0.530 0.484 0.483 0.484 0.492 0.508 0.469 0.468 0.472 0.488 0.512

SA

MLP128
TM

1 0.511 0.525 0.609 0.581 0.602 0.515 0.523 0.653 0.607 0.647 0.518 0.530 0.539 0.596 0.612 0.515 0.524 0.532 0.624 0.657
2 0.523 0.558 0.595 0.646 0.564 0.514 0.570 0.628 0.721 0.578 0.509 0.625 0.575 0.628 0.591 0.496 0.684 0.604 0.684 0.634
3 0.582 0.611 0.614 0.610 0.587 0.613 0.674 0.660 0.646 0.624 0.531 0.570 0.570 0.597 0.566 0.530 0.591 0.603 0.632 0.606

MLP32
TM

1 0.497 0.507 0.524 0.560 0.513 0.494 0.503 0.525 0.571 0.507 0.497 0.498 0.524 0.554 0.589 0.494 0.491 0.530 0.572 0.615
2 0.527 0.495 0.573 0.547 0.572 0.533 0.483 0.601 0.572 0.589 0.537 0.488 0.571 0.615 0.566 0.558 0.479 0.611 0.654 0.607
3 0.505 0.489 0.581 0.637 0.597 0.500 0.478 0.610 0.722 0.642 0.509 0.500 0.572 0.634 0.541 0.506 0.495 0.603 0.697 0.554

MLP64
TM

1 0.520 0.501 0.534 0.581 0.590 0.537 0.494 0.534 0.611 0.628 0.513 0.503 0.514 0.597 0.638 0.518 0.490 0.503 0.634 0.736
2 0.503 0.525 0.631 0.603 0.556 0.497 0.529 0.702 0.637 0.565 0.506 0.535 0.584 0.566 0.599 0.499 0.533 0.615 0.580 0.650
3 0.490 0.546 0.536 0.636 0.647 0.472 0.549 0.524 0.722 0.717 0.513 0.573 0.628 0.568 0.589 0.507 0.600 0.690 0.599 0.629

No Mixing
1 0.471 0.471 0.473 0.478 0.495 0.456 0.454 0.457 0.459 0.485 0.473 0.472 0.474 0.499 0.497 0.458 0.455 0.460 0.489 0.490
2 0.471 0.472 0.479 0.485 0.496 0.454 0.454 0.462 0.472 0.490 0.477 0.475 0.479 0.481 0.497 0.466 0.459 0.461 0.462 0.485
3 0.469 0.475 0.473 0.479 0.484 0.451 0.456 0.454 0.464 0.470 0.475 0.478 0.493 0.480 0.487 0.461 0.460 0.480 0.458 0.477

SA
1 0.476 0.469 0.471 0.493 0.546 0.463 0.451 0.454 0.484 0.587 0.477 0.483 0.484 0.532 0.531 0.462 0.472 0.467 0.538 0.561
2 0.471 0.499 0.499 0.529 0.582 0.452 0.488 0.490 0.522 0.619 0.475 0.488 0.539 0.565 0.543 0.461 0.474 0.542 0.587 0.561
3 0.475 0.473 0.500 0.521 0.572 0.457 0.451 0.481 0.501 0.607 0.496 0.482 0.541 0.608 0.570 0.490 0.469 0.549 0.657 0.612

Table A.6: Raw experiment results for Lin = 512 and T = 192 on ETTh1 dataset.
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TP No Processing TokenMLP
Metric MAE MSE MAE MSE
d 32 64 128 256 512 32 64 128 256 512 32 64 128 256 512 32 64 128 256 512

VM TM nlayers

MLP128
TM

MLP128
TM

1 0.546 0.564 0.611 0.647 0.622 0.561 0.599 0.678 0.731 0.685 0.562 0.639 0.623 0.639 0.656 0.589 0.721 0.691 0.716 0.756
2 0.553 0.583 0.594 0.592 0.597 0.577 0.620 0.624 0.633 0.631 0.560 0.589 0.598 0.616 0.599 0.581 0.642 0.648 0.680 0.657
3 0.554 0.562 0.583 0.581 0.597 0.575 0.587 0.621 0.612 0.642 0.558 0.564 0.579 0.597 0.581 0.583 0.586 0.623 0.662 0.627

No Mixing
1 0.496 0.503 0.504 0.511 0.522 0.489 0.505 0.517 0.520 0.548 0.498 0.494 0.501 0.510 0.537 0.487 0.481 0.495 0.513 0.567
2 0.496 0.500 0.495 0.496 0.506 0.488 0.495 0.487 0.489 0.502 0.501 0.505 0.520 0.525 0.552 0.490 0.496 0.515 0.525 0.569
3 0.495 0.494 0.502 0.515 0.521 0.484 0.488 0.496 0.520 0.533 0.500 0.507 0.514 0.521 0.561 0.483 0.494 0.502 0.522 0.584

SA
1 0.508 0.510 0.509 0.513 0.521 0.497 0.504 0.507 0.520 0.535 0.507 0.502 0.505 0.514 0.541 0.496 0.494 0.503 0.518 0.573
2 0.506 0.517 0.514 0.514 0.527 0.494 0.515 0.514 0.517 0.540 0.512 0.508 0.517 0.525 0.538 0.504 0.499 0.523 0.543 0.554
3 0.520 0.516 0.513 0.552 0.574 0.520 0.511 0.511 0.574 0.614 0.512 0.518 0.519 0.524 0.546 0.503 0.517 0.523 0.535 0.569

MLP32
TM

MLP32
TM

1 0.532 0.547 0.557 0.570 0.632 0.546 0.570 0.587 0.627 0.706 0.542 0.541 0.577 0.626 0.647 0.564 0.558 0.635 0.693 0.732
2 0.543 0.524 0.588 0.572 0.572 0.569 0.535 0.633 0.585 0.587 0.541 0.564 0.561 0.578 0.595 0.554 0.598 0.582 0.607 0.645
3 0.540 0.558 0.544 0.609 0.601 0.561 0.591 0.569 0.679 0.655 0.530 0.566 0.572 0.558 0.592 0.538 0.600 0.593 0.580 0.638

No Mixing
1 0.501 0.501 0.501 0.513 0.526 0.498 0.501 0.501 0.513 0.548 0.495 0.496 0.501 0.511 0.515 0.485 0.489 0.496 0.514 0.524
2 0.497 0.501 0.502 0.509 0.515 0.487 0.497 0.501 0.511 0.529 0.501 0.504 0.518 0.511 0.533 0.488 0.491 0.520 0.505 0.547
3 0.500 0.509 0.506 0.506 0.526 0.488 0.502 0.503 0.502 0.551 0.499 0.513 0.514 0.529 0.542 0.485 0.505 0.503 0.533 0.558

SA
1 0.504 0.510 0.507 0.513 0.571 0.495 0.505 0.508 0.515 0.592 0.506 0.515 0.507 0.504 0.536 0.496 0.518 0.503 0.509 0.561
2 0.511 0.504 0.505 0.526 0.549 0.502 0.492 0.492 0.529 0.570 0.509 0.510 0.518 0.527 0.561 0.500 0.506 0.516 0.537 0.609
3 0.506 0.506 0.517 0.522 0.536 0.494 0.495 0.514 0.525 0.552 0.509 0.515 0.512 0.538 0.569 0.500 0.508 0.516 0.562 0.622

MLP64
TM

MLP64
TM

1 0.538 0.557 0.578 0.643 0.648 0.552 0.589 0.619 0.733 0.725 0.555 0.571 0.605 0.646 0.651 0.579 0.610 0.668 0.750 0.760
2 0.534 0.554 0.591 0.572 0.593 0.547 0.580 0.625 0.593 0.634 0.555 0.579 0.584 0.607 0.619 0.583 0.609 0.626 0.666 0.690
3 0.544 0.543 0.578 0.567 0.591 0.568 0.557 0.611 0.590 0.626 0.535 0.564 0.567 0.567 0.573 0.537 0.586 0.592 0.600 0.609

No Mixing
1 0.497 0.498 0.510 0.503 0.517 0.493 0.493 0.527 0.510 0.531 0.495 0.500 0.507 0.506 0.526 0.482 0.492 0.501 0.505 0.544
2 0.495 0.492 0.492 0.507 0.512 0.486 0.484 0.481 0.507 0.532 0.497 0.498 0.513 0.507 0.528 0.485 0.486 0.510 0.502 0.539
3 0.499 0.500 0.495 0.511 0.524 0.486 0.496 0.484 0.519 0.535 0.503 0.499 0.513 0.519 0.523 0.486 0.485 0.506 0.519 0.527

SA
1 0.510 0.506 0.505 0.512 0.564 0.506 0.500 0.498 0.520 0.582 0.508 0.502 0.505 0.516 0.550 0.498 0.492 0.497 0.523 0.563
2 0.505 0.514 0.513 0.535 0.532 0.493 0.510 0.514 0.552 0.555 0.505 0.513 0.521 0.526 0.532 0.491 0.504 0.530 0.546 0.554
3 0.516 0.511 0.519 0.522 0.568 0.509 0.504 0.524 0.524 0.604 0.513 0.523 0.517 0.534 0.581 0.508 0.524 0.521 0.551 0.638

No Mixing

MLP128
TM

1 0.588 0.595 0.647 0.659 0.644 0.644 0.648 0.712 0.743 0.718 0.586 0.625 0.618 0.656 0.713 0.622 0.702 0.670 0.726 0.857
2 0.607 0.631 0.654 0.669 0.686 0.676 0.685 0.736 0.779 0.808 0.599 0.642 0.632 0.667 0.715 0.661 0.732 0.706 0.759 0.859
3 0.653 0.622 0.657 0.663 0.701 0.741 0.670 0.741 0.773 0.837 0.611 0.629 0.652 0.632 0.688 0.680 0.694 0.732 0.694 0.804

MLP32
TM

1 0.598 0.592 0.617 0.635 0.636 0.668 0.638 0.693 0.707 0.711 0.569 0.592 0.614 0.745 0.674 0.604 0.637 0.670 0.935 0.773
2 0.593 0.605 0.622 0.642 0.642 0.651 0.670 0.677 0.722 0.721 0.577 0.567 0.609 0.676 0.675 0.609 0.585 0.683 0.805 0.788
3 0.595 0.627 0.658 0.667 0.703 0.648 0.695 0.757 0.765 0.874 0.566 0.597 0.682 0.650 0.750 0.595 0.639 0.800 0.749 0.949

MLP64
TM

1 0.577 0.599 0.654 0.637 0.645 0.622 0.663 0.728 0.706 0.704 0.570 0.608 0.610 0.649 0.671 0.594 0.667 0.640 0.735 0.770
2 0.586 0.623 0.636 0.675 0.668 0.634 0.682 0.698 0.777 0.783 0.594 0.634 0.615 0.634 0.679 0.631 0.700 0.666 0.699 0.791
3 0.584 0.629 0.637 0.672 0.675 0.620 0.701 0.695 0.800 0.791 0.596 0.597 0.630 0.683 0.701 0.647 0.644 0.691 0.801 0.823

No Mixing
1 0.517 0.515 0.515 0.515 0.541 0.519 0.517 0.521 0.522 0.569 0.506 0.501 0.508 0.505 0.521 0.503 0.498 0.510 0.504 0.537
2 0.515 0.514 0.518 0.531 0.525 0.516 0.518 0.525 0.556 0.541 0.506 0.511 0.504 0.507 0.527 0.502 0.512 0.502 0.508 0.541
3 0.515 0.511 0.514 0.517 0.525 0.518 0.515 0.519 0.526 0.538 0.505 0.505 0.503 0.503 0.511 0.502 0.501 0.501 0.503 0.519

SA
1 0.513 0.516 0.524 0.519 0.532 0.512 0.519 0.528 0.530 0.554 0.510 0.517 0.519 0.514 0.529 0.506 0.517 0.524 0.512 0.549
2 0.512 0.513 0.520 0.553 0.539 0.509 0.512 0.530 0.591 0.573 0.513 0.512 0.512 0.517 0.605 0.509 0.512 0.512 0.519 0.699
3 0.518 0.510 0.519 0.541 0.557 0.516 0.508 0.523 0.566 0.595 0.514 0.519 0.534 0.548 0.567 0.512 0.524 0.551 0.572 0.611

SA

MLP128
TM

1 0.556 0.624 0.660 0.660 0.616 0.566 0.668 0.737 0.754 0.654 0.571 0.627 0.636 0.629 0.622 0.588 0.671 0.697 0.677 0.677
2 0.608 0.606 0.622 0.658 0.625 0.647 0.638 0.664 0.743 0.666 0.583 0.623 0.636 0.662 0.606 0.619 0.679 0.698 0.752 0.644
3 0.601 0.625 0.635 0.627 0.654 0.646 0.667 0.690 0.677 0.742 0.614 0.629 0.651 0.608 0.631 0.658 0.672 0.730 0.647 0.701

MLP32
TM

1 0.564 0.561 0.613 0.677 0.672 0.600 0.581 0.663 0.767 0.790 0.544 0.559 0.650 0.682 0.638 0.562 0.571 0.728 0.778 0.715
2 0.564 0.551 0.657 0.652 0.653 0.597 0.555 0.755 0.731 0.722 0.568 0.604 0.614 0.592 0.678 0.581 0.638 0.650 0.631 0.786
3 0.560 0.642 0.600 0.657 0.615 0.587 0.709 0.650 0.722 0.667 0.557 0.571 0.662 0.638 0.623 0.575 0.595 0.751 0.704 0.681

MLP64
TM

1 0.551 0.579 0.630 0.595 0.645 0.566 0.620 0.685 0.625 0.706 0.558 0.571 0.623 0.628 0.674 0.578 0.587 0.666 0.670 0.763
2 0.555 0.662 0.653 0.694 0.623 0.561 0.748 0.715 0.818 0.679 0.572 0.600 0.667 0.613 0.671 0.592 0.639 0.750 0.655 0.769
3 0.639 0.615 0.606 0.620 0.640 0.707 0.666 0.639 0.681 0.708 0.598 0.621 0.642 0.620 0.651 0.638 0.688 0.719 0.664 0.730

No Mixing
1 0.502 0.500 0.515 0.526 0.511 0.498 0.496 0.515 0.534 0.510 0.502 0.514 0.526 0.534 0.518 0.499 0.510 0.523 0.537 0.511
2 0.495 0.504 0.510 0.514 0.524 0.490 0.498 0.505 0.509 0.521 0.506 0.518 0.524 0.541 0.518 0.501 0.512 0.520 0.545 0.514
3 0.498 0.497 0.508 0.518 0.540 0.496 0.491 0.503 0.515 0.559 0.510 0.507 0.540 0.524 0.522 0.506 0.502 0.544 0.520 0.533

SA
1 0.502 0.531 0.586 0.602 0.589 0.496 0.533 0.610 0.633 0.653 0.507 0.584 0.616 0.675 0.673 0.501 0.615 0.650 0.783 0.776
2 0.510 0.523 0.604 0.613 0.617 0.502 0.518 0.624 0.668 0.697 0.511 0.610 0.636 0.577 0.641 0.506 0.674 0.713 0.614 0.736
3 0.506 0.510 0.643 0.613 0.673 0.501 0.503 0.715 0.664 0.805 0.510 0.505 0.665 0.543 0.603 0.508 0.496 0.766 0.550 0.648

Table A.7: Raw experiment results for Lin = 512 and T = 336 on ETTh1 dataset.
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TP No Processing TokenMLP
Metric MAE MSE MAE MSE
d 32 64 128 256 512 32 64 128 256 512 32 64 128 256 512 32 64 128 256 512

VM TM nlayers

MLP128
TM

MLP128
TM

1 0.578 0.639 0.655 0.681 0.692 0.615 0.735 0.746 0.818 0.827 0.616 0.706 0.694 0.743 0.777 0.674 0.860 0.823 0.944 1.012
2 0.589 0.662 0.651 0.645 0.622 0.641 0.755 0.741 0.712 0.673 0.617 0.681 0.655 0.647 0.657 0.690 0.798 0.738 0.728 0.752
3 0.604 0.624 0.644 0.607 0.610 0.659 0.711 0.722 0.662 0.664 0.622 0.654 0.637 0.618 0.621 0.685 0.771 0.728 0.693 0.692

No Mixing
1 0.523 0.523 0.524 0.526 0.539 0.530 0.527 0.539 0.543 0.562 0.529 0.533 0.536 0.549 0.566 0.528 0.540 0.550 0.564 0.602
2 0.527 0.522 0.521 0.525 0.531 0.529 0.525 0.520 0.529 0.536 0.529 0.531 0.568 0.563 0.564 0.528 0.534 0.594 0.585 0.590
3 0.523 0.534 0.536 0.541 0.563 0.520 0.546 0.550 0.561 0.607 0.530 0.538 0.550 0.598 0.595 0.529 0.542 0.558 0.639 0.633

SA
1 0.533 0.539 0.548 0.561 0.569 0.530 0.551 0.567 0.594 0.619 0.539 0.540 0.535 0.553 0.617 0.542 0.545 0.547 0.586 0.676
2 0.540 0.542 0.555 0.557 0.560 0.550 0.555 0.576 0.580 0.586 0.532 0.546 0.562 0.557 0.568 0.529 0.559 0.604 0.583 0.603
3 0.544 0.560 0.560 0.576 0.586 0.552 0.591 0.594 0.610 0.628 0.532 0.551 0.560 0.562 0.612 0.536 0.570 0.591 0.598 0.681

MLP32
TM

MLP32
TM

1 0.561 0.589 0.595 0.680 0.684 0.601 0.642 0.664 0.800 0.838 0.582 0.607 0.671 0.688 0.719 0.637 0.668 0.797 0.829 0.894
2 0.561 0.605 0.609 0.609 0.630 0.597 0.675 0.687 0.658 0.706 0.567 0.611 0.632 0.666 0.631 0.603 0.690 0.712 0.783 0.710
3 0.576 0.583 0.618 0.588 0.628 0.619 0.627 0.705 0.634 0.711 0.592 0.624 0.587 0.611 0.618 0.642 0.703 0.623 0.682 0.686

No Mixing
1 0.529 0.529 0.536 0.530 0.547 0.536 0.533 0.555 0.548 0.577 0.528 0.527 0.525 0.550 0.537 0.530 0.533 0.530 0.567 0.552
2 0.523 0.534 0.533 0.539 0.537 0.529 0.546 0.539 0.560 0.554 0.542 0.529 0.538 0.567 0.580 0.545 0.530 0.539 0.582 0.615
3 0.527 0.546 0.540 0.559 0.537 0.526 0.565 0.563 0.593 0.559 0.539 0.551 0.555 0.588 0.566 0.538 0.553 0.569 0.623 0.590

SA
1 0.538 0.527 0.537 0.562 0.555 0.545 0.529 0.545 0.589 0.575 0.535 0.535 0.532 0.552 0.551 0.537 0.539 0.541 0.587 0.576
2 0.534 0.539 0.537 0.553 0.573 0.536 0.544 0.538 0.569 0.627 0.561 0.547 0.549 0.559 0.603 0.589 0.560 0.566 0.599 0.686
3 0.540 0.550 0.575 0.562 0.659 0.551 0.564 0.609 0.601 0.796 0.544 0.542 0.572 0.585 0.636 0.557 0.559 0.608 0.630 0.763

MLP64
TM

MLP64
TM

1 0.575 0.614 0.676 0.686 0.713 0.621 0.687 0.799 0.819 0.870 0.587 0.669 0.703 0.714 0.709 0.646 0.775 0.848 0.864 0.856
2 0.577 0.593 0.637 0.605 0.618 0.619 0.649 0.738 0.660 0.694 0.583 0.652 0.681 0.653 0.637 0.625 0.753 0.794 0.759 0.709
3 0.574 0.598 0.625 0.610 0.607 0.616 0.659 0.709 0.658 0.654 0.600 0.649 0.628 0.617 0.618 0.655 0.758 0.724 0.685 0.682

No Mixing
1 0.529 0.522 0.525 0.531 0.533 0.535 0.526 0.532 0.549 0.551 0.525 0.534 0.529 0.548 0.547 0.523 0.543 0.534 0.560 0.567
2 0.523 0.523 0.536 0.528 0.545 0.525 0.525 0.552 0.535 0.571 0.545 0.529 0.533 0.550 0.573 0.549 0.527 0.534 0.563 0.600
3 0.524 0.528 0.539 0.543 0.559 0.528 0.531 0.559 0.559 0.604 0.540 0.549 0.555 0.592 0.603 0.538 0.553 0.564 0.629 0.652

SA
1 0.537 0.531 0.535 0.537 0.626 0.533 0.530 0.544 0.545 0.680 0.533 0.539 0.534 0.532 0.610 0.533 0.544 0.538 0.547 0.661
2 0.534 0.543 0.542 0.555 0.573 0.533 0.550 0.551 0.584 0.610 0.532 0.539 0.561 0.573 0.611 0.532 0.551 0.595 0.628 0.683
3 0.555 0.548 0.552 0.575 0.603 0.577 0.561 0.575 0.627 0.661 0.566 0.551 0.561 0.577 0.602 0.599 0.567 0.607 0.623 0.659

No Mixing

MLP128
TM

1 0.616 0.693 0.724 0.702 0.686 0.676 0.813 0.884 0.824 0.811 0.655 0.732 0.701 0.777 0.779 0.747 0.894 0.839 0.988 1.011
2 0.627 0.685 0.729 0.698 0.733 0.689 0.789 0.914 0.827 0.904 0.643 0.735 0.737 0.713 0.736 0.715 0.906 0.910 0.858 0.903
3 0.631 0.736 0.721 0.727 0.726 0.693 0.909 0.884 0.881 0.899 0.722 0.715 0.751 0.746 0.746 0.861 0.865 0.981 0.926 0.945

MLP32
TM

1 0.640 0.653 0.712 0.661 0.687 0.734 0.766 0.869 0.759 0.809 0.606 0.647 0.686 0.725 0.733 0.666 0.729 0.817 0.870 0.899
2 0.633 0.652 0.660 0.686 0.719 0.743 0.744 0.763 0.800 0.911 0.609 0.726 0.727 0.720 0.717 0.674 0.869 0.894 0.885 0.864
3 0.661 0.621 0.668 0.706 0.696 0.778 0.684 0.770 0.872 0.853 0.606 0.634 0.735 0.688 0.729 0.668 0.728 0.901 0.817 0.872

MLP64
TM

1 0.612 0.636 0.710 0.712 0.748 0.682 0.726 0.864 0.870 0.963 0.627 0.646 0.716 0.747 0.716 0.699 0.738 0.864 0.940 0.867
2 0.639 0.675 0.708 0.666 0.768 0.739 0.811 0.855 0.755 0.997 0.639 0.700 0.748 0.762 0.729 0.717 0.832 0.927 0.981 0.887
3 0.639 0.687 0.742 0.676 0.702 0.715 0.803 0.930 0.781 0.838 0.618 0.645 0.708 0.733 0.713 0.681 0.710 0.858 0.919 0.884

No Mixing
1 0.539 0.537 0.534 0.535 0.543 0.549 0.550 0.544 0.548 0.559 0.535 0.534 0.535 0.534 0.542 0.544 0.547 0.551 0.546 0.565
2 0.537 0.534 0.537 0.538 0.552 0.548 0.544 0.552 0.554 0.578 0.536 0.532 0.531 0.532 0.540 0.547 0.542 0.542 0.542 0.562
3 0.534 0.535 0.535 0.538 0.544 0.542 0.546 0.546 0.552 0.566 0.536 0.537 0.532 0.534 0.531 0.545 0.550 0.542 0.548 0.544

SA
1 0.543 0.545 0.544 0.555 0.548 0.557 0.560 0.560 0.582 0.566 0.543 0.542 0.555 0.594 0.555 0.555 0.559 0.583 0.654 0.583
2 0.547 0.545 0.552 0.559 0.587 0.559 0.560 0.574 0.588 0.642 0.542 0.539 0.538 0.611 0.732 0.555 0.549 0.551 0.680 0.948
3 0.542 0.548 0.561 0.554 0.569 0.550 0.567 0.593 0.578 0.603 0.544 0.539 0.641 0.748 0.869 0.558 0.550 0.734 0.993 1.277

SA

MLP128
TM

1 0.605 0.666 0.676 0.658 0.666 0.654 0.757 0.774 0.745 0.755 0.651 0.655 0.678 0.697 0.647 0.739 0.736 0.776 0.805 0.715
2 0.611 0.691 0.686 0.682 0.674 0.660 0.813 0.804 0.767 0.772 0.703 0.685 0.683 0.700 0.703 0.826 0.794 0.784 0.834 0.838
3 0.676 0.693 0.744 0.708 0.671 0.771 0.827 0.967 0.879 0.780 0.673 0.739 0.720 0.684 0.663 0.777 0.915 0.872 0.797 0.755

MLP32
TM

1 0.608 0.605 0.634 0.696 0.639 0.677 0.653 0.710 0.786 0.724 0.619 0.649 0.665 0.642 0.624 0.690 0.731 0.756 0.715 0.678
2 0.597 0.614 0.643 0.622 0.694 0.650 0.679 0.728 0.685 0.812 0.606 0.611 0.717 0.686 0.655 0.655 0.677 0.867 0.800 0.739
3 0.621 0.635 0.651 0.653 0.671 0.669 0.689 0.734 0.722 0.752 0.642 0.656 0.676 0.648 0.664 0.696 0.746 0.794 0.741 0.769

MLP64
TM

1 0.614 0.661 0.635 0.692 0.723 0.685 0.745 0.707 0.821 0.885 0.601 0.665 0.662 0.734 0.680 0.645 0.754 0.737 0.896 0.800
2 0.608 0.653 0.671 0.679 0.658 0.654 0.724 0.784 0.761 0.748 0.674 0.653 0.707 0.745 0.645 0.778 0.725 0.848 0.933 0.712
3 0.606 0.724 0.734 0.720 0.686 0.645 0.907 0.922 0.889 0.805 0.667 0.662 0.723 0.717 0.692 0.760 0.764 0.904 0.887 0.814

No Mixing
1 0.528 0.538 0.532 0.541 0.559 0.536 0.550 0.541 0.550 0.585 0.535 0.549 0.561 0.567 0.566 0.545 0.560 0.570 0.578 0.579
2 0.533 0.533 0.555 0.558 0.559 0.541 0.543 0.572 0.567 0.570 0.538 0.553 0.572 0.567 0.585 0.547 0.560 0.588 0.582 0.617
3 0.541 0.530 0.534 0.564 0.600 0.553 0.540 0.537 0.597 0.650 0.553 0.549 0.573 0.575 0.582 0.567 0.557 0.596 0.600 0.617

SA
1 0.534 0.542 0.781 0.634 0.589 0.541 0.548 1.039 0.708 0.643 0.549 0.673 0.796 0.777 0.619 0.559 0.749 1.034 1.020 0.669
2 0.548 0.610 0.682 0.745 0.660 0.554 0.645 0.782 0.930 0.762 0.530 0.639 0.665 0.709 0.674 0.539 0.695 0.756 0.874 0.809
3 0.533 0.531 0.789 0.587 0.661 0.535 0.536 1.018 0.636 0.759 0.540 0.564 0.800 0.703 0.639 0.551 0.589 1.173 0.829 0.739

Table A.8: Raw experiment results for Lin = 512 and T = 512 on ETTh1 dataset.
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MSE MAE MMaxError
T Time-Mixer Variate-Mixer Token-Processor

96

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.267± 0.005 0.364± 0.003 1.006± 0.008
TokenMLP 0.258± 0.008 0.360± 0.007 0.994± 0.012

No Mixing
No Processing 0.242± 0.006 0.339± 0.004 0.968± 0.010
TokenMLP 0.236± 0.002 0.335± 0.001 0.958± 0.002

Self-Attention
No Processing 0.240± 0.002 0.338± 0.002 0.972± 0.004
TokenMLP 0.246± 0.003 0.344± 0.002 0.976± 0.007

No Mixing

MLP Token-Mixer
No Processing 0.265± 0.004 0.365± 0.004 0.997± 0.005
TokenMLP 0.291± 0.014 0.383± 0.008 1.026± 0.014

No Mixing
No Processing 0.257± 0.004 0.355± 0.002 0.975± 0.006
TokenMLP 0.244± 0.007 0.339± 0.004 0.962± 0.013

Self-Attention
No Processing 0.251± 0.010 0.346± 0.007 0.975± 0.015
TokenMLP 0.245± 0.003 0.342± 0.002 0.965± 0.005

Self-Attention

MLP Token-Mixer
No Processing 0.264± 0.007 0.364± 0.005 1.003± 0.010
TokenMLP 0.287± 0.011 0.383± 0.008 1.032± 0.018

No Mixing
No Processing 0.238± 0.006 0.336± 0.004 0.954± 0.011
TokenMLP 0.239± 0.004 0.333± 0.002 0.953± 0.005

Self-Attention
No Processing 0.241± 0.005 0.339± 0.004 0.964± 0.006
TokenMLP 0.247± 0.007 0.345± 0.005 0.971± 0.011

192

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.359± 0.026 0.421± 0.011 1.203± 0.019
TokenMLP 0.480± 0.097 0.479± 0.043 1.284± 0.069

No Mixing
No Processing 0.305± 0.007 0.385± 0.004 1.159± 0.010
TokenMLP 0.295± 0.009 0.378± 0.006 1.141± 0.016

Self-Attention
No Processing 0.297± 0.003 0.384± 0.002 1.151± 0.006
TokenMLP 0.298± 0.003 0.383± 0.002 1.155± 0.005

No Mixing

MLP Token-Mixer
No Processing 0.508± 0.026 0.490± 0.010 1.300± 0.016
TokenMLP 0.443± 0.020 0.469± 0.010 1.259± 0.018

No Mixing
No Processing 0.312± 0.004 0.394± 0.002 1.157± 0.007
TokenMLP 0.301± 0.004 0.385± 0.002 1.146± 0.007

Self-Attention
No Processing 0.304± 0.003 0.386± 0.001 1.146± 0.006
TokenMLP 0.315± 0.010 0.392± 0.006 1.161± 0.015

Self-Attention

MLP Token-Mixer
No Processing 0.466± 0.037 0.466± 0.017 1.273± 0.025
TokenMLP 0.463± 0.050 0.469± 0.018 1.270± 0.028

No Mixing
No Processing 0.288± 0.003 0.374± 0.001 1.129± 0.003
TokenMLP 0.300± 0.012 0.381± 0.004 1.147± 0.017

Self-Attention
No Processing 0.302± 0.005 0.385± 0.003 1.150± 0.006
TokenMLP 0.299± 0.003 0.382± 0.002 1.143± 0.004

336

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.424± 0.018 0.463± 0.008 1.393± 0.011
TokenMLP 0.528± 0.042 0.517± 0.017 1.466± 0.029

No Mixing
No Processing 0.339± 0.006 0.414± 0.003 1.316± 0.011
TokenMLP 0.336± 0.007 0.412± 0.003 1.313± 0.012

Self-Attention
No Processing 0.348± 0.007 0.417± 0.004 1.327± 0.007
TokenMLP 0.341± 0.005 0.414± 0.002 1.326± 0.006

No Mixing

MLP Token-Mixer
No Processing 0.453± 0.035 0.478± 0.017 1.411± 0.021
TokenMLP 0.485± 0.054 0.496± 0.024 1.432± 0.031

No Mixing
No Processing 0.347± 0.002 0.419± 0.001 1.308± 0.003
TokenMLP 0.352± 0.007 0.419± 0.004 1.321± 0.010

Self-Attention
No Processing 0.348± 0.005 0.416± 0.003 1.314± 0.009
TokenMLP 0.357± 0.002 0.421± 0.001 1.320± 0.003

Self-Attention

MLP Token-Mixer
No Processing 0.467± 0.046 0.474± 0.019 1.409± 0.032
TokenMLP 0.479± 0.025 0.493± 0.010 1.424± 0.013

No Mixing
No Processing 0.334± 0.006 0.407± 0.002 1.296± 0.012
TokenMLP 0.339± 0.005 0.409± 0.002 1.305± 0.009

Self-Attention
No Processing 0.350± 0.005 0.417± 0.002 1.322± 0.007
TokenMLP 0.349± 0.004 0.415± 0.002 1.318± 0.004

512

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.601± 0.086 0.553± 0.030 1.614± 0.036
TokenMLP 0.518± 0.018 0.528± 0.008 1.584± 0.014

No Mixing
No Processing 0.370± 0.007 0.436± 0.004 1.442± 0.012
TokenMLP 0.372± 0.006 0.436± 0.004 1.442± 0.012

Self-Attention
No Processing 0.376± 0.002 0.438± 0.001 1.456± 0.006
TokenMLP 0.384± 0.005 0.442± 0.002 1.464± 0.006

No Mixing

MLP Token-Mixer
No Processing 0.508± 0.070 0.514± 0.030 1.568± 0.036
TokenMLP 0.559± 0.082 0.543± 0.035 1.596± 0.042

No Mixing
No Processing 0.375± 0.005 0.440± 0.002 1.438± 0.010
TokenMLP 0.385± 0.012 0.441± 0.006 1.444± 0.016

Self-Attention
No Processing 0.378± 0.013 0.436± 0.006 1.435± 0.020
TokenMLP 0.403± 0.014 0.451± 0.008 1.457± 0.012

Self-Attention

MLP Token-Mixer
No Processing 0.651± 0.058 0.547± 0.019 1.623± 0.037
TokenMLP 0.537± 0.043 0.529± 0.013 1.596± 0.015

No Mixing
No Processing 0.370± 0.004 0.431± 0.001 1.425± 0.006
TokenMLP 0.369± 0.004 0.431± 0.002 1.424± 0.008

Self-Attention
No Processing 0.387± 0.008 0.442± 0.003 1.447± 0.007
TokenMLP 0.391± 0.008 0.443± 0.004 1.447± 0.012

Table A.9: Errors for best models on ETTh2 dataset with Lin = 96 including standard
deviations for a total of five runs. Entries marked in red are the best result for each T and
entries marked in blue are the second best.
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MSE MAE MMaxError
T Time-Mixer Variate-Mixer Token-Processor

96

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.304± 0.066 0.387± 0.029 1.032± 0.048
TokenMLP 0.292± 0.029 0.385± 0.018 1.035± 0.029

No Mixing
No Processing 0.236± 0.002 0.347± 0.003 0.949± 0.004
TokenMLP 0.233± 0.003 0.340± 0.003 0.950± 0.007

Self-Attention
No Processing 0.240± 0.003 0.349± 0.004 0.956± 0.004
TokenMLP 0.236± 0.002 0.345± 0.003 0.952± 0.003

No Mixing

MLP Token-Mixer
No Processing 0.328± 0.043 0.405± 0.018 1.051± 0.037
TokenMLP 0.357± 0.048 0.419± 0.025 1.084± 0.031

No Mixing
No Processing 0.246± 0.004 0.361± 0.003 0.951± 0.007
TokenMLP 0.233± 0.003 0.345± 0.003 0.938± 0.008

Self-Attention
No Processing 0.230± 0.003 0.343± 0.004 0.934± 0.005
TokenMLP 0.232± 0.003 0.346± 0.005 0.932± 0.003

Self-Attention

MLP Token-Mixer
No Processing 0.313± 0.040 0.391± 0.021 1.035± 0.033
TokenMLP 0.320± 0.019 0.402± 0.009 1.051± 0.013

No Mixing
No Processing 0.225± 0.001 0.334± 0.001 0.932± 0.002
TokenMLP 0.228± 0.003 0.337± 0.002 0.939± 0.002

Self-Attention
No Processing 0.226± 0.003 0.335± 0.002 0.935± 0.007
TokenMLP 0.230± 0.003 0.339± 0.003 0.937± 0.005

192

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.534± 0.158 0.502± 0.056 1.344± 0.088
TokenMLP 0.330± 0.027 0.411± 0.014 1.196± 0.022

No Mixing
No Processing 0.275± 0.001 0.376± 0.001 1.112± 0.003
TokenMLP 0.291± 0.018 0.383± 0.006 1.126± 0.012

Self-Attention
No Processing 0.283± 0.004 0.380± 0.001 1.127± 0.007
TokenMLP 0.282± 0.006 0.379± 0.003 1.126± 0.009

No Mixing

MLP Token-Mixer
No Processing 0.472± 0.100 0.486± 0.048 1.311± 0.072
TokenMLP 0.452± 0.144 0.473± 0.062 1.294± 0.089

No Mixing
No Processing 0.281± 0.002 0.387± 0.002 1.105± 0.004
TokenMLP 0.274± 0.003 0.377± 0.001 1.096± 0.008

Self-Attention
No Processing 0.274± 0.005 0.376± 0.001 1.106± 0.012
TokenMLP 0.277± 0.002 0.383± 0.003 1.103± 0.005

Self-Attention

MLP Token-Mixer
No Processing 0.517± 0.118 0.510± 0.052 1.342± 0.083
TokenMLP 0.478± 0.057 0.497± 0.026 1.312± 0.041

No Mixing
No Processing 0.274± 0.003 0.373± 0.002 1.101± 0.004
TokenMLP 0.277± 0.001 0.374± 0.000 1.104± 0.001

Self-Attention
No Processing 0.274± 0.004 0.373± 0.003 1.102± 0.008
TokenMLP 0.287± 0.010 0.379± 0.006 1.111± 0.005

336

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.594± 0.131 0.558± 0.059 1.589± 0.091
TokenMLP 0.597± 0.090 0.568± 0.043 1.590± 0.064

No Mixing
No Processing 0.319± 0.007 0.406± 0.003 1.278± 0.006
TokenMLP 0.322± 0.012 0.405± 0.005 1.275± 0.003

Self-Attention
No Processing 0.328± 0.011 0.409± 0.006 1.292± 0.014
TokenMLP 0.332± 0.017 0.413± 0.009 1.294± 0.015

No Mixing

MLP Token-Mixer
No Processing 0.569± 0.025 0.556± 0.013 1.582± 0.020
TokenMLP 0.517± 0.067 0.535± 0.036 1.528± 0.063

No Mixing
No Processing 0.321± 0.005 0.414± 0.002 1.268± 0.019
TokenMLP 0.312± 0.002 0.405± 0.001 1.258± 0.005

Self-Attention
No Processing 0.317± 0.003 0.408± 0.001 1.265± 0.009
TokenMLP 0.367± 0.038 0.436± 0.022 1.310± 0.037

Self-Attention

MLP Token-Mixer
No Processing 0.517± 0.041 0.529± 0.017 1.504± 0.030
TokenMLP 0.508± 0.089 0.521± 0.043 1.481± 0.071

No Mixing
No Processing 0.317± 0.005 0.403± 0.003 1.258± 0.006
TokenMLP 0.315± 0.002 0.402± 0.001 1.255± 0.006

Self-Attention
No Processing 0.318± 0.005 0.404± 0.002 1.261± 0.007
TokenMLP 0.380± 0.024 0.440± 0.016 1.309± 0.021

512

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.644± 0.043 0.596± 0.022 1.762± 0.038
TokenMLP 0.673± 0.146 0.610± 0.068 1.751± 0.107

No Mixing
No Processing 0.378± 0.029 0.437± 0.009 1.431± 0.020
TokenMLP 0.345± 0.004 0.426± 0.002 1.399± 0.005

Self-Attention
No Processing 0.372± 0.019 0.439± 0.009 1.436± 0.020
TokenMLP 0.389± 0.027 0.446± 0.012 1.449± 0.024

No Mixing

MLP Token-Mixer
No Processing 0.723± 0.064 0.642± 0.028 1.803± 0.052
TokenMLP 0.721± 0.068 0.650± 0.034 1.799± 0.046

No Mixing
No Processing 0.355± 0.004 0.437± 0.001 1.396± 0.010
TokenMLP 0.346± 0.003 0.429± 0.002 1.394± 0.008

Self-Attention
No Processing 0.360± 0.006 0.436± 0.002 1.416± 0.008
TokenMLP 0.361± 0.007 0.435± 0.002 1.411± 0.007

Self-Attention

MLP Token-Mixer
No Processing 0.624± 0.092 0.586± 0.053 1.687± 0.081
TokenMLP 0.657± 0.081 0.596± 0.033 1.705± 0.067

No Mixing
No Processing 0.345± 0.004 0.426± 0.002 1.394± 0.007
TokenMLP 0.357± 0.016 0.430± 0.009 1.395± 0.007

Self-Attention
No Processing 0.429± 0.054 0.463± 0.024 1.454± 0.045
TokenMLP 0.454± 0.021 0.478± 0.010 1.477± 0.010

Table A.10: Errors for best models on ETTh2 dataset with Lin = 512 including standard
deviations for a total of five runs. Entries marked in red are the best result for each T and
entries marked in blue are the second best.
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96

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.384± 0.007 0.402± 0.004 1.250± 0.007
TokenMLP 0.385± 0.007 0.402± 0.004 1.252± 0.009

No Mixing
No Processing 0.351± 0.003 0.387± 0.002 1.213± 0.004
TokenMLP 0.345± 0.003 0.379± 0.002 1.198± 0.003

Self-Attention
No Processing 0.356± 0.002 0.391± 0.001 1.219± 0.004
TokenMLP 0.361± 0.012 0.399± 0.009 1.228± 0.014

No Mixing

MLP Token-Mixer
No Processing 0.400± 0.004 0.414± 0.003 1.270± 0.003
TokenMLP 0.384± 0.016 0.408± 0.008 1.260± 0.022

No Mixing
No Processing 0.379± 0.001 0.407± 0.001 1.261± 0.002
TokenMLP 0.359± 0.003 0.396± 0.002 1.215± 0.002

Self-Attention
No Processing 0.362± 0.002 0.397± 0.002 1.227± 0.003
TokenMLP 0.369± 0.003 0.403± 0.003 1.236± 0.002

Self-Attention

MLP Token-Mixer
No Processing 0.372± 0.008 0.398± 0.005 1.238± 0.008
TokenMLP 0.379± 0.011 0.401± 0.006 1.244± 0.014

No Mixing
No Processing 0.355± 0.002 0.388± 0.002 1.216± 0.003
TokenMLP 0.360± 0.003 0.392± 0.002 1.218± 0.006

Self-Attention
No Processing 0.356± 0.003 0.391± 0.003 1.217± 0.002
TokenMLP 0.365± 0.008 0.398± 0.007 1.226± 0.006

192

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.425± 0.007 0.428± 0.005 1.510± 0.009
TokenMLP 0.420± 0.005 0.424± 0.002 1.504± 0.011

No Mixing
No Processing 0.402± 0.006 0.417± 0.005 1.481± 0.006
TokenMLP 0.393± 0.002 0.411± 0.001 1.458± 0.003

Self-Attention
No Processing 0.394± 0.002 0.416± 0.002 1.469± 0.004
TokenMLP 0.398± 0.005 0.420± 0.004 1.477± 0.008

No Mixing

MLP Token-Mixer
No Processing 0.426± 0.010 0.431± 0.005 1.515± 0.013
TokenMLP 0.424± 0.006 0.431± 0.004 1.521± 0.009

No Mixing
No Processing 0.437± 0.000 0.434± 0.000 1.551± 0.001
TokenMLP 0.406± 0.002 0.418± 0.001 1.479± 0.003

Self-Attention
No Processing 0.415± 0.002 0.424± 0.003 1.498± 0.007
TokenMLP 0.413± 0.004 0.425± 0.003 1.489± 0.003

Self-Attention

MLP Token-Mixer
No Processing 0.414± 0.006 0.428± 0.003 1.495± 0.008
TokenMLP 0.416± 0.003 0.428± 0.003 1.497± 0.007

No Mixing
No Processing 0.408± 0.006 0.418± 0.004 1.472± 0.006
TokenMLP 0.405± 0.002 0.414± 0.002 1.475± 0.003

Self-Attention
No Processing 0.412± 0.002 0.424± 0.002 1.486± 0.004
TokenMLP 0.408± 0.004 0.418± 0.004 1.487± 0.006

336

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.466± 0.007 0.458± 0.004 1.727± 0.008
TokenMLP 0.468± 0.011 0.459± 0.005 1.723± 0.014

No Mixing
No Processing 0.445± 0.005 0.444± 0.003 1.696± 0.010
TokenMLP 0.444± 0.003 0.446± 0.002 1.685± 0.004

Self-Attention
No Processing 0.443± 0.004 0.448± 0.003 1.688± 0.006
TokenMLP 0.451± 0.007 0.454± 0.006 1.702± 0.006

No Mixing

MLP Token-Mixer
No Processing 0.476± 0.012 0.464± 0.004 1.739± 0.020
TokenMLP 0.476± 0.007 0.461± 0.004 1.764± 0.010

No Mixing
No Processing 0.502± 0.005 0.466± 0.001 1.818± 0.009
TokenMLP 0.460± 0.002 0.450± 0.002 1.710± 0.002

Self-Attention
No Processing 0.461± 0.005 0.449± 0.004 1.722± 0.008
TokenMLP 0.463± 0.003 0.453± 0.002 1.715± 0.006

Self-Attention

MLP Token-Mixer
No Processing 0.466± 0.005 0.458± 0.003 1.727± 0.008
TokenMLP 0.509± 0.023 0.481± 0.012 1.773± 0.023

No Mixing
No Processing 0.459± 0.005 0.449± 0.003 1.700± 0.003
TokenMLP 0.458± 0.006 0.447± 0.004 1.698± 0.007

Self-Attention
No Processing 0.461± 0.002 0.449± 0.002 1.710± 0.004
TokenMLP 0.471± 0.006 0.460± 0.004 1.721± 0.009

512

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.491± 0.003 0.475± 0.003 1.880± 0.009
TokenMLP 0.501± 0.007 0.485± 0.005 1.877± 0.012

No Mixing
No Processing 0.474± 0.003 0.463± 0.001 1.854± 0.009
TokenMLP 0.471± 0.004 0.466± 0.003 1.837± 0.007

Self-Attention
No Processing 0.480± 0.005 0.473± 0.004 1.854± 0.010
TokenMLP 0.478± 0.007 0.472± 0.004 1.848± 0.012

No Mixing

MLP Token-Mixer
No Processing 0.507± 0.007 0.487± 0.006 1.899± 0.007
TokenMLP 0.509± 0.008 0.484± 0.005 1.917± 0.016

No Mixing
No Processing 0.540± 0.002 0.488± 0.001 2.006± 0.005
TokenMLP 0.498± 0.002 0.473± 0.002 1.885± 0.004

Self-Attention
No Processing 0.494± 0.002 0.469± 0.001 1.891± 0.006
TokenMLP 0.496± 0.003 0.474± 0.002 1.889± 0.006

Self-Attention

MLP Token-Mixer
No Processing 0.514± 0.005 0.488± 0.003 1.904± 0.008
TokenMLP 0.515± 0.006 0.486± 0.004 1.901± 0.011

No Mixing
No Processing 0.487± 0.002 0.465± 0.002 1.863± 0.004
TokenMLP 0.493± 0.006 0.471± 0.006 1.871± 0.007

Self-Attention
No Processing 0.501± 0.005 0.477± 0.005 1.884± 0.005
TokenMLP 0.502± 0.006 0.476± 0.006 1.888± 0.005

Table A.11: Errors for best models on ETTm1 dataset with Lin = 96 including standard
deviations for a total of five runs. Entries marked in red are the best result for each T and
entries marked in blue are the second best.
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96

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.318± 0.004 0.381± 0.002 1.182± 0.006
TokenMLP 0.315± 0.004 0.375± 0.004 1.178± 0.004

No Mixing
No Processing 0.303± 0.000 0.364± 0.001 1.161± 0.001
TokenMLP 0.306± 0.002 0.365± 0.002 1.160± 0.001

Self-Attention
No Processing 0.310± 0.002 0.372± 0.002 1.164± 0.002
TokenMLP 0.310± 0.001 0.372± 0.001 1.167± 0.000

No Mixing

MLP Token-Mixer
No Processing 0.325± 0.003 0.385± 0.003 1.193± 0.006
TokenMLP 0.335± 0.004 0.393± 0.002 1.202± 0.006

No Mixing
No Processing 0.368± 0.001 0.408± 0.001 1.235± 0.002
TokenMLP 0.342± 0.007 0.395± 0.006 1.200± 0.005

Self-Attention
No Processing 0.340± 0.004 0.392± 0.002 1.196± 0.004
TokenMLP 0.336± 0.002 0.389± 0.001 1.193± 0.004

Self-Attention

MLP Token-Mixer
No Processing 0.334± 0.009 0.388± 0.006 1.204± 0.009
TokenMLP 0.323± 0.004 0.378± 0.003 1.192± 0.006

No Mixing
No Processing 0.314± 0.002 0.373± 0.002 1.172± 0.003
TokenMLP 0.314± 0.004 0.371± 0.002 1.175± 0.004

Self-Attention
No Processing 0.323± 0.008 0.382± 0.003 1.182± 0.011
TokenMLP 0.321± 0.003 0.378± 0.003 1.180± 0.006

192

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.359± 0.005 0.409± 0.003 1.416± 0.003
TokenMLP 0.353± 0.003 0.406± 0.002 1.404± 0.006

No Mixing
No Processing 0.356± 0.004 0.399± 0.002 1.420± 0.005
TokenMLP 0.353± 0.003 0.397± 0.002 1.405± 0.002

Self-Attention
No Processing 0.356± 0.005 0.402± 0.003 1.414± 0.006
TokenMLP 0.352± 0.004 0.400± 0.002 1.406± 0.004

No Mixing

MLP Token-Mixer
No Processing 0.374± 0.005 0.420± 0.002 1.443± 0.012
TokenMLP 0.385± 0.006 0.429± 0.005 1.450± 0.010

No Mixing
No Processing 0.416± 0.002 0.433± 0.001 1.508± 0.003
TokenMLP 0.380± 0.004 0.414± 0.004 1.447± 0.003

Self-Attention
No Processing 0.387± 0.002 0.416± 0.001 1.461± 0.005
TokenMLP 0.379± 0.000 0.414± 0.001 1.445± 0.002

Self-Attention

MLP Token-Mixer
No Processing 0.385± 0.013 0.416± 0.008 1.464± 0.019
TokenMLP 0.383± 0.010 0.417± 0.006 1.457± 0.014

No Mixing
No Processing 0.363± 0.002 0.401± 0.003 1.423± 0.003
TokenMLP 0.355± 0.002 0.396± 0.003 1.412± 0.003

Self-Attention
No Processing 0.371± 0.004 0.411± 0.004 1.428± 0.003
TokenMLP 0.377± 0.004 0.413± 0.004 1.440± 0.010

336

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.406± 0.006 0.441± 0.006 1.616± 0.006
TokenMLP 0.406± 0.004 0.444± 0.003 1.614± 0.010

No Mixing
No Processing 0.390± 0.003 0.424± 0.003 1.598± 0.004
TokenMLP 0.392± 0.002 0.424± 0.001 1.602± 0.005

Self-Attention
No Processing 0.394± 0.002 0.427± 0.000 1.606± 0.007
TokenMLP 0.393± 0.004 0.427± 0.003 1.602± 0.007

No Mixing

MLP Token-Mixer
No Processing 0.423± 0.015 0.449± 0.011 1.657± 0.022
TokenMLP 0.440± 0.018 0.463± 0.011 1.669± 0.020

No Mixing
No Processing 0.462± 0.002 0.455± 0.001 1.736± 0.004
TokenMLP 0.419± 0.001 0.437± 0.002 1.648± 0.002

Self-Attention
No Processing 0.427± 0.003 0.443± 0.002 1.670± 0.004
TokenMLP 0.421± 0.005 0.440± 0.003 1.656± 0.005

Self-Attention

MLP Token-Mixer
No Processing 0.500± 0.059 0.481± 0.031 1.752± 0.067
TokenMLP 0.469± 0.027 0.464± 0.017 1.720± 0.036

No Mixing
No Processing 0.405± 0.004 0.426± 0.001 1.627± 0.010
TokenMLP 0.402± 0.004 0.421± 0.002 1.626± 0.009

Self-Attention
No Processing 0.415± 0.003 0.434± 0.004 1.636± 0.004
TokenMLP 0.412± 0.004 0.431± 0.004 1.636± 0.004

512

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.447± 0.006 0.464± 0.005 1.794± 0.010
TokenMLP 0.451± 0.007 0.470± 0.007 1.794± 0.007

No Mixing
No Processing 0.418± 0.004 0.443± 0.003 1.752± 0.005
TokenMLP 0.420± 0.003 0.444± 0.002 1.748± 0.007

Self-Attention
No Processing 0.418± 0.001 0.444± 0.001 1.748± 0.006
TokenMLP 0.422± 0.004 0.445± 0.003 1.765± 0.009

No Mixing

MLP Token-Mixer
No Processing 0.480± 0.012 0.488± 0.008 1.847± 0.009
TokenMLP 0.503± 0.009 0.500± 0.005 1.854± 0.019

No Mixing
No Processing 0.490± 0.002 0.471± 0.000 1.898± 0.006
TokenMLP 0.451± 0.003 0.456± 0.003 1.801± 0.003

Self-Attention
No Processing 0.457± 0.003 0.457± 0.001 1.831± 0.012
TokenMLP 0.455± 0.002 0.460± 0.003 1.817± 0.008

Self-Attention

MLP Token-Mixer
No Processing 0.504± 0.030 0.487± 0.018 1.889± 0.029
TokenMLP 0.553± 0.026 0.507± 0.015 1.956± 0.021

No Mixing
No Processing 0.433± 0.003 0.445± 0.003 1.780± 0.007
TokenMLP 0.436± 0.003 0.442± 0.002 1.787± 0.004

Self-Attention
No Processing 0.456± 0.009 0.463± 0.008 1.803± 0.008
TokenMLP 0.452± 0.007 0.453± 0.006 1.816± 0.019

Table A.12: Errors for best models on ETTm1 dataset with Lin = 512 including standard
deviations for a total of five runs. Entries marked in red are the best result for each T and
entries marked in blue are the second best.
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96

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.156± 0.005 0.265± 0.004 0.715± 0.006
TokenMLP 0.151± 0.003 0.260± 0.002 0.706± 0.005

No Mixing
No Processing 0.152± 0.009 0.259± 0.008 0.711± 0.015
TokenMLP 0.149± 0.004 0.256± 0.004 0.703± 0.008

Self-Attention
No Processing 0.149± 0.003 0.261± 0.003 0.705± 0.004
TokenMLP 0.148± 0.001 0.259± 0.002 0.708± 0.002

No Mixing

MLP Token-Mixer
No Processing 0.166± 0.001 0.273± 0.001 0.730± 0.004
TokenMLP 0.161± 0.003 0.268± 0.003 0.715± 0.005

No Mixing
No Processing 0.172± 0.002 0.283± 0.002 0.740± 0.006
TokenMLP 0.158± 0.003 0.263± 0.001 0.712± 0.005

Self-Attention
No Processing 0.162± 0.001 0.271± 0.001 0.727± 0.003
TokenMLP 0.158± 0.004 0.267± 0.003 0.718± 0.007

Self-Attention

MLP Token-Mixer
No Processing 0.157± 0.005 0.264± 0.005 0.714± 0.010
TokenMLP 0.180± 0.012 0.281± 0.006 0.743± 0.007

No Mixing
No Processing 0.152± 0.001 0.259± 0.001 0.706± 0.003
TokenMLP 0.150± 0.002 0.255± 0.001 0.701± 0.005

Self-Attention
No Processing 0.154± 0.002 0.263± 0.001 0.714± 0.004
TokenMLP 0.152± 0.003 0.263± 0.003 0.712± 0.005

192

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.226± 0.015 0.321± 0.008 0.903± 0.013
TokenMLP 0.215± 0.007 0.315± 0.006 0.883± 0.008

No Mixing
No Processing 0.199± 0.007 0.299± 0.005 0.867± 0.011
TokenMLP 0.196± 0.006 0.296± 0.005 0.865± 0.012

Self-Attention
No Processing 0.196± 0.003 0.301± 0.003 0.867± 0.006
TokenMLP 0.197± 0.004 0.301± 0.004 0.871± 0.008

No Mixing

MLP Token-Mixer
No Processing 0.276± 0.022 0.350± 0.010 0.945± 0.016
TokenMLP 0.223± 0.004 0.319± 0.004 0.889± 0.005

No Mixing
No Processing 0.215± 0.003 0.314± 0.002 0.887± 0.005
TokenMLP 0.209± 0.006 0.303± 0.004 0.878± 0.011

Self-Attention
No Processing 0.208± 0.004 0.310± 0.003 0.885± 0.009
TokenMLP 0.205± 0.004 0.305± 0.003 0.882± 0.008

Self-Attention

MLP Token-Mixer
No Processing 0.235± 0.009 0.326± 0.005 0.900± 0.011
TokenMLP 0.228± 0.007 0.323± 0.003 0.893± 0.008

No Mixing
No Processing 0.208± 0.007 0.302± 0.005 0.878± 0.012
TokenMLP 0.200± 0.002 0.297± 0.002 0.864± 0.004

Self-Attention
No Processing 0.207± 0.005 0.307± 0.004 0.879± 0.010
TokenMLP 0.217± 0.006 0.314± 0.004 0.895± 0.009

336

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.265± 0.007 0.362± 0.004 1.040± 0.005
TokenMLP 0.270± 0.010 0.367± 0.007 1.038± 0.009

No Mixing
No Processing 0.245± 0.012 0.336± 0.008 1.006± 0.019
TokenMLP 0.267± 0.013 0.350± 0.010 1.039± 0.017

Self-Attention
No Processing 0.241± 0.006 0.336± 0.004 1.011± 0.008
TokenMLP 0.237± 0.004 0.334± 0.003 1.003± 0.007

No Mixing

MLP Token-Mixer
No Processing 0.276± 0.011 0.367± 0.007 1.045± 0.011
TokenMLP 0.290± 0.005 0.375± 0.003 1.050± 0.003

No Mixing
No Processing 0.275± 0.021 0.360± 0.015 1.053± 0.034
TokenMLP 0.254± 0.009 0.340± 0.006 1.019± 0.013

Self-Attention
No Processing 0.247± 0.007 0.341± 0.004 1.011± 0.014
TokenMLP 0.248± 0.008 0.342± 0.005 1.009± 0.011

Self-Attention

MLP Token-Mixer
No Processing 0.326± 0.031 0.391± 0.021 1.097± 0.033
TokenMLP 0.322± 0.026 0.390± 0.012 1.088± 0.021

No Mixing
No Processing 0.245± 0.004 0.333± 0.003 1.000± 0.008
TokenMLP 0.247± 0.006 0.334± 0.004 1.004± 0.009

Self-Attention
No Processing 0.251± 0.009 0.342± 0.006 1.015± 0.010
TokenMLP 0.257± 0.012 0.347± 0.007 1.024± 0.014

512

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.341± 0.020 0.414± 0.010 1.187± 0.015
TokenMLP 0.329± 0.008 0.414± 0.007 1.181± 0.007

No Mixing
No Processing 0.291± 0.011 0.370± 0.006 1.137± 0.014
TokenMLP 0.276± 0.007 0.363± 0.006 1.124± 0.011

Self-Attention
No Processing 0.277± 0.005 0.365± 0.004 1.126± 0.007
TokenMLP 0.286± 0.005 0.369± 0.003 1.137± 0.005

No Mixing

MLP Token-Mixer
No Processing 0.334± 0.022 0.410± 0.013 1.177± 0.018
TokenMLP 0.340± 0.010 0.415± 0.005 1.188± 0.009

No Mixing
No Processing 0.305± 0.015 0.382± 0.011 1.157± 0.023
TokenMLP 0.292± 0.005 0.370± 0.003 1.137± 0.007

Self-Attention
No Processing 0.287± 0.005 0.371± 0.003 1.134± 0.006
TokenMLP 0.282± 0.006 0.367± 0.004 1.129± 0.008

Self-Attention

MLP Token-Mixer
No Processing 0.357± 0.017 0.417± 0.009 1.208± 0.017
TokenMLP 0.336± 0.013 0.414± 0.010 1.192± 0.014

No Mixing
No Processing 0.279± 0.006 0.359± 0.004 1.114± 0.007
TokenMLP 0.279± 0.004 0.360± 0.003 1.115± 0.007

Self-Attention
No Processing 0.299± 0.015 0.375± 0.008 1.138± 0.016
TokenMLP 0.285± 0.009 0.369± 0.005 1.126± 0.012

Table A.13: Errors for best models on ETTm2 dataset with Lin = 96 including standard
deviations for a total of five runs. Entries marked in red are the best result for each T and
entries marked in blue are the second best.
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MSE MAE MMaxError
T Time-Mixer Variate-Mixer Token-Processor

96

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.167± 0.005 0.284± 0.005 0.720± 0.007
TokenMLP 0.167± 0.006 0.281± 0.004 0.719± 0.009

No Mixing
No Processing 0.148± 0.001 0.260± 0.001 0.694± 0.003
TokenMLP 0.144± 0.001 0.256± 0.001 0.684± 0.002

Self-Attention
No Processing 0.151± 0.002 0.266± 0.002 0.696± 0.003
TokenMLP 0.152± 0.001 0.265± 0.002 0.700± 0.002

No Mixing

MLP Token-Mixer
No Processing 0.174± 0.005 0.291± 0.003 0.734± 0.008
TokenMLP 0.178± 0.004 0.293± 0.002 0.743± 0.004

No Mixing
No Processing 0.183± 0.002 0.301± 0.002 0.732± 0.004
TokenMLP 0.163± 0.009 0.276± 0.007 0.713± 0.018

Self-Attention
No Processing 0.168± 0.005 0.281± 0.004 0.726± 0.010
TokenMLP 0.166± 0.001 0.279± 0.002 0.716± 0.003

Self-Attention

MLP Token-Mixer
No Processing 0.193± 0.007 0.303± 0.005 0.765± 0.012
TokenMLP 0.190± 0.010 0.301± 0.009 0.750± 0.013

No Mixing
No Processing 0.144± 0.002 0.256± 0.002 0.687± 0.005
TokenMLP 0.147± 0.002 0.258± 0.001 0.690± 0.005

Self-Attention
No Processing 0.146± 0.002 0.260± 0.003 0.692± 0.003
TokenMLP 0.164± 0.007 0.274± 0.005 0.715± 0.009

192

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.239± 0.013 0.341± 0.006 0.902± 0.012
TokenMLP 0.236± 0.019 0.342± 0.013 0.906± 0.018

No Mixing
No Processing 0.192± 0.003 0.299± 0.002 0.851± 0.007
TokenMLP 0.190± 0.002 0.293± 0.002 0.843± 0.004

Self-Attention
No Processing 0.200± 0.004 0.311± 0.003 0.869± 0.009
TokenMLP 0.196± 0.004 0.304± 0.003 0.856± 0.005

No Mixing

MLP Token-Mixer
No Processing 0.239± 0.020 0.342± 0.015 0.909± 0.026
TokenMLP 0.243± 0.007 0.341± 0.004 0.912± 0.009

No Mixing
No Processing 0.215± 0.001 0.325± 0.001 0.863± 0.002
TokenMLP 0.202± 0.011 0.308± 0.006 0.866± 0.020

Self-Attention
No Processing 0.207± 0.009 0.312± 0.006 0.876± 0.017
TokenMLP 0.207± 0.003 0.313± 0.002 0.867± 0.005

Self-Attention

MLP Token-Mixer
No Processing 0.302± 0.023 0.371± 0.013 0.962± 0.021
TokenMLP 0.253± 0.007 0.351± 0.006 0.953± 0.012

No Mixing
No Processing 0.191± 0.003 0.295± 0.002 0.847± 0.006
TokenMLP 0.191± 0.002 0.294± 0.002 0.844± 0.004

Self-Attention
No Processing 0.204± 0.007 0.306± 0.005 0.859± 0.008
TokenMLP 0.202± 0.007 0.307± 0.005 0.857± 0.008

336

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.419± 0.079 0.445± 0.040 1.144± 0.050
TokenMLP 0.368± 0.016 0.422± 0.011 1.120± 0.012

No Mixing
No Processing 0.231± 0.004 0.330± 0.004 0.982± 0.007
TokenMLP 0.230± 0.004 0.327± 0.002 0.980± 0.006

Self-Attention
No Processing 0.235± 0.004 0.337± 0.003 0.985± 0.006
TokenMLP 0.235± 0.005 0.336± 0.003 0.989± 0.008

No Mixing

MLP Token-Mixer
No Processing 0.337± 0.019 0.400± 0.009 1.081± 0.014
TokenMLP 0.368± 0.068 0.415± 0.030 1.108± 0.051

No Mixing
No Processing 0.248± 0.002 0.349± 0.001 0.996± 0.006
TokenMLP 0.239± 0.006 0.338± 0.004 0.998± 0.010

Self-Attention
No Processing 0.239± 0.004 0.337± 0.003 0.996± 0.008
TokenMLP 0.260± 0.005 0.353± 0.005 1.017± 0.008

Self-Attention

MLP Token-Mixer
No Processing 0.352± 0.042 0.405± 0.019 1.100± 0.026
TokenMLP 0.357± 0.026 0.417± 0.015 1.165± 0.023

No Mixing
No Processing 0.231± 0.006 0.325± 0.003 0.980± 0.007
TokenMLP 0.235± 0.006 0.329± 0.003 0.982± 0.008

Self-Attention
No Processing 0.249± 0.012 0.344± 0.007 0.995± 0.012
TokenMLP 0.268± 0.010 0.358± 0.007 1.024± 0.010

512

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.510± 0.041 0.485± 0.016 1.292± 0.028
TokenMLP 0.581± 0.041 0.514± 0.014 1.333± 0.018

No Mixing
No Processing 0.265± 0.009 0.359± 0.006 1.101± 0.012
TokenMLP 0.271± 0.009 0.359± 0.004 1.109± 0.014

Self-Attention
No Processing 0.273± 0.005 0.364± 0.002 1.109± 0.007
TokenMLP 0.275± 0.006 0.369± 0.004 1.113± 0.010

No Mixing

MLP Token-Mixer
No Processing 0.575± 0.009 0.505± 0.002 1.320± 0.006
TokenMLP 0.587± 0.028 0.507± 0.013 1.355± 0.023

No Mixing
No Processing 0.271± 0.002 0.366± 0.001 1.096± 0.003
TokenMLP 0.273± 0.007 0.363± 0.005 1.118± 0.011

Self-Attention
No Processing 0.276± 0.007 0.364± 0.004 1.112± 0.012
TokenMLP 0.279± 0.005 0.368± 0.004 1.108± 0.006

Self-Attention

MLP Token-Mixer
No Processing 0.508± 0.047 0.475± 0.015 1.298± 0.031
TokenMLP 0.573± 0.082 0.500± 0.026 1.329± 0.044

No Mixing
No Processing 0.253± 0.001 0.348± 0.000 1.082± 0.002
TokenMLP 0.264± 0.002 0.352± 0.001 1.091± 0.004

Self-Attention
No Processing 0.298± 0.009 0.379± 0.005 1.122± 0.009
TokenMLP 0.295± 0.006 0.378± 0.004 1.124± 0.005

Table A.14: Errors for best models on ETTm2 dataset with Lin = 512 including standard
deviations for a total of five runs. Entries marked in red are the best result for each T and
entries marked in blue are the second best.
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MSE MAE MMaxError
T Time-Mixer Variate-Mixer Token-Processor

96

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.275± 0.006 0.252± 0.005 0.735± 0.009
TokenMLP 0.272± 0.005 0.254± 0.005 0.721± 0.008

No Mixing
No Processing 0.288± 0.004 0.263± 0.004 0.744± 0.005
TokenMLP 0.272± 0.001 0.248± 0.002 0.724± 0.002

Self-Attention
No Processing 0.269± 0.003 0.248± 0.001 0.720± 0.003
TokenMLP 0.271± 0.003 0.248± 0.003 0.724± 0.004

No Mixing

MLP Token-Mixer
No Processing 0.289± 0.001 0.273± 0.001 0.751± 0.001
TokenMLP 0.292± 0.006 0.276± 0.007 0.755± 0.008

No Mixing
No Processing 0.370± 0.001 0.328± 0.000 0.845± 0.001
TokenMLP 0.299± 0.004 0.277± 0.004 0.763± 0.007

Self-Attention
No Processing 0.309± 0.003 0.286± 0.005 0.771± 0.004
TokenMLP 0.300± 0.009 0.279± 0.008 0.760± 0.004

Self-Attention

MLP Token-Mixer
No Processing 0.276± 0.006 0.251± 0.003 0.729± 0.005
TokenMLP 0.266± 0.003 0.246± 0.003 0.716± 0.005

No Mixing
No Processing 0.278± 0.002 0.253± 0.003 0.732± 0.002
TokenMLP 0.276± 0.001 0.253± 0.002 0.731± 0.002

Self-Attention
No Processing 0.285± 0.002 0.260± 0.001 0.744± 0.003
TokenMLP 0.283± 0.005 0.258± 0.003 0.738± 0.004

192

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.327± 0.003 0.301± 0.003 0.993± 0.005
TokenMLP 0.319± 0.005 0.296± 0.003 0.984± 0.006

No Mixing
No Processing 0.330± 0.001 0.302± 0.001 0.988± 0.002
TokenMLP 0.319± 0.001 0.292± 0.001 0.984± 0.002

Self-Attention
No Processing 0.320± 0.001 0.296± 0.002 0.981± 0.004
TokenMLP 0.321± 0.002 0.297± 0.002 0.981± 0.002

No Mixing

MLP Token-Mixer
No Processing 0.341± 0.004 0.314± 0.004 1.012± 0.006
TokenMLP 0.339± 0.006 0.309± 0.005 1.016± 0.008

No Mixing
No Processing 0.422± 0.000 0.359± 0.000 1.111± 0.001
TokenMLP 0.339± 0.001 0.306± 0.002 1.012± 0.004

Self-Attention
No Processing 0.346± 0.002 0.315± 0.003 1.016± 0.002
TokenMLP 0.342± 0.003 0.311± 0.001 1.014± 0.003

Self-Attention

MLP Token-Mixer
No Processing 0.317± 0.005 0.291± 0.005 0.980± 0.007
TokenMLP 0.326± 0.010 0.299± 0.007 0.993± 0.011

No Mixing
No Processing 0.321± 0.002 0.290± 0.002 0.988± 0.004
TokenMLP 0.318± 0.002 0.287± 0.002 0.985± 0.002

Self-Attention
No Processing 0.332± 0.003 0.302± 0.003 1.005± 0.005
TokenMLP 0.326± 0.003 0.297± 0.003 0.996± 0.004

336

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.382± 0.007 0.342± 0.005 1.251± 0.008
TokenMLP 0.372± 0.002 0.337± 0.002 1.224± 0.002

No Mixing
No Processing 0.381± 0.001 0.339± 0.002 1.226± 0.003
TokenMLP 0.373± 0.001 0.334± 0.002 1.230± 0.002

Self-Attention
No Processing 0.374± 0.002 0.337± 0.002 1.224± 0.004
TokenMLP 0.377± 0.002 0.339± 0.002 1.231± 0.004

No Mixing

MLP Token-Mixer
No Processing 0.389± 0.004 0.349± 0.003 1.255± 0.007
TokenMLP 0.386± 0.005 0.347± 0.003 1.247± 0.006

No Mixing
No Processing 0.466± 0.001 0.387± 0.000 1.351± 0.001
TokenMLP 0.388± 0.002 0.342± 0.002 1.251± 0.001

Self-Attention
No Processing 0.397± 0.002 0.351± 0.002 1.255± 0.002
TokenMLP 0.395± 0.001 0.348± 0.003 1.256± 0.002

Self-Attention

MLP Token-Mixer
No Processing 0.382± 0.011 0.340± 0.007 1.243± 0.015
TokenMLP 0.370± 0.008 0.335± 0.007 1.221± 0.009

No Mixing
No Processing 0.375± 0.001 0.333± 0.004 1.240± 0.003
TokenMLP 0.371± 0.001 0.328± 0.001 1.238± 0.002

Self-Attention
No Processing 0.380± 0.002 0.338± 0.002 1.244± 0.003
TokenMLP 0.381± 0.003 0.340± 0.003 1.249± 0.004

512

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.430± 0.003 0.375± 0.003 1.460± 0.005
TokenMLP 0.425± 0.005 0.375± 0.003 1.447± 0.006

No Mixing
No Processing 0.436± 0.002 0.378± 0.005 1.451± 0.005
TokenMLP 0.429± 0.001 0.372± 0.002 1.459± 0.003

Self-Attention
No Processing 0.430± 0.002 0.375± 0.001 1.450± 0.003
TokenMLP 0.429± 0.003 0.376± 0.003 1.450± 0.005

No Mixing

MLP Token-Mixer
No Processing 0.439± 0.004 0.383± 0.003 1.472± 0.004
TokenMLP 0.433± 0.002 0.381± 0.001 1.461± 0.005

No Mixing
No Processing 0.511± 0.000 0.414± 0.000 1.574± 0.001
TokenMLP 0.435± 0.001 0.372± 0.002 1.476± 0.003

Self-Attention
No Processing 0.443± 0.002 0.384± 0.002 1.479± 0.003
TokenMLP 0.441± 0.001 0.380± 0.002 1.477± 0.003

Self-Attention

MLP Token-Mixer
No Processing 0.448± 0.014 0.385± 0.010 1.471± 0.017
TokenMLP 0.431± 0.011 0.376± 0.006 1.454± 0.014

No Mixing
No Processing 0.427± 0.001 0.370± 0.001 1.466± 0.003
TokenMLP 0.419± 0.002 0.362± 0.003 1.461± 0.006

Self-Attention
No Processing 0.430± 0.002 0.376± 0.004 1.462± 0.003
TokenMLP 0.431± 0.007 0.374± 0.006 1.480± 0.013

Table A.15: Errors for best models on weather dataset with Lin = 96 including standard
deviations for a total of five runs. Entries marked in red are the best result for each T and
entries marked in blue are the second best.
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MSE MAE MMaxError
T Time-Mixer Variate-Mixer Token-Processor

96

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.261± 0.002 0.248± 0.003 0.711± 0.002
TokenMLP 0.255± 0.001 0.245± 0.001 0.708± 0.002

No Mixing
No Processing 0.263± 0.003 0.249± 0.004 0.708± 0.007
TokenMLP 0.258± 0.002 0.244± 0.003 0.703± 0.003

Self-Attention
No Processing 0.258± 0.001 0.247± 0.002 0.705± 0.001
TokenMLP 0.260± 0.001 0.248± 0.003 0.716± 0.003

No Mixing

MLP Token-Mixer
No Processing 0.279± 0.002 0.273± 0.002 0.733± 0.003
TokenMLP 0.277± 0.002 0.270± 0.001 0.732± 0.004

No Mixing
No Processing 0.387± 0.001 0.364± 0.002 0.859± 0.003
TokenMLP 0.283± 0.002 0.274± 0.004 0.746± 0.004

Self-Attention
No Processing 0.290± 0.002 0.284± 0.002 0.756± 0.003
TokenMLP 0.283± 0.001 0.278± 0.003 0.745± 0.002

Self-Attention

MLP Token-Mixer
No Processing 0.262± 0.004 0.251± 0.003 0.717± 0.003
TokenMLP 0.270± 0.004 0.256± 0.003 0.728± 0.004

No Mixing
No Processing 0.261± 0.002 0.242± 0.002 0.710± 0.007
TokenMLP 0.260± 0.001 0.243± 0.002 0.721± 0.004

Self-Attention
No Processing 0.270± 0.001 0.256± 0.002 0.720± 0.002
TokenMLP 0.266± 0.002 0.252± 0.005 0.717± 0.005

192

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.310± 0.002 0.292± 0.001 0.972± 0.003
TokenMLP 0.316± 0.005 0.302± 0.005 0.982± 0.006

No Mixing
No Processing 0.312± 0.002 0.291± 0.002 0.960± 0.002
TokenMLP 0.308± 0.001 0.288± 0.001 0.963± 0.001

Self-Attention
No Processing 0.311± 0.003 0.292± 0.002 0.965± 0.004
TokenMLP 0.311± 0.002 0.293± 0.002 0.969± 0.006

No Mixing

MLP Token-Mixer
No Processing 0.326± 0.003 0.309± 0.003 0.974± 0.005
TokenMLP 0.340± 0.006 0.318± 0.003 1.005± 0.005

No Mixing
No Processing 0.417± 0.001 0.382± 0.001 1.094± 0.002
TokenMLP 0.329± 0.001 0.309± 0.002 0.993± 0.004

Self-Attention
No Processing 0.338± 0.002 0.321± 0.004 1.002± 0.003
TokenMLP 0.330± 0.001 0.309± 0.002 0.993± 0.002

Self-Attention

MLP Token-Mixer
No Processing 0.325± 0.013 0.304± 0.011 1.004± 0.018
TokenMLP 0.336± 0.016 0.314± 0.011 1.014± 0.023

No Mixing
No Processing 0.311± 0.001 0.289± 0.005 0.969± 0.003
TokenMLP 0.310± 0.002 0.287± 0.003 0.970± 0.005

Self-Attention
No Processing 0.323± 0.002 0.300± 0.002 0.973± 0.003
TokenMLP 0.320± 0.002 0.299± 0.004 0.976± 0.007

336

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.390± 0.012 0.356± 0.009 1.261± 0.013
TokenMLP 0.385± 0.008 0.358± 0.006 1.243± 0.009

No Mixing
No Processing 0.375± 0.002 0.340± 0.003 1.215± 0.002
TokenMLP 0.372± 0.002 0.338± 0.002 1.228± 0.003

Self-Attention
No Processing 0.377± 0.004 0.345± 0.003 1.227± 0.004
TokenMLP 0.376± 0.002 0.343± 0.002 1.231± 0.003

No Mixing

MLP Token-Mixer
No Processing 0.407± 0.010 0.361± 0.006 1.252± 0.010
TokenMLP 0.405± 0.005 0.367± 0.003 1.257± 0.004

No Mixing
No Processing 0.450± 0.001 0.402± 0.001 1.329± 0.001
TokenMLP 0.380± 0.001 0.346± 0.002 1.237± 0.003

Self-Attention
No Processing 0.391± 0.003 0.356± 0.004 1.249± 0.003
TokenMLP 0.382± 0.002 0.344± 0.001 1.240± 0.003

Self-Attention

MLP Token-Mixer
No Processing 0.425± 0.050 0.376± 0.035 1.312± 0.057
TokenMLP 0.477± 0.028 0.404± 0.015 1.337± 0.025

No Mixing
No Processing 0.364± 0.002 0.333± 0.003 1.205± 0.001
TokenMLP 0.368± 0.003 0.334± 0.005 1.221± 0.002

Self-Attention
No Processing 0.373± 0.002 0.340± 0.003 1.225± 0.003
TokenMLP 0.379± 0.003 0.347± 0.002 1.240± 0.003

512

MLP Token-Mixer

MLP Token-Mixer
No Processing 0.453± 0.023 0.400± 0.015 1.493± 0.018
TokenMLP 0.463± 0.011 0.407± 0.005 1.502± 0.010

No Mixing
No Processing 0.424± 0.002 0.377± 0.001 1.443± 0.003
TokenMLP 0.424± 0.001 0.376± 0.002 1.454± 0.001

Self-Attention
No Processing 0.423± 0.005 0.380± 0.003 1.449± 0.007
TokenMLP 0.452± 0.009 0.399± 0.006 1.500± 0.013

No Mixing

MLP Token-Mixer
No Processing 0.463± 0.009 0.399± 0.006 1.489± 0.010
TokenMLP 0.458± 0.010 0.401± 0.009 1.492± 0.012

No Mixing
No Processing 0.480± 0.001 0.421± 0.001 1.539± 0.002
TokenMLP 0.423± 0.002 0.374± 0.003 1.458± 0.002

Self-Attention
No Processing 0.432± 0.002 0.385± 0.003 1.468± 0.003
TokenMLP 0.427± 0.002 0.376± 0.004 1.467± 0.003

Self-Attention

MLP Token-Mixer
No Processing 0.516± 0.015 0.430± 0.008 1.530± 0.011
TokenMLP 0.480± 0.064 0.402± 0.033 1.524± 0.058

No Mixing
No Processing 0.408± 0.001 0.366± 0.001 1.427± 0.002
TokenMLP 0.414± 0.002 0.367± 0.003 1.442± 0.003

Self-Attention
No Processing 0.417± 0.002 0.370± 0.003 1.447± 0.004
TokenMLP 0.426± 0.010 0.378± 0.007 1.465± 0.015

Table A.16: Errors for best models on weather dataset with Lin = 512 including standard
deviations for a total of five runs. Entries marked in red are the best result for each T and
entries marked in blue are the second best.
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