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Abstract
We consider pessimistic bilevel stochastic programs in which the follower maximizes
over a fixed compact convex set a strictly convex quadratic function, whose Hessian
depends on the leader’s decision. This results in a random upper level outcome which
is evaluated by a convex risk measure. Under assumptions including real analyticity of
the lower-level goal function, we prove the existence of optimal solutions. We discuss
an alternate model, where the leader hedges against optimal lower-level solutions, and
show that solvability can be guaranteed under weaker conditions in both, a determinis-
tic and a stochastic setting. The approach is applied to amechanical shape optimization
problem in which the leader decides on an optimal material distribution to minimize
a tracking-type cost functional, whereas the follower chooses forces from an admis-
sible set to maximize a compliance objective. The material distribution is considered
to be stochastically perturbed in the actual construction phase. Computational results
illustrate the bilevel optimization concept and demonstrate the interplay of follower
and leader in shape design and testing.

Keywords Bilevel stochastic optimization · Pessimistic model · Shape optimization ·
Discrete shells

Mathematics Subject Classification 49J55 · 49M41 · 74K25 · 90C15 · 91A65

1 Introduction

Bilevel programs arise from the interplay of two decision makers on different levels
of a hierarchy: The leader decides first and passes the upper-level decision to the
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follower. Incorporating the leader’s decision as a parameter, the follower then returns
an optimal solution of the lower-level problem. The leader’s outcome depends on both,
their decision and the solution that is picked by the follower.While the first formulation
of a bilevel problem dates back to a monograph on duopoly market models published
in 1934 (cf. [37]), these problems have not received extensive attention until the 1970s
(for more details, we refer to [11]).

In this paper, we study a class of pessimistic bilevel stochastic programs, where
the lower level problem has a strictly convex quadratic objective function and a fixed
feasible set. As an application, we study a mechanical shape optimization problem in
which the leader (the designer) minimizes a tracking functional over the set of feasible
material distributions, whereas the follower (the test engineer) chooses forces from
an admissible set to maximize a compliance objective. The safety of the construc-
tion is then evaluated pessimistically with the choice of the worst possible response.
Randomness comes into play via manufacturing errors that stochastically perturb the
material parameters in the actual construction phase.

In what follows, let us briefly review related work.Bilevel programs are nonconvex,
nondifferentiable and NP-hard (non-deterministic polynomial-time-hard) [1]. More-
over, conceptual difficulties arise if the lower level problem has more than a single
optimal solution. In this setting, one typically considers the so-called optimistic for-
mulation, where cooperation of the follower is assumed, or takes a pessimistic stance
and hedges against the worst possible outcome [23]. It is well-known that pessimistic
bilevel programs have weaker analytical properties than their optimistic counterparts.
In general, the existence of optimal solutions to a pessimistic bilevel program can only
be assured under restrictive conditions including weak analyticity for the lower level
objective function and strong assumptions on the structure of the lower level feasible
set (cf. [28, Theorem 4.1]). These difficulties can be overcome by considering a mod-
ified setting, where the leader hedges against solutions that are almost optimal for the
lower level problem. Sufficient conditions for convergence of the modified optimal
values to the original one have been established in [26]. A systematic analysis of more
inner regularization techniques has been recently provided by Lignola and Morgan in
[24,25].

A bilevel stochastic program arises if the problem depends on an additional random
parameter, that only the follower can observe beforemaking their decision. In contrast,
the leader has to decide nonanticipatorily, but is aware of the underlying probability
distribution. In this setting, the upper level objective function can be understood as
a random variable, which allows the leader to base their decision on some statistical
functional. The expected value is for instance considered in the very first paper on
bilevel stochastic optimization [32]. In a linear setting, more general models incorpo-
rating a variety of convex risk measures have been recently studied in [2]. The control
of a vibrating string with stochastic data has been investigated in [12] for the case
of the excess-probability as a goal function. A level-set based approach for solving
risk-averse structural topology optimization problems with random field loading and
material uncertainty is given in [29].

Already in 2001, Christiansen et al. [5] studied a stochastic bilevel programming
perspective in shape optimization. They assume that the lower level deals with the
deformation of the structure for a given shape and given forces subject to different
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constraints, while on the upper level the shape is decided based on an optimization
of weight or a global stiffness measure. Assuming that the lower level is uniquely
solvable, the authors provide sufficient conditions for the existence of optimal solu-
tions and discuss algorithmic aspects. Herskovits et al. [21] reformulated an elastic
shape optimization problem with constraints as a bilevel optimization problem. They
investigate a contact problem with non-penetration constraints on the lower level and
stress constraints on the upper level. In [39], Zuo investigated shape optimization of
thin shells in car design as an optimistic bilevel optimization problem, where on the
lower level the mass distribution along the body frame of the vehicle and on the upper
level the shape of shell segments of the hull of the vehicle are optimized. Sinha et al.
[36] recently presented a general overview on bilevel optimization also covering opti-
mal design problems. In this context, they considered weight or cost optimization of a
structure on the upper level and, on the lower level, the computation of displacements
and stresses via minimization of the governing physical variational problem. To the
best of our knowledge, pessimistic hierarchical optimization in shape optimization
with an objective functional differing from the physical energy of the system on the
upper two levels has not been investigated so far.

The approach presented here is based on our previous work in [8–10], which grew
out of the aspiration to mobilize methodology from mainly economy-driven decision
making under (stochastic) uncertainty in order to study PDE-constrained optimization
with an emphasis on engineering-related topics such as shape optimization. The risk-
neutral models and models with risk aversion in the objective or the constraints were
treated with the classical expectation, with risk measures, or by invoking comparisons
using stochastic dominance relations. In the spirit of this experience, the present paper
is heading for models with the above bilevel features coming to the fore in the presence
of uncertainty.

The presentwork is organized as follows: In Sect. 2, we introduce a bilevel program-
ming formulation, and in Sect. 3, the extension to a bilevel problem under stochastic
uncertainty, which will be placed in the context of elastic shape optimization later in
the paper. Based on this, we analyze both problem formulations and investigate their
solvability. The application to a mechanical shape optimization problem via discrete
shells is considered in Sect. 4 as well as its numerical optimization and the results of
our numerical analysis. Finally, in Sect. 5, we draw conclusions and discuss possible
future extensions of our work.

2 Bilevel problem formulation

Before formally introducing the bilevel problem, we briefly present the key objects.
At the lowest level, y[u, f ] is the elastic displacement of the discrete shell which
depends nonlinearly on the material parameters u and linearly on the applied forces
f . The lower-level optimal solution set Ψ [u], depending on the material parameter u,
is the set of values of f which maximize a quadratic functional in y. In the upper-level
of our pessimistic bilevel problem, we finally minimize the worst-case cost J of the
lower-level optimization with respect to the material parameters u.
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In detail, this pessimistic bilevel problem reads as

min
u∈U

{
max
f ∈Ψ [u] J [u, f ]

}
, (1)

where U ⊆ (0,∞)n is a nonempty closed set, and J : U ×R
N → R denotes the cost

functional of the leader, whichwe assume to be continuous. In our application, this will
be a tracking-type objective for a discrete shell with thickness/stiffness parameters u
in an admissible set U and applied forces f . Moreover, we let the lower level optimal
solution set mapping Ψ : U ⇒ R

N be given by

Ψ [u]:=argmax
f ∈F

{
y[u, f ]�H [u]y[u, f ]

}
(2)

with a nonempty, low-dimensional, convex and compact set of admissible forcesF ⊂
R

N , a function H : Rn → R
N×N such that the the restriction H |U is continuous and

takes values in the cone of symmetric positive definite matrices SN++. Throughout the
paper, the notation g : X ⇒ Y is used for a multifunction g that maps the elements
of some set X to subsets of some set Y . The displacement y depends on a vector u of
thickness/stiffness parameters and the forces f . In fact, themapping y : U×R

N → R
N

in (2) is defined by the condition

{y[u, f ]} = argminy∈RN

{
1

2
y�H [u]y − y�M f

}
(3)

for some fixed matrix M ∈ SN++, where uniqueness follows from H [u] ∈ SN++. In
our application, we consider a discrete shell with n triangular facets subject to a force
distribution f in a set of admissible forces inRN , with N being three times the number
of vertices. For this case, the elastic displacement y[u, f ] is given as the minimizer of
the total free energy of a linearized elasticity model with H [u] denoting the Hessian of
an originally nonlinear elastic energy and M the mass matrix for the discrete reference
shell.

The above hierarchical problem Eqs. (1–3) can also be understood as a three-level
program.However, as H [u] ∈ R

N×N is symmetric and positive definite for any admis-
sible material parameter u ∈ U , the third-level problem in Eq. (3) is uniquely solvable.
Invoking first-order optimality conditions, we obtain the explicit representation

y[u, f ] = H [u]−1M f . (4)

Plugging this solution into the lower level problem yields a bilevel problem.Moreover,
Eq. (4) leads to a simple expression for the lower level optimal value function ψ :
U → R,
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ψ[u]:=max
f ∈F

{
f �MH [u]−1M f

}
, (5)

and to the reformulation of the definition of Ψ in Eq. (2) as

Ψ [u] =
{
f ∈ F | f �MH [u]−1M f = ψ[u]

}
. (6)

Lemma 1 The lower level optimal value function ψ defined by (5) is well-defined and
continuous. In addition, the multifunction Ψ is closed.

Proof For fixed u, the argument in (5) is quadratic in f , and in particular continuous.
Since F is nonempty and compact, the maximum exists.

For any f ∈ F , the argument in (5) is a continuous function of u. Moreover,
ψ is the pointwise supremum of a familiy of continuous functions and thus lower
semicontinuous by [34, Proposition 1.26(a)].

We assume thatψ is not upper semicontinuous, which yields u∗ ∈ U and a sequence
u j → u∗ such that lim j→∞ ψ[u j ] > ψ[u∗]. For any j , we choose f j ∈ F such
that ψ[u j ] = f �

j MH [u j ]−1M f j . Passing to a subsequence, we can assume that f j
converges to some f∗ ∈ F , since F is compact. By continuity of f �MH [u]−1M f
we obtain

ψ[u∗] ≥ f �∗ MH [u∗]−1M f∗ = lim
j→∞ f �

j MH [u j ]−1M f j = lim
j→∞ ψ[u j ],

a contradiction. Hence ψ is continuous.
Then the graph of the solution set mapping

gphΨ =
{
[u, f ] ∈ U × F | ψ[u] − f �MH [u]−1M f = 0

}

is the intersection of the closed set U × F and the level set of a continuous function
and thus closed. 
�
Proposition 1 The mapping Φ : U → R defined by

Φ[u]:= max
f ∈Ψ [u] J [u, f ]

is well-defined and upper semicontinuous. Moreover, Φ is continuous at any u ∈ U
for which Ψ [u] is a singleton.
Proof For any fixed u ∈ U , by (6) and Lemma 1 the lower-level set solution mapping
Ψ [u] is a nonempty, closed subset of the compact set F , and hence compact. Thus, Φ
is well-defined by continuity of the upper-level cost functional J on U×R

N . Consider
any sequence {uk}k∈N ⊆ U that converges to u ∈ U . By the previous considerations,
there exists a sequence { fk}k∈N such that [uk, fk] ∈ gphΨ and

Φ[uk] = J [uk, fk]
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holds for any k ∈ N. As F is compact, we may assume without loss of generality that
{ fk}k∈N converges to some f ∈ F . By Lemma 1, we have [u, f ] ∈ gphΨ and thus

lim sup
k→∞

Φ[uk] = lim sup
k→∞

J [uk, fk] = J [u, f ] ≤ max
f̄ ∈Ψ [u]

J [u, f̄ ] = Φ[u].

Hence, Φ is upper semicontinuous. If Ψ [u] is a singleton, we also have

lim inf
k→∞ Φ[uk] = lim inf

k→∞ J [uk, fk] = J [u, f ] = Φ[u],

which completes the proof. 
�
Remark 1 To understand the significance of Proposition 1 it is useful to compute these
quantities explicitly in a simple low-dimensional example. Assume n = 1, N = 2,

U = [ 12 , 3
2 ], M = I d, H [u] =

(
1 u − 1

u − 1 1

)−1

, F = [−1, 1] × [0, 1]. Then one

computes f T MH [u]−1M f = f 21 + f 22 + 2(u − 1) f1 f2. Maximizing this quantity
as in (5) we see that only the two points {±1, 1} of F are relevant, and in particular
ψ[u] = 2 + 2|u − 1|. Further, from (2) (or, equivalently, (6)) we obtain the set of
extremal forces

Ψ [u] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(
1

1

)}
if u > 1,

{(
−1

1

)}
if u < 1,

{(
1

1

)
,

(
−1

1

)}
if u = 1.

Choosing for example J [u, f ] = u f1 one obtains

Φ[u] =
{
J [u, 1] = u if u ≥ 1,

J [u,−1] = −u if u < 1.

In particular, it is clear that on {u = 1} the set-valued function Ψ is a singleton and Φ

is continuous, whereas Ψ [1] contains two elements and Φ is not continuous, and not
lower semicontinuous, at u = 1.

As this example shows, Φ arises as the objective function of a pessimistic bilevel
program, where the lower level problemmay have more than a single optimal solution
and can thus not be expected to be lower semicontinuous in general, a fact that was
already observed in [11, example on pages 30-31]. Note that this may prevent the
bilevel program (1) from having an optimal solution even if U is compact.

To overcome the difficulties detailed above, we consider a model where the leader
also hedges against η-optimal lower level solutions (cf. [24]). Specifically, we replace

123



A Pessimistic bilevel stochastic problem…

Ψ with the mapping Ψη : U ⇒ R
N defined by

Ψη[u]:=
{
f ∈ F | ψ[u] − f �MH [u]−1M f < η

}

for some positive constant η. This results in the modified upper level problem

min
u∈U

{
sup

f ∈Ψη[u]
J [u, f ]

}
. (7)

As Ψ [u] ⊆ Ψη[u] holds for any η > 0 and u ∈ U , the optimal value in (7) yields an
upper bound for the optimal value in (1).

Proposition 2 The mapping Φη : U → R defined by

Φη[u]:= sup
f ∈Ψη[u]

J [u, f ]

is well-defined and lower semicontinuous for any η > 0. In particular, (7) is solvable
whenever U is nonempty and compact.

Proof First, note that Φη is well-defined and real-valued as, by continuity of J , for
any u ∈ U

Φη[u] ≤ max
f ∈F

J [u, f ] < ∞.

To prove semicontinuity, we consider a sequence {uk}k∈N ⊆ U converging to some
u∗ ∈ U . We select a sequence { f j } j∈N ⊆ Ψη[u∗], i.e. ψ(u∗) < η + f �

j H−1[u∗] f j ,
such that J [u∗, f j ] → Φη[u∗]. By continuity of ψ and H , there is K j such that for
all k ≥ K j we have ψ(uk) < η + f �

j H−1[uk] f j , which is the same as f j ∈ Ψη[uk].
Therefore

J [u∗, f j ] = lim
k→∞ J [uk, f j ] ≤ lim inf

k→∞ Φη[uk].

Since j was arbitrary, taking the limit j → ∞ we conclude

Φη[u∗] = lim
j→∞ J [u∗, f j ] ≤ lim inf

k→∞ Φη[uk].


�
Remark 2 In [26], the alternate model

min
u∈U

{
max

f ∈Ψ̄η[u]
J [u, f ]

}
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with

Ψ̄η[u]:=
{
f ∈ F | ψ[u] − f �MH [u]−1M f ≤ η

}

is considered. Under the present assumptions it can be shown that

lim
η↓0

inf
u∈U

{
max

f ∈Ψ̄η[u]
J [u, f ]

}
= inf

u∈U

{
max
f ∈Ψ̄ [u]

J [u, f ]
}

.

However, the function

Φ̄η[u]:= sup
f ∈Ψ̄η[u]

J [u, f ]

is not lower semicontinuous in general, which is why we rather use formulation (7).

3 Stochastic model

A bilevel stochastic program arises if a random vector enters the upper or lower levels
as a parameter, with the information constraint that only the follower can observe the
realization of the randomness before making their decision. In contrast, the leader has
to decide nonanticipatorily, but is aware of the distribution of the randomness, which
is independent of the leader’s decision.

In the following, we shall study a setting where the leader’s decision u is subject to
a random perturbation. To become more specific, let ϒ : � → R

n be a random vector
(i.e., a B-Borel measurable function) on some probability space (�,B,P). We obtain
the following pattern of decision and observation:

Leader decides u → Realization of ϒ → Follower decides f .

In our model, the randomness results from manufacturing errors and has the follow-
ing effect: Throughout (1)-(3), the leader’s decision u is replaced with the perturbed
material vector u�υ, where� denotes the componentwise multiplication and υ is the
realization of ϒ . In this setting, the leader seeks to ensure that the resulting material
parameters are feasible regardless of the realization of the randomness. In order for
the perturbed material vector to be almost-surely admissible, the leader has to choose
the design parameter u in the induced feasible set

Uϒ := {u | u � υ ∈ U ∀υ ∈ suppμϒ } ,

where μϒ :=P ◦ ϒ−1 is the induced Borel probability measure on R
n . Note that the

set Uϒ is closed as the intersection of closed sets. Typically, we think of a situation
where suppμϒ ⊆ [a, b]n holds for some 0 < a < b, possibly both close to 1.
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We will consider the stochastic extension of the classical pessimistic bilevel pro-
gram (1)–(3) as well as the modified version (7). In both situations, we will assume
the following assumption:

(A1) The support of μϒ is bounded.

In the classical setting, we will need the following additional assumptions:

(A2) F is a nonempty, bounded polyhedron, i.e. the convex hull of its nonempty and
finite set of extreme points P ⊆ F .

(A3) μϒ is absolutely continuous with respect to the Lebesgue measure Ln .
(A4) There exists an open and connected set Ũ ⊆ R

n , such that U ⊆ Ũ , H |Ũ is real
analytical, and it takes values in a closed subset of SN++.

From the leader’s point of view, the material vector that will be passed down to
the lower level after the stochastic perturbation has occurred can be understood as
a random vector u � ϒ : U � � → R

n which is parameterized by the decision u.
Similarly, the upper level outcome is a random variable Φ[u � ϒ] ∈ L0(�,B,P)

for any fixed u by Proposition 1. Here and in the subsequent analysis, we denote the
associated classical L p-spaces with p ∈ [1,∞] by L p(�,B,P) and use L0(�,B,P)

for the space of real-valued measurable functions.

Theorem 1 Assume (A1)-(A4), then the mapping F : Uϒ → L∞(�,B,P) given by

F[u] := Φ [u � ϒ]

is well-defined and continuous with respect to any L p-norm with p ∈ [1,∞).

The proof of Theorem 1 requires some preliminary work.

Lemma 2 Assume (A3) and (A4), then the set of discontinuities of Φ is a Lebesgue
null set.

Proof As the lower level goal function is strictly convex, we have Ψ [u] ⊆ P for any
u ∈ U . By (A4), for any pair ( f , f̃ ) ∈ P × P the function G

( f , f̃ ) : Ũ → R defined
by

G
( f , f̃ )[u] := f �MH [u]−1M f − f̃ �MH [u]−1M f̃

is well-defined and real analytic. Consequently, the set

B[ f , f̃ ] :=
{
u ∈ U | f , f̃ ∈ Ψ [u]

}
⊆

{
u ∈ U | G

( f , f̃ )[u] = 0
}

of parameters for which f and f̃ are optimal for the lower level problem is a Lebesgue
null set, or we have

G
( f , f̃ )[u] = 0

for any u ∈ U by [30, Proposition 1].
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Now we start from the case that B[ f , f̃ ] is a Lebesgue null set for any f , f̃ ∈ P
satisfying f = f̃ . Let u ∈ U . If Ψ [u] is a singleton, then by Proposition 1, Φ is
continuous at u. Consequently, the set of discontinuity points of Φ is contained in

⋃
f , f̃ ∈P, f = f̃

B[ f , f̃ ],

which is a Lebesgue null set by the previous considerations.
To take care of the general case, let us consider the following relation on P × P:

f ∼ f̃ :⇔ G
( f , f̃ )[u] = 0 for any u ∈ U .

It is easy to verify that∼ defines an equivalence relation and that the equivalence class
of any extreme point f̃ ∈ P is given by

E[ f̃ ] :=
{
f ∈ P | G

( f , f̃ )[u] = 0 ∀ u ∈ U
}

.

By (6), E[ f̃ ] ⊆ Ψ [u] if f̃ ∈ Ψ [u] ∩P . Let P̃ ⊆ P contain exactly one element from
each equivalence class, then Φ admits the representation

Φ[u] = max
f̃ ∈P̃∩Ψ [u]

{
max
f ∈E[ f̃ ]

J [u, f ]
}

.

As P is finite, for any f̃ ∈ P̃ the mapping

u �→ max
f ∈E[ f̃ ]

J [u, f ]

is continuous. By the same argument as in the proof of Proposition 1, Φ is continuous
on each set

S[ f̃ ] :=
{
u ∈ U | { f̃ } = Ψ [u] ∩ P̃

}

of parameters for which f̃ is the only representative that is optimal for the lower level
problem. Thus, the set of discontinuities of Φ is contained in the set

NB :=
⋃

f , f̃ ∈P̃, f = f̃

B[ f , f̃ ],

which is a Lebesgue null set by construction of P̃ . For later reference we remark that
we obtained

U = NB ∪
⋃
f̃ ∈P̃

S[ f̃ ] with Ln(NB) = 0, (8)
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and that the sets NB and S[ f̃ ] for f̃ ∈ P̃ in the right-hand side of (8) are pairwise
disjoint. 
�

Throughout the subsequent analysis, we will use the notation introduced in the
proof of Lemma 2.

Proof of Theorem 1 Let u ∈ Uϒ . As any upper semicontinuous function is Borel mea-
surable, F[u] ∈ L0(�,B,P) follows directly from Proposition 1. Moreover, we have

ess supF[u] ≤ max
f ∈F

sup
υ∈suppμϒ

J [u � υ, f ] < ∞ (9)

by continuity of J , (A1) and (A3).
Consider any sequence {uk}k∈N ⊆ Uϒ that converges to some u ∈ Uϒ . We write

lim
k→∞ ‖F[u] − F[uk]‖p

L p(�,B,P)
= lim

k→∞

∫
suppμϒ

|Φ[u � υ] − Φ[uk � υ]|p μϒ(dυ).

The set {u} ∪ {uk | k ∈ N} is compact, so that by continuity of J and (9) we obtain a
uniform bound on the integrand. With (A1) and dominated convergence we see that it
suffices to prove pointwise convergence almost everywhere.

Let NB be as in the proof above, and consider the set

N̂B := {υ ∈ Uϒ | u � υ ∈ NB} .

By the change-of-variables formula we obtain 0 = Ln(NB) = ∏n
i=1 uiLn(N̂B) and,

since ui > 0 for all i , Ln(N̂B) = 0. By (A2), μϒ(N̂B) = 0.
Fix some υ ∈ Uϒ \ N̂B . Then by (8) we have u � υ ∈ S[ f̃ ] for some f̃ ∈ P̃ , so

that in particular Φ is continuous at u � υ. From uk → u with k → ∞ we obtain
uk � υ → u � υ and therefore Φ[uk � υ] − Φ[u � υ] → 0. This proves pointwise
convergence almost everywhere and concludes the proof. 
�
Remark 3 The assertion of Theorem 1 does not hold for p = ∞. To see this, we
consider the example of Remark 1 and extend it to the stochastic setting taking � =
[ 9
10 ,

11
10 ], P proportional to the Lebesgue measure restricted to �, and ϒ to be the

identity, so that suppμϒ = �. Then F[u](v) = Φ[uv] = ±uv, with the positive sign
if and only if uv ≥ 1. For the sequence uk := 1 − 1

k → 1 we have F[uk](v) = ukv
for v ≥ 1/uk , and F[uk](v) = −ukv for v < 1/uk . In particular for all v ∈ (1, 1/uk)
we have F[uk](v) − F[1](v) = −ukv − v. Taking the supremum over all such v we
obtain ‖F[uk] − F[1]‖L∞(�,B,P) ≥ 1 + 1

uk
→ 2, hence F[uk] does not converge to

F[1] in L∞(�,B,P).

As a generic first choice, the leader might assess the random upper level cost based
on its expected value, i.e. consider the risk neutral bilevel stochastic program

min
u∈Uϒ

{E [F[u]]} , (10)
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which is well-defined by Theorem 1. More in general, to allow for varying degrees of
risk aversion, we take into account a mapping R : X → R with

L∞(�,B,P) ⊆ X ⊆ L0(�,B,P)

and consider the bilevel stochastic program

min
u∈Uϒ

{R [F[u]]} . (11)

R will typically be a monetary risk measure in the sense of [15, Definition 4.1]
meaning it satisfies the following conditions:

– Monotonicity: R[Y1] ≤ R[Y2] for all Y1,Y2 ∈ X satisfying Y1 ≤ Y2 P-almost
surely.

– Translation equivariance: R[Y + m] = R[Y ] + m for all Y ∈ X and m ∈ R.

Moreover, we will assume the following:

(A5) R : L p(�,B,P) → R with some p ∈ [1,∞) is convex and nondecreasing as
defined above.

Remark 4 (A5) holds for any convex risk measure in the sense of [13] and [14], i.e.
for any monetary risk measure that is convex. In particular, this includes the expecta-
tion, the mean-upper semideviation of any order and the Conditional Value-at-Risk.
However, as we do not assume translation equivariance, the assumption is also fulfilled
for the expected excess of arbitrary order (cf. [35, Chapter 6]).

The following result is well-known in the literature, see for example [4, Theorem
4.1]. For the convenience of the reader, we provide a short self-contained proof.

Lemma 3 Assume (A5), then the mapping R is continuous.

Proof For f ∈ L p(�,B,P) we denote by | f | ∈ L p(�,B,P) the function obtained
taking the pointwise absolute value, so that f ≤ | f |,− f ≤ | f | P-almost everywhere.

It suffices to prove that R is continuous in 0, and we can assume that R(0) = 0
(otherwise we replaceR by R̂( f ):=R(g∗+ f )−R(g∗)). IfR is not continuous, there
is δ > 0 such that for any j there is f j ∈ L p(�,B,P) with ‖ f j‖L p(�,B,P) < 4− j

and |R( f j )| ≥ δ. By convexity, 0 = R(0) ≤ 1
2R( f j ) + 1

2R(− f j ), which implies
R(− f j ) ≥ −R( f j ). By monotonicity,

R(| f j |) ≥ max
{
R( f j ),R(− f j )

} ≥ max
{
R( f j ),−R( f j )

} = ∣∣R( f j )
∣∣ ≥ δ.

Let f∗:= ∑
j 2

j | f j | ∈ L p(�,B,P). Using first monotonicity and then convexity, we

obtain R( f∗) ≥ R(2 j | f j |) ≥ 2 jR(| f j |) ≥ 2 jδ for any j , which contradicts the
boundedness of R( f∗). 
�
Theorem 2 Assume (A1)–(A5), then the function QR : Uϒ → R defined by

QR[u] :=R [F[u]] = R [Φ[u � ϒ]]
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is continuous. In particular, the bilevel stochastic problem (11) has an optimal solution
whenever the induced feasible set Uϒ is nonempty and compact.

Proof AsR is continuous by Lemma 3, the result follows from Theorem 1. 
�
Let us now consider the stochastic version of the modified problem (7), where the

leader hedges against all η-optimal lower level solutions. For this, we will use the
notion of law-invariant risk measure:

R[Y1] = R[Y2] for all Y1,Y2 ∈ X with P ◦ Y−1
1 = P ◦ Y−1

2 ,

i.e. for all Y1, Y2 which induce the same Borel probability measure. The following
existence result is obtained for law-invariant, convex risk measures under weaker
assumptions, where we no longer restrict the analysis to polyhedralF and real analytic
H .

Theorem 3 Assume (A1) and (A5) and let R be translation equivariant as well as
law-invariant. Then the mapping QR,η : Uϒ → R given by

QR,η[u] :=R
[
Φη [u � ϒ]

]

is well-defined and lower semicontinuous. In particular, the bilevel stochastic program

min
u∈Uϒ

{
QR,η[u]}

is solvable, whenever Uϒ is nonempty and compact.

Proof First, note that Φη [u � ϒ] ∈ L0(�,B,P) and

∥∥Φη [u � ϒ]
∥∥
L∞(�,B,P)

≤ sup
υ∈suppμϒ

Φη [u � υ] ≤ sup
υ∈suppμϒ

sup
f ∈F

J [u � υ, f ] < ∞

hold for any u ∈ Uϒ by Proposition 2 and (A1). Thus, QR,η is well-defined.
Let R∗ denote the convex conjugate of R (cf. [22, Theorem 2.1]), then R admits

a robust representation as

R[Y] = sup
P′∈Env

{
EP′ [Y] − R∗[P′]} ∀Y ∈ L p(�,B,P),

where the risk envelope Env is a subset of the normed positive part of the dual space
of L p(�,B,P) by [22, Corollary 2.3, Theorem 2.4]. Fix any P

′ ∈ Env. With a slight
abuse of notation, we shall identify P

′ with the P-continuous probability measure
dP′/dP and show that the mapping u �→ EP′

[
Φη [u � ϒ]

]
is lower semicontinuous.

The result then follows because the pointwise supremum of lower semicontinuous
functions is lower semicontinuous (cf. Lemma 1 and [34, Proposition 1.26 (a)]).

Consider any sequence {uk}k∈N ⊆ Uϒ that converges to some u ∈ Uϒ . Without
loss of generality, we assume that uk ∈ B1(u)∩Uϒ holds for any k ∈ N, where B1(u)
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denotes the open Euclidean unit ball around u (We denote its closure by B1(u)). By
definition,

Φη [uk � ϒ] ≥ min
υ∈suppμϒ

min
u∈B1(u)∩Uϒ

min
f ∈F

J [u � υ, f ] =: J

holds for any k ∈ N. As J is continuous and suppμϒ , B1(u)∩Uϒ , andF are nonempty
and compact, we have J ∈ R. Thus, Fatou’s Lemma yields

lim inf
k→∞ EP′

[
Φη [uk � ϒ]

] ≥
∫

�

lim inf
k→∞ Φη [uk � ϒ] P′(dω) ≥ EP′

[
Φη [u � ϒ]

]
,

which completes the proof. 
�

4 Application: discrete shells

In this section, we will apply bilevel optimization to a mechanical shape optimiza-
tion problem. Our aim is to determine the optimal elastic design of curved roof-type
constructions. The leader in this setup is the construction engineer who aims at min-
imizing a tracking-type functional via optimizing the distribution of material on a
prescribed roof geometry. Due to production errors, the material distribution is con-
sidered to be stochastically perturbed in the actual construction phase. The follower
is a test engineer, who is performing a worst-case analysis and considers within a
given set of possible forces—for example wind and roof load—those that maximize
the compliance functional.

4.1 General setting and problem formulation

Our model problem is taken from the literature on geometric design [38], but our
mechanical perspective is not self-supporting structures but instead architectural struc-
tures composed of discrete thin shells. Indeed, we model the mechanical properties
of a roof construction using an adaptation of the discrete elastic shell model by Grin-
spun et al. [17], in which the geometry is a triangular surface and each triangle is
considered as a construction panel, with joints at the edges. The membrane distortion
deforms the individual panels, whereas the bending distortion leads to a change of the
dihedral angle between pairs of panels that share an edge. Let us emphasize that the
discrete shell approach is a design tool and does not act as a computational tool for the
full elastostatic modeling in a later planning stage. In fact, we consider the discrete
shell model mainly as a testbed for the proposed bilevel optimization approach. We
underline this by reporting all physical quantities without units.

Comparing with the notation in the previous section, the design parameter u will
represent the thickness of the shell, f the applied forces, and y the resulting dis-
placement of the shell. The minimization in Eq. (3) then corresponds to the solution
of a linear elasticity problem in (13), with H [u] representing the elastic energy. The
problem in (2) corresponds to the follower optimizing compliance. The leader’s cost
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functional J in (1) measures the deviation from the prescribed shape and is defined in
(14) below.

Weconsider the simplicialmesh of a discrete shellSh = (V, E, T ) consisting of sets
of vertices V , edges E ⊂ V ×V and triangular faces T ⊂ V ×V ×V . In what follows,
we use maps defined on the different elements of such a mesh instead of vectors used
in the theoretical considerations above. For example, a map w : V → R

k assigning
each vertex a value in this section corresponds to a vector Rk|V | from the previous
sections and similarly for functions defined on edges and faces. We denote evaluations
w(v) of such a map also via indexing to simplify notation, i.e. wv:=w(v) ∈ R

k .
The geometry of a discrete shell is given by a map x : V → R

3 subject to the
constraint that for each face there is no straight line inR3 containing all three vertices,
i.e. no triangle degenerates to a line. Thus, each triangle t ∈ T with vertices v0, v1,
v2 can be parametrized over the reference triangle in R

2 with vertices (0, 0), (1, 0)
and (0, 1) via the affine map xt interpolating x(v0), x(v1), x(v2). We denote by Dxt
the differential of this affine map for face t , so that the associated metric tensor in the
same face is

G[xt ] := (Dxt )
�Dxt .

We denote by x̂ : V → R
3 the fixed stress-free reference configuration of the discrete

shell, and parametrize the deformed configuration x = x̂ + y in terms of the elastic
displacement of the vertices y : V → R

3. We denote by le the length of an edge e ∈ E
and by at the area of a face t ∈ T in the reference configuration. Then, ae:= 1

3 (at +at ′)
is a corresponding edge-associated area, where t and t ′ are the two faces adjacent to
the interior edge e ∈ E ; correspondingly av:= 1

3

∑
t∈Tv

at a vertex-associated area for
the ring of faces Tv around a vertex v ∈ V .

The design variable is the material thickness parameter, which is assumed to be
constant on each of the triangles and is denoted by u : T → (0,∞). In order to
evaluate the bending contribution to the energy, see (12) below, we shall use on an
interior edge e the averaged thickness ue:= 1

2 (ut + ut ′) of the two triangles t and t ′
sharing the edge e.

Variational Formulation of Discrete Shells. In the modeling of thin shells, the elastic
stored energy is typically the sum of two terms: the stored energy caused by in-plane
membrane distortion and the stored energy reflecting bending distortion [7,27]. The
two terms scale linearly and cubically, respectively, in the thickness of the shell.

For a displacement y, the Cauchy-Green strain tensor measuring the change of
lengths, and consequently area, of a face t is given by

G[y] := (
G[x̂t ]

)−1
G[(x̂ + y)t ].

Then, the membrane energy depends on this tensor and is defined as

Wmem[u, y] :=
∑
t∈T

at ut Wmem(G[y]|t ),
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where we use the neo-Hookean energy density

Wmem(A) := μ

2
tr A + λ

4
det A −

(
μ + λ

2

)
log det A − μ − λ

4
.

The linearization of this energy coincides with the planar, isotropic, linearized elas-
ticity model with Lamé-Navier coefficients μ and λ [6,27]. In the following, we use
μ = λ = 1.

For the bending energy, we follow [19] and use an adaptation of the discrete shell
bending energy introduced in [17]. It measures the change of the dihedral angles
between a pair of neighboring triangles t and t ′ due to the displacement y in the
configuration x . The angle is computed as θe(x):= arccos(nt (x)�nt ′(x)), where nt (x)
and nt ′(x) are the unit normals generated by the deformation x , and the energy takes
the form

Wbend[u, y] := γ
∑
e∈E

u3e · (θe(x̂ + y) − θe(x̂))2

ae
l2e (12)

for some constant γ > 0, which in continuum models can be expressed in terms of λ

and μ. We use γ = 1.
The stored elastic energy W[u, y] is the sum of these two energies,

W[u, y] :=Wmem[u, y] + Wbend[u, y],

so that the total free energy in the presence of external forces f : V → R
3 reads as

I[u, f , y] = W[u, y] − f �My, (13)

where M is a diagonal mass matrix inR3|V |×3|V | with entries av at positions (i, i)with
i = 3 j − k for j = 1, . . . , |V| and k = 0, 1, 2. The elastic displacements resulting
from applying the forces to the reference configuration are the minimizers of this
energy.

Inwhat follows,we restrict ourselves to the linearization of thismodel.Wedenote by
H [u]:=∂2yyW[u, 0] the Hessian of the stored elastic energy, and obtain the linearized
stored elastic energy

W lin[u, y] := 1

2
y�H [u]y

as well as the linearized total free energy

I lin[u, f , y] :=W lin[u, y] − f �My,

whose minimization corresponds to the innermost problem introduced in (3). Pre-
scribing suitable boundary data yv = 0 on a set of at least three vertices v ∈ V ,
which do not lie on a line, one can deduce (cf. [19]) that H [u] is a positive-definite
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matrix. Aswritten above expression (4), for every u and f the energy I lin[u, f , ·] has a
unique minimizer, which is also the unique solution of the associated Euler-Lagrange
equation

0 = ∂yI lin[u, f , y] = H [u]y − M f .

The Optimization Problem. To complete our practical optimization problem, we need
to specify the admissible set of material parameters U , the admissible set of force
parameters F , and the cost functional of the leader J . The objective of the lower
level optimal value function ψ is already completely defined in (5) and equals the
compliance functional evaluated for the displacement y[u, f ], i.e.

ψ[u] = max
f ∈F

{
f �My[u, f ]

}
= max

f ∈F

{
f �MH [u]−1M f

}
.

The admissible set of force parameters F is assumed to consist of linear combina-
tions of a small number of different load scenarios. We assume that the forces are of
the type f = BF , where F ∈ R

d for some d � 3|V| are the coefficients, and the
columns Bj of the matrix B ∈ R

3|V |×d are the basis of the d-dimensional subspace
of forces. Therefore, each Bj ∈ R

3|V | represents a force distribution on the reference
configuration x̂ which is then scaled with Fj ∈ R, for j = 1, . . . , d. The components
of these basis vectors could be determined, for example, from the location of the vertex
or the inclination of the triangular faces sharing a vertex. Furthermore, we consider
different constraints on the values of the scale factors Fj , i.e. we assume that the set
F is given by

⋂K
k=1 Fk with

Fk :=
{
BF ∈ R

3|V | | F ∈ R
d , QF

k (F) ≥ 0
}

for some smooth functions QF
k for k = 1, . . . , K . For example, if F consists of the

forces which fulfill |F | ≤ μ then one might choose d = 3|V|, B = Id, K = 1, and
QF

1 (F) = μ2 − |F |2.
In the problem of the leader, we constrain the material thickness parameter u ele-

mentwise frombelow and from above, andwe assume that the total volume ofmaterial,
determined via the discrete integral of u, is below some fixed positive parameter.

Lastly, the upper level cost functional is considered to be of tracking-type and
measures the squared discrete L2-norm of the displacement on a predefined tracking
subset of the whole shell,

J [u, f ] := y[u, f ]�χ � My[u, f ] =
∑
v∈V

χvMvv |yv[u, f ]|2 . (14)

Here χ : V → {0, 1} is a discrete characteristic function with value 1 at vertices in
the tracking set and 0 elsewhere.

In the stochastic setting, we restrict ourselves to the expected value E [F[u]] as
the risk measure for the optimization (cf. (10)). Furthermore, the stochastic per-
turbation of the distribution of the thickness parameter u is given by i.i.d. normal
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distributions for each parameter, i.e. we consider the perturbed material u � ϒ for
ϒ ∼ T N (1, σ 2, υmin, υmax)

|T |,whereT N (1, σ 2, υmin, υmax) is the truncatednormal dis-
tribution with average 1 and standard deviation σ , truncated to the interval [υmin, υmax].
In practice, we take σ ≤ 0.2, υmin = 10−2 and υmax = 2, so that the truncation has little
effect and σ is almost identical to the standard deviation of ϒ .

We further fix constants 0 < u− < u+ and V+ > 0 and define implicitly U by the
condition

Uϒ =
{
u : T → R | u− ≤ ut ≤ u+ ∀ t ∈ T ,

∑
t∈T

atut ≤ V+
}

⊂ (0,∞)|T |.

4.2 Numerical optimization

To numerically solve the bilevel problem (1) in the presented setting, it is convenient
to replace the restriction of u and f to admissible sets Uϒ and F by smooth approx-
imations and then to deal with a differentiable problem. In our implementation, we
achieve this by using logarithmic barrier functions, as commonly used in interior point
methods (see e.g. textbook [31]). Hence, with the structural assumptions on the set of
admissible forces introduced above, we define the smoothed follower problem by

Ψα[u] := argmax
F∈Rd

{
y[u, BF]�H [u] y[u, BF] + αF

K∑
k=1

log
(
QF

k (F)
)}

, (15)

where αF > 0 is an appropriate scaling factor for the barrier terms.
To compute theminimizers in (15), we do not aim at a globalminimization approach

but rather use an ascentmethod (see below) to compute isolated localminimizers. Thus,
we assume in the numerical optimization of the leader problem, that the solution of
the follower problem is of such type. This allows us to apply conventional nonlinear
optimization algorithms. In this framework, the maximizer and the set Ψα be inter-
changeable. In the examples considered below, this assumption is justified by the use
of asymmetric triangulations, and additionally by the symmetry-breaking random per-
turbations of the material thickness. Thus, the logarithmic barrier formulation of the
expected value optimization problem for the leader is

min
u∈R|T |

{
E [J [u � ϒ,Ψα[u � ϒ]]] − αu

∑
t∈T

at
(
log(ut − u−) + log(u+ − ut )

)

−αV log

(
V+ −

∑
t∈T

atut

)}

for scaling factors αu, αV > 0 as before.
This regular reformulation of the optimization problem can be solved numerically

using a stochastic gradientmethod. For PDE-constrained shape optimization problems
under uncertainty, this method is analyzed in [16]. In our case, the smoothed follower
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Fig. 1 Left: upper level relative cost values Ĵ [ui ]/ Ĵ [u0] for the iterates of the stochastic gradient descent
method in the example shown in the bottom row of Fig. 3. Right: corresponding lower level compliance

cost y[u,BF j ]�H [u] y[u,BF j ]
y[u,BF0]�H [u] y[u,BF0] for iterates of the Newton-type method for the follower problem in the first

upper level descent step and the initial material distribution

problem is a deterministic and smooth optimization problem, and computing its first
and second derivatives is straightforward. Thus, we use a Newton-type method with
Armijo backtracking line search (cf. [31, Algorithm 3.2]) to compute its optimizers.
The gradients of the smoothed bilevel problem can be computed via the general proce-
dure of shape optimization calculus and thus, we employ stochastic gradient descent
[33] to solve it. To this end, in each iteration of the descent algorithm, we draw finitely
many samples υ1, . . . , υK from the distribution of the material perturbation. In the
experiments, we always chose K = 128. Using these samples, we approximate the
expected value by the empirical risk Ĵ [u] := 1

K

∑K
k=1 J

[
u � υk, Ψα[u � υk]]. Then

a new iterate is computed by taking a step in the direction of the negative gradient of the
combination of the empirical risk and the logarithmic barrier terms. Figure 1 depicts the
decrease of the upper level cost functional over the iterations of the stochastic descent
algorithm and the increase of the lower level compliance cost when solving the fol-
lower problem for the initialmaterial distribution. Latter solves of the follower problem
typically require 10 to 30 iterations of the Newton-type method per outer iteration.

We have implemented our method in C++ with the Geometric Optimization And
Simulation Toolbox (GOAST) [20], where we use the Eigen library [18] for numer-
ical linear algebra and CHOLMOD [3] from the SuiteSparse collection as direct
linear solver. The code is available under https://gitlab.com/numod/bilevel-shape-
optimization.

4.3 Numerical results

We applied the bilevel shape optimization method in a proof-of-concept study of
discrete shells representing curved roofs. We fix an orientation so that the negative
Z -axis is in the direction of gravity and the supporting ground is in the XY -plane. For
each geometry, we fix a set of Dirichlet vertices near the ground plane, representing
the points on which the structure is supported, and also fix the material thickness of
the corresponding triangles. This removes these variables from the optimization.

The construction is exposed to two types of forces. First, there are forces emulating
wind hitting the structure. For a given wind direction and strength, the force on each
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Fig. 2 The first panel shows the geometry of the roof structure, with the tracking set on the roof plateau
marked with dots. The Dirichlet nodes are the vertices on the horizontal plane at the corners. The other
three panels show the three basis force fields B1 (horizontal wind in the X direction), B2 (horizontal wind
in the Y direction) and B3 (vertical gravitational force caused by an overlay on the roof). The scale of the
force arrows is arbitrary

part of the roof depends on the local orientation. We assume that the magnitude of the
force on a vertex is proportional to the absolute value of the scalar product between
the vertex normal (given as the average of the normals of the triangles adjacent to the
vertex) and the wind direction. For simplicity, we only consider a two-dimensional
subset of possible forces, spanned by the basis vectors B1 and B2 which represent wind
along the positive X - andY -axis, respectively. The direction andmagnitude of thewind
are then controlled by the scale factors F1 and F2.Wefix amaximalmagnitude ofwind-
type force Fmax,xy and use the constraint function QF

1 (F) := F2
max,xy − (

F2
1 + F2

2

)
in (15). An example of these two basis vectors demonstrating the dependence on the
orientation of the normal is shown in the second and third panels of Figure 2.

Second, we consider a vertical force, which could emulate the weight of snow or
water overlay on the roof. The magnitude of the corresponding basis vector B3 on
each vertex is the absolute value of the scalar product between the vertex normal and
the Z -axis and is shown in Fig. 2 on the far right. The magnitude of gravitational
load is controlled by the scale factor F3, we ensure that it is pointing downward via
QF

2 (F) := F3 and limit its magnitude viaQF
3 (F) := Fmax,z − F3, where Fmax,z is the

maximal magnitude of the gravitational force. Therefore the admissible set F is a
cylinder with radius Fmax,xy and height Fmax,z .

We performed most of our investigations on the simple roof geometry shown in
Fig. 2. For this problem, the basic parameters, which are used in the examples if
not indicated otherwise, are as follows. The roof geometry is almost filling a box of
20 × 20 × 10, the maximal horizontal load is Fmax,xy = 0.0015 and the vertical one
Fmax,z = 2Fmax,xy . The elementwise bounds on the material thickness are u− = 0.01
and u+ = 0.2. The volume of the material is bounded by V+ = 60 and the strength
of the stochastic variation is fixed by σ = 0.1. The weights of the barrier terms were
αF = 10−4, αu = 1, and αV = 10−5. For the leader, we consider a tracking set
restricted to the central region of the roof plateau as shown in the first panel of Fig. 2.

In Fig. 3, we show the deformed configuration, the optimized distribution of the
material thickness, and the magnitude of displacements in case of the leader mini-
mizing a tracking functional once with global support (top row) using χ ≡ 1 and
once restricted to the region of the roof plateau (bottom row). As for all examples pre-
sented here, in the follower problem, the maximal compliance is attained for a force
F representing an extremal point of the cylinder of admissible forces. For the tracking
cost domain centered on the roof plateau, one observes a concentration of mass in
the central region accompanied by a significant reduction of the thickness close to
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Fig. 3 Comparison of results for full vertex tracking set (top) and plateau tracking set (bottom) on the
simple roof-type geometry already shown in Fig. 2. On the left, we show the deformed configurations as
gray surfaces, while the undeformed surfaces are shown as translucent surfaces overlayed with red edges.
Next to the surfaces, we visualize the direction of the force (F1, F2, F3) chosen by the follower in the
cylinder of admissible values. In the middle, we show the resulting material distributions with color map

, where boundary triangles with all three vertices subject to Dirichlet boundary conditions are
shown in gray.On the right,we show themagnitude of the deformation y using the colormap .
Additionally, on the far right, we show the direction of the horizontal forces (F1, F2)

the four corners where Dirichlet boundary conditions apply. The concentration and
corresponding reduction break the symmetry of the configuration w.r.t. the diagonal
from the upper left to the lower right. Due to the asymmetric reduction, the follower
chooses a force pointing to the upper right and one observes a kink line connecting the
two arcs in the front at approximately half of the total height. This is accompanied by
large displacements, which are however outside of the tracking region on the plateau.
In contrast, for the tracking with global support, no such kink with strong displace-
ments occurs, however, the deformation exhibits a larger displacement in the central
region. Finally, beyond the mass concentration in the middle, one also observes the
onset of curved “beam” like structures connecting the middle region and the four arcs
of the roof. In the example with localized tracking, and most of the following ones,
the elementwise bounds u+ and u− are nearly attained for at least some triangles.

Figure 4 shows for the same geometry the impact of the upper bound on the total
material volume.

As the total permitted mass is increased, the elongated curved “beams” connecting
the tracking region in the center with the four arcs become thicker. Once the maximal
thickness is reached in the central region and along these “beams”, further mass is
invested to reinforce the regions close to the Dirichlet boundaries. The curved carrier
“beams” and the central region are again designed asymmetrically w.r.t. the diagonal
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Fig. 4 A comparison of the material distribution when varying the maximal allowed material volume V+
while keeping the other parameters fixed. The allowed volume was V+ = 40, 50, 60, 70, 80 from left to
right. Material thickness is shown using the color map . On the far right, we show the direction
of the horizontal forces, which was the same for all parameters, while the vertical force was always chosen
maximal

Fig. 5 A comparison of the material distribution when varying the ratio of vertical to horizontal force
Fmax,z
Fmax,xy

, i.e. the shape of the cylinder, while keeping the other parameters, especially themaximalmagnitude

of horizontal force, fixed. The ratio of vertical to horizontal force was Fmax,z
Fmax,xy

= 1
2 , 1, 2, 4, 8 from left

to right. The material thickness is shown using the color map . On the right of each material
distribution, we show the force in the cylinder of admissible values

from the upper left to the lower right leading the follower to push towards the upper
right.

We next investigate the effect of the parameters characterizing the strength of the
forces, Fmax,z and Fmax,xy , while keeping the total amount of material constant. By

scaling invariance, it is natural to focus on the ratio Fmax,z
Fmax,xy

. In Fig. 5, we show that
with increasing strength of the vertical force, the “beams” become thinner and instead
more material is concentrated in the central region.

Interestingly, for small values of the ratio between the two forces the material
distribution is nearly symmetrical w.r.t. the diagonal from the upper left to the lower
right, while it is asymmetric for mid-range ratios and then becomes more symmetric
again for large ratios.

Figure 6 shows the impact of the strength of the stochastic perturbation of the
material thickness, asmeasured by the standard deviation, again for the tracking region
on the roof plateau.

With increasing strength of the stochastic perturbation, the optimal structure
becomes more diffuse. Indeed, in a deterministic setting, the leader could aim for
a finely-structured design, but very imprecise manufacturing is likely to render it inef-
fective. In order to understand this effect, we describe an idealized situation: If the
leader concentrates mass on a single row of k elements, then a large negative fluctua-
tion in the thickness of any single one of them is sufficient to destroy the strength of the
construction. If instead, the leader distributes the mass on k2 elements filling a square,
then at least a number of order k of those (with a specific geometry, for example, a
column) must have a large negative fluctuation before the structure loses significantly
in strength.
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Fig. 6 Comparison of material distribution when varying the standard deviation σ of the material pertur-
bation while keeping the other parameters fixed. The standard deviation was σ = 5

100 , 1
10 , 2

10 from left to
right. Material thickness is shown using the color map

Fig. 7 Results for two geometrically more complex examples. In both cases, we used tracking on the entire
domain. On the left, we show the deformed configuration as a gray surfacewith the undeformed surfaces as a
translucent overlay. Furthermore, we visualize the direction of the force leading to the maximal deformation
in the cylinder. In the middle, we see the resulting material distributions using the color map .
Boundary triangles for which all vertices are Dirichlet nodes are shown in gray. On the right, the magnitude
of the deformation y is displayed using the color map . Additionally, on the far right, we show
the 2D direction of the horizontal forces

Lastly, in Fig. 7, we show two more complex examples of architectural designs of
roof structures, inspired by [38]. In the top row, we use a closed hall as the reference
geometry for our bilevel optimization problem, which fills a box of approximately
20 × 20 × 5. We limit the horizontal load with Fmax,xy = 0.005 and the vertical
load with Fmax,z = 2Fmax,xy . The elementwise bounds on the material thickness are
u− = 0.01 and u+ = 0.2. The volume of the material is bounded by V+ = 50 and
the stochastic variation is σ = 0.05. The weights of the barrier terms are αF = 10−4,
αu = 1, and αV = 10−3. In the bottom row, we use a reference geometry resembling a
double torus cut in half, which fills a box of approximately 70×50×15.Again,we limit
the horizontal loadwith Fmax,xy = 0.005 and the vertical loadwith Fmax,z = 2Fmax,xy .
The elementwise bounds on thematerial thickness are again u− = 0.01 and u+ = 0.2.

123



J. Burtscheidt et al.

The volume of the material is bounded by V+ = 330 and the stochastic variation is
σ = 0.05. The weights of the barrier terms are αF = 10−4, αu = 1, and αV = 10−1.
In both cases, we use the full domain as tracking set. The main weakness of both
structures is the concavity in the central part, which can be easily deformed by the
vertical force. Hence, in both optimized solutions, the material is redistributed to
prevent this. In the first case, this is done by building a stabilized ledge around the
center, while in the second case beam-like structures from the two “holes” and another
beam from the curve in the bottom emerge. Furthermore, in the second one, also the
“entrance” is stabilized by adding material at the ends of its arch.

5 Discussion

The findings in this article draw a line from curved roof-type constructions via model-
ing and shape optimization of discrete thin shells to pessimistic formulations of bilevel
stochastic programs. The challenge is that even in the deterministic case, it is well-
known that standard compactness assumptions fail to ensure the existence of optimal
solutions.

Assuming that the support of the underlying probability measure is compact, we
have considered stochastic parameters and assessed the random upper-level outcome
based on some (law-invariant) convex risk measure. For the pessimistic model, we
have shown continuity of the resulting risk functional if the random perturbation
admits a Lebesgue density, the set of potential forces is a polyhedron and the lower
level goal function is real analytic. Alternatively, we have investigated a regularized
model where the leader also hedges against lower level solutions that are close to
optimality. The risk functionals emerging from this regularized problem are automat-
ically lower semicontinuous. In both situations, the existence of optimal solutions can
be guaranteed under a compactness condition. We have developed a proof-of-concept
numerical implementation that applies a pessimistic bilevel strategy to a mechani-
cal optimal design problem, using a stochastic gradient descent approach to compute
locally optimal solutions of the pessimistic model.

In closing, wewould like to point out several possible directions for future research.
In the numerical optimization, it would be interesting to consider interior point meth-
ods to solve the “original” leader’s and follower’s problem which incorporate hard
constraints instead of the regularization used here. From the point of view of elastic-
ity, it would be interesting to study the nonlinear model (13) instead of its linearized
equivalent and investigate the associated nonuniqueness issue in the lower level prob-
lem. In fact, this would lead to a proper trilevel problem and bring new challenges
for theoretical and numerical investigations. Furthermore, it would be worthwhile to
investigate the infinite-dimensional variational problem of thin shell or volume elas-
ticity with appropriate function spaces and from the perspective of optimization with
continuous PDE constraints. In the present paper, “risky” decisions can be penalized
in the objective function, but the leader ensures that the perturbed material parameters
are feasible regardless of the realization, via a restriction of the design variable to the
set Uϒ . Models, where this robust constraint is replaced with a system of chance or
stochastic dominance constraints, can be expected to produce less conservative solu-
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tions, which improve the values of the leader’s cost functional at the cost of some
residual risk.
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