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Abstract

We employ a numerical simulation of the three-dimensional fluid flow and

the simultaneous transport of sediment to reproduce current-driven sediment

transport processes. In particular, the scouring at a rectangular obstacle is

investigated. To solve the instationary incompressible Navier-Stokes equa-

tions we use the code NaSt3D. The morphological change of the sediment bed

is modelled by Exner’s bed level equation, which is discretized and coupled

to the discrete fluid model, i.e., to the NaSt3D code. A large eddy turbu-

lence approach using a Smagorinsky subgrid scale tensor is applied. For our

purposes, we only consider bed load transport under clear water conditions.

Furthermore, we demonstrate mass conservation and convergence of our ap-

proach for a test case. We compare the results of our numerical simulations

for a scour mark with those obtained in a laboratory flume. The typical

sedimentary processes and the sedimentary form of a scour mark are well

captured by our numerical simulation.
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1. Introduction

Sediment transport processes and scouring effects are significant issues in hy-

draulic engineering. Usually, the physical processes of forming scour marks

and sedimentary forms are studied in laboratory flumes. Such experiments

are however time-intensive, costly and not always easy to conduct. Here,

numerical simulation can help to reduce costs and to obtain a better under-

standing of the relevant flow and transport phenomena.

Fluvial obstacle marks are mainly generated by bed load transport, which

is a driving constituent of sediment transport (Zanke, 2002). In case of

a scour mark, sediment is entrained in front of an obstacle, the luff, and

transported in the bed load layer around the obstacle. If the velocity then

gets smaller than a critical value, sediment is deposited in the lee. The type

of transport under clear water conditions is almost exclusively reptation.

The involved processes and the resulting depositional bedforms are strictly

three-dimensional. We present a numerical approach for their simulation and

discuss the obtained results.

The remainder of this paper is organized as follows. In section two, we

describe the fluid-sediment-model, which consists of the Navier-Stokes equa-

tions, the turbulence modelling approach, and Exner’s bed level equation. In

section three, we shortly discuss the numerical discretization and its proper-

ties. In section four, we compare the results of our numerical simulations to

a scour mark studied in a laboratory flume. Some conlcuding remarks are
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given in section five.

2. Model: Navier–Stokes & Exner’s bed level equation

Due to the complex three-dimensional character of the scour mark and other

bedforms, it is necessary to use a full three-dimensional flow model. To this

end, we use a single phase model. Here, for the flow problem, the instationary

incompressible Navier-Stokes equations in their dimensionless form read as

∂u

∂t
+∇ · (u⊗ u) =

1

Fr
g−∇p+

1

Re
∆u in Ωf ∈ R

3, (1a)

∇ · u = 0 in Ωf ∈ R
3, (1b)

where u denotes the velocity, p the pressure, g the volume forces.

Re =
u∞ · d

ν
(2)

denotes Reynolds number and

Fr =
u∞√
g · d (3)

the Froude number. Both numbers, Re as well as Fr, are dimensionless

numbers which characterize the flow conditions. The characteristic length

and velocity are denoted by d and u∞. As commonly used, ν stands for the

kinematic viscosity of the fluid.

To model the turbulence a Large Eddy Simulation (LES) is chosen. Details

regarding turbulence models can be found in Nezu et al. (1994). For the here

described applications LES is viewed as the optimum for accuracy, compu-

tational efficiency and handling. A Smagorinsky (1963) approach is used as
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a sub-scale model. Applying a space averaging filter (Sagaut, 2006) to the

Navier-Stokes equations (1a) yields

∂u

∂t
+∇ · (u⊗ u) =

1

Fr
g −∇p+

1

Re
∆u−∇ · τ (4)

where u and p are the filtered quantities. Equation (4) now contains the

additional sub-grid-scale tensor

τ = −νtDij (5)

where the eddy–viscosity is denoted by νt = l2|D| with D =
√

1
2
DijDij and

Dij =

(

∂ui

∂xj
+

∂uj

∂xi

)

(6)

As the characteristic length l we use

l = Cs

√

∆x2 +∆y2 +∆z2. (7)

The Smagorinsky constant Cs is set to Cs = 0.0825.

The Navier–Stokes equations are solved on a fluid domain Ωf . The bottom

of this domain is bounded by the sediment surface h(x, y). This sediment

surface h describes the height of the underlying sediment with respect to

a reference plane (x, y) further below, compare Figure 1. To model the

temporal change of the sediment surface h, we use the bed level equation

postulated by Exner (1925), i.e.

∂h

∂t
+∇ · qs(τ(u)) = 0, (8)

where qs(τ(u)) is the transport rate function of the sediment. It depends on

the shear stress τ , which is a function of the fluid velocity u. Here, the shear
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Figure 1: The sediment surface is described by the height h(x, y), i.e. the distance from a

underlying plane (x, y). Slopes are denoted by ∇h and can be computed directly. Thus,

the fluid domain Ωf is bounded by h(x, y) from below.

stress function τ(u) is needed on the sediment surface. The Exner equation

results from the conservation of mass and therefore from first principles.

It states that the net balance between gain and loss of mass in a certain

control volume results in a change of sediment height h. Several studies

using the Exner equation to investigate the evolution of the geomorphology

were conducted in, e.g. Parker (2004), Paola and Voller (2005), Kubatko

et al. (2006), Kubatko and Westerink (2007). Moreover, Coleman and Nikora

(2009) derived a version of Exner’s equation from a statistical averaging

process of a granular bed over time and in space.

The sediment surface determined by h denotes implicitly the fluid domain

Ωf . Thus, a change in h results in a change of the fluid domain Ωf . Several

models for the shear stress τ : R3 7→ R
2 and the bed load qs : R

2 7→ R
2 are
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available in the literature, see Chanson (1999). In the following, we choose

the empirically derived models (9a) and (9b)

qs =
√

(s− 1)gd350 ·
(

4τ(u)

ρf (s− 1)gd50
− τc

)
3

2

, (9a)

τ(u) =
1

8
ρs f |u|2, (9b)

where ρs denotes the sediment density, d50 is the median grain size, τc the

dimensionless critical shear stress and s = ρs/ρf with ρf as the fluid density.

The velocity u is chosen at a distance yτ from the sediment surface. The

friction parameter is set according to Chanson (1999) as

f =
64

Re
(10)

which is valid for flows with Re < 2000.

Equation (9a) is the modified version of the transport formula proposed by

Meyer-Peter and Müller (1948), which has been validated by numerous ex-

perimental studies. The modification of the Meyer-Peter-Müller formula is

proposed by Chanson (1999). Wong and Parker (2006) gave a nice review

and reanalysis of (9a). Formula (9b) was presented in Chanson (1999).

Granular media like sand or silt have the property that unstable slopes are

formed, if piled up. This instabiltity causes the surplus masses to slide down

until a stable slope angle αc establishes. This characteristic critical slope

angle is influenced by different parameters, like shape, grain size, cohesion,

moisture, and their interaction. This aspect needs to be reflected in a nu-

merical model as well. Table 1 summarizes some slope angles for different

sediment types collected from the literature (Julien, 1995).
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Table 1: Selection of values for the critical angle of repose αc (Möller et al. (2002), Julien

(1995)). The large variety and the measuring of the values under water allows only rough

estimates. This fact has to be taken into consideration when validating the numerical

experiments.

sand dry to wet 20− 45◦

gravel roundness 30− 50◦

silt & clay shape and roughness 20− 60◦

3. Numerical aspects: Discretization and Solver

For the numerical treatment of (4) and (1b), we employ the three dimensional

parallel Navier-Stokes solver NaSt3D, see Griebel et al. (1998), with its recent

improvements. NaSt3D is under development by Institute for Numerical

Simulation at the University of Bonn. It features finite differences schemes on

staggered grids like VONOS, ENO and WENO of up to fifth order for spatial

derivatives in combination with second and third order time discretization

schemes, like Adams-Bashforth and Runge-Kutta. The size of the time step

is adaptively determined to fulfill a CFL condition, which is used for the

whole spatial domain. Moreover, it uses the projection approach by Chorin

(1967), which reduces the equations (4) and (1b) in each time step to a

Poisson problem. The discretized Poisson equation reads as follows

∆dxp = f (11)

This Poisson problem is solved with a BiCG-Stab solver and after the cor-

rection of the projected velocities with ∇p a divergence-free velocity field

is achieved, which enforces the incompressibility condition of the fluid. Do-

main decomposition with ghost cells is applied to parallelize the algorithm.
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Two-phase fluid calculations are realized with a level set technique with local

volume correction methods. After the transport of the level set function a

reinitialization of the level set function is employed by solving the Hamilton-

Jacobi equation, compare Croce (2002). The Hamilton-Jacobi equation reads

as follows
∂φ

∂τ
= sign(φ0) (1− ‖∇φ‖2) (12)

where φ0 the initial level set value. Here a third order Runge-Kutta and a fifth

order WENO scheme are used. Solving this fix-point equation reconstructs a

level set function, which obeys the distance property globally. Furthermore,

a local volume correction is used to correct the volume of the level set phases

after the reinitialization. For further information see Croce (2002), Croce

et al. (2009), and Adelsberger et al. (2014). Griebel and Rüttgers (2013) and

Griebel and Rüttgers (2014) studied the parallel performance of the code and

achieved nearly optimal scale up and speed up for the NaSt3D code.

Furthermore, we discretize the bed level equation (8) similar to the setting

used in NaSt3D. We employ second order finite difference schemes (SMART,

QUICK) on a staggered spatial grid and second order explicit time discretiza-

tion schemes (Adams–Bashforth). Whenever Ωf changes in time, we have to

update the fluid domain to couple the Navier–Stokes equations (4) and (1b)

with the Exner equation (8). Here a loosely partitioned coupled approach is

used, which couples the fluid solver on a given fluid domain with the bed level

equation. The new sediment height h is treated by the first order obstacle

representation of NaSt3D, which was previously described in Griebel et al.

(1998).

Beside the discretization of the Navier–Stokes equations (4) and (1b) and
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the Exner equation (8) we have to treat the slope failure behavior of the

sand. Hill slope models are a topic of recent interest to simulate gravitational

erosion of slopes. They have to take the characteristic critical slope angle αc

into account. Typical approaches were presented in, e.g. Lee and Herrmann

(1993), Bouchaud et al. (1994), Alamino and Prado (2002), Seybold et al.

(2007) and Perron (2011). In these studies the erosion is mainly driven by

the shear stress caused by the flowing fluid. The collapse of slopes due to

Figure 2: If the slope angle surpasses the critical angle α > αc, surplus masses are dis-

tributed to the adjacent cells in each iteration step. Lateral cells are corrected with 1

12
of

the surplus masses and diagonal cells with 1

24
, which includes a safety factor of 1

2
. This

process is iterated over the whole sediment surface until the limit condition (13) is fulfilled

for each cell in each direction.

gravitation leads to a change in the calculated sediment height h. For this

reason we restrict ourself to a slope limiting algorithm which preserves the

angle, i.e. which ensures the condition

arctan(‖∇h‖2) ≤ αc (13)

and fits well to the setting of our fluid solver. Such a slope limiter is imple-
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mented as an iterative algorithm. To this end, the slope angle is calculated

locally after each physical time step of the simulation. If the critical value

αc is exceeded, the surplus masses are distributed to the adjacent cells. This

process is iterated until all local angles observe the local limit condition (13).

The schematic distribution process is illustrated in Figure 2. Note here that

our slope limiter is mass conserving, limits the slopes to the critical angle

of repose and leaves the other areas of the surface untouched, see also Fig-

ure 3. Side effects of the sliding sediment masses on the surrounding fluid

are neglected.

Figure 3: Results of 8 test simulations with slope limiting algorithm given a sediment pile

and critical angles from 25◦ to 60◦. After 10−12 iterations all angle conditions are fulfilled

while the masses are conserved.

To achieve a robust and stable algorithm for the coupled problem ((1a), (1b),

and (8)), we introduce an additional CFL condition according to Courant

et al. (1928) for the bed level equation, i.e.

∆h < min(∆x,∆y,∆z). (14)
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This condition is a restriction for the next time step and states that the

change of sediment surface ∆h := hn+1 − hn per time step ∆t must not

exceed the minimum size of a spatial cell. To ensure that the prediction

does not fail, we multiply a security factor of 0.25 with ∆t for the explicit

discretization of the sediment model. In the numerical test, we observe that

the time step size restriction from the Navier-Stokes solver is more restrictive.

Compared with the sediment time step size a factor of 10−1 was observed.

Nevertheless, if the transport parameters are chosen in extreme ranges the

time step from the sediment solver restricts the Navier-Stokes solver. Thus,

overall the minimum of both time steps is taken. Therefore the stability

of the whole algorithm is assured. In this setting the loosely partitioned

coupling algorithm reads as follows:

1. calculation of fluid properties (NaSt3D)

2. calculation of the shear stress τ and transport qs

3. solving Exner’s equation (8)

4. limiting the local slope angles iteratively

5. mapping new hαc
to geometry and adapting computational grid

A schematic view of the overall coupling is presented in Figure 4.

4. Numerical test and application to scouring at an obstacle

To test the presented algorithm and its implementation we compute a test

case as illustrated in Figure 5. Here, the domain is a box closed on four sides.

Two steps are situated at two opposing sides. Parabolic inflow and outflow

profiles are applied above these steps. Additionally a rectangular obstacle
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Figure 4: Flow chart of our loosely partitioned coupling algorithm in each time step,

the velocities from NaSt3D are used to calculate the new sediment height h, which, after

correcting to hαc
due to the slope limiter iteration, determines the new Ωf and therefore

the new fluid domain.

is placed at the right side of the box. The bottom of the box is filled with

sediment of half the height of the steps. We simulate the erosion in this water

tank for four different grid sizes (48 × 32 × 32, 72 × 48 × 48, 108 × 72 × 72

and 162× 108× 108). The results are shown in Figure 6. Due to our choice

of grids, we have the factor of 3
2
for refinement from one grid to the next.

Moreover, with this special choice of the grids it is assured that the boundary

of the physical domain is exactly resolved by all four discretizations. Thus

the discretized domain is truly the same on all grids.

The HPC cluster used to compute the result is the Siebengebirge which has 5

Dell PowerEdge R910 computing nodes with 160 Intel Xeon X7560 2.226 GHz

CPU cores and a main memory of 2560 GB in total, i.e. one computing node

contains 32 CPU cores and has 512 GB main memory. Mellanox ConnectX

Infiniband realises the MPI communication on Siebengebirge. A Linpack

performance test of the system resulted in 1349 GFlops/s with a parallel

efficiency of 93%. In the following we used 32 cores for 24 h to compute

the finest grid solution. In all time steps the residual for the solution of the

pressure equation converged to

‖f −∆dxpit‖2 = 10−10 (15)
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To measure the numerical error we interpolate the numerical solutions of h

on the first three grids (48× 32× 32, 72× 48× 48 and 108× 72× 72) to the

finest grid (162× 108× 108) and calculate the pointwise norm

‖h‖2 =

√

√

√

√

162
∑

i=1

108
∑

j=1

(

hint
i,j − hfine

i,j

)2

(16)

there. The interpolations of the coarser solutions to the finest grid were

computed with a cubic interpolation scheme. We observe that the decay of

the error is of the order (∆x)0.818, which comes close to a first order rate.

The resulting errors are presented in Figure 7. Here the first order obstacle

representation of NaSt3D, which interferes with the fluid solver during the

coupling algorithm, seems to prevent higher rates. A higher order approx-

imation technique for the geometry of the obstacles could help to improve

this rate. Another value deduced from this test scenario is the conservation

of the sediment masses. The temporal evolution of total sediment mass is

plotted in Figure 8. After 50 s the differences to the initial mass do not ex-

ceed 0.02%. Thus, the numerical schemes can clearly be considered as mass

conserving.
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Figure 5: Start configuration of the test case. A rectangular obstacle is placed in a

sediment filled box, which is closed at the sides. Parabolic inflow and outflow profiles are

applied above the steps. No-slip boundary conditions to model the friction are imposed to

the sediment surface and the obstacle. Furthermore, the steps prevent the sediment from

leaving the domain. The physical size of the domain is chosen as 243m× 162m × 162m

with an obstacle size of 40m and an inflow velocity of 3m/s. Reynolds number is set

to Re = 100. For the sedimentary properties we choose d50 = 0.1m, τc = 0.0047, and

yτ = 3.1m. With this setting the physical domain is exactly resolved on all discretization

grids.
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Figure 6: Visualization of the sediment height from top view after 50 s on the different

grids. From the left to the right and from top to bottom the resolutions are (48 × 32 ×
32, 72× 48× 48, 108× 72× 72 and 162× 108× 108). The main sedimentary features of a

scour mark at the obstacle are recovered in all resolutions. Additionally the finest example

shows fine sedimentary structures beside the obstacle.
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Figure 7: ‖ · ‖2-error of the sediment surface h after 50 s for 3 different grids on the finest

grid on our test case scenario of Figure 5. The error is of the order 0.818. The gradient of

the line was calculated by ‖ · ‖2 best approximation.
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Figure 8: Temporal evolution of the total sediment mass on the four grids. The sediment

mass is conserved up to 0.02%. The differences of the masses are in the range of the

numerical discretization error and can be regarded as numerical artefacts.
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We now apply our new numerical method to a real life problem from hydraulic

engineering, namely the scouring at an obstacle. Fluvial obstacle marks are

defined as the combination of a scour, i.e., the erosional part at an obstacle,

with its corresponding sediment ridge, i.e., the depositional part. Figure

9 shows an example of a fluvial obstacle mark at a rectangular obstacle

studied in the laboratory flume at the Department of Geography, University

of Bonn. For the numerical simulation of a fluvial obstacle mark, there are

several articles in the literature, where scouring in front of or beneath an

obstacle is computed (Link (2006), Amoudry and Liu (2009), Adhikary et al.

(2009), Huang et al. (2009), Liu and Garcia (2006)). Other numerical studies

investigated the scouring beside obstacles (Zhang et al., 2005), the erosion

in river bends (Wu and Wang, 2005) or the geomorphological evolution in

general (Long et al. (2008), Duc and Rodi (2008)). In most of these studies

the purpose was to predict the erosional process but the deposition of the

entrained material was neglected. Recent numerical works by Khosronejad

et al. (2012) and Dixen et al. (2013) studied scouring at obstacles where

both processes were considered. Our goal is to also treat both processes

and to thus give a more detailled insight into the interaction of the flow and

the sediment body. To this end, note that our model is indeed capable of

reproducing erosion as well as deposition.

We test our algorithm for an example, which is a scaled-up version of an

experiment with a rectangular obstacle (Figure 9). We consider a channel-

like computational domain of 5.0 meters width and 5.0 meters height. As

computational grid we choose 800× 100× 100. Furthermore, we choose fine

sand grains (d50 = 0.0001m) and a critical shear stress τc = 0.0001N/m2.
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The thickness of the initial sediment bed is 1.25 meters. As obstacle we model

a block of 1.0 meter in length and width, its height is 1.25 meters, compare

Figure 10. We compute a physical time of 450 s in our simulation. The

computational time is limited to 180 h on 64 CPU cores of Siebengebirge. The

boundary conditions at the sediment surface, the top, and at both side walls

are set to slip boundary conditions. This results in frictionless boundaries

for this experiment. In contrast, no-slip boundary conditions are applied to

the rectangular obstacle. For the inflow wall we apply a standard parabolic

profile. To achieve an open wall at the end we set Neumann zero boundary

condition to the outlet.

Altogether, we have a fully submerged stationary obstacle with analogous

distance to the fluid surface as in the flume experiment of Figure 9. All fluid

properties are scaled properly to achieve comparability (Table 11). Labo-

ratory flumes have to be large-dimensioned so that a sufficiently developed

flow situation establishes before the flow reaches the obstacle. To meet this

requirement we use 40 meters as the length of our flow domain in the numer-

ical simulation. The inflow velocity is set to 1m/s. The Reynolds number is

set to Re = 1000.

Furthermore, we choose the WENO fifth order scheme (Shu, 1999) to dis-

cretize the spatial parts of the flow model and we use a second order Adams–

Bashforth time scheme. For the discretization of the Exner equation we use

the SMART second order scheme (spatial) and the second order Adams–

Bashforth scheme in time. A summary of the employed parameters and the

experimental setup is given in Figure 10. A typical snapshot of the resulting

vortex system around the obstacle is presented in Figure 13. The downward
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vortex in front of the obstacle causes an increase of the shear stress and the

sediment is eroded there. As observed by Euler (2007) the sediment is en-

trained by the fluid and is transported with the inherent horseshoe vortex

system. With decreasing velocities in the lee, particles settle down and form

a symmetric ridge. Comparing Figures 12 with Figure 9, we observe an ex-

cellent agreement of our simulation results with that in the laboratory flume.

In the temporal evolution of the numerical simulation we observe an initial

increase of the shear stress in front of the obstacle. This temporal increased

shear stress causes a deepening of the scour which in turn causes a decrease

in the shear stress afterwards. The basic form of the scour mark as well as

the depositional ridge has formed in the first 75 s. After this initial phase we

observe a decrease in the intensity of τ which is distributed more regularly

over the whole domain. The decline of the shear stress and the new distri-

bution leads to a stretching of the whole bedform. The scour depth and the

height of the sediment ridge support this observation. After an intense phase

of erosion and deposition, the depth of the scour and height of the sediment

ridge tend to stabilize over the simulation time (Figure 15). The asymme-

tries of the shear stress distribution result from the turbulent flow. Despite

the small asymmetries at the tips of the sediment ridge the scour mark can

be regarded as symmetrically. These observations are in good agreement

with experimental results presented by Euler (2007) and Euler and Herget

(2011). In Figure 14 a comparison of the measured data and the numerical

simulation are given.
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Sediment height contours of scour mark from flume experiment.

Figure 9: Scour mark at a rectangular obstacle. Laboratory work in a flume, Dep. of

Geography, University of Bonn. The Flow direction is from the bottom right to the top

left corner. An erosional depression in front of and a depositional ridge behind the obstacle

show up. The size of the rectangular obstacle is (l×w× h) 1 cm× 1 cm× 1.25 cm. The

grain size of the sediment is 0.001 cm. For further details of the flume properties see Euler

and Herget (2011).
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l×w×h dimensions (in m) 40× 5× 5

uin inflow velocity 1m/s

ρf fluid density 1000 kg/m3

ρs sediment density 2650 kg/m3

d50 mean grain size 0, 0001m

τc critical shear stress 0, 0001N/m2

Resolution 800/100/100

qs transport equation MPM

Re Reynolds number 1000

dx spatial resolution 0.05m

flow (spatial) scheme WENO (5th)

sedimen (spatial) scheme SMART (2nd)

flow + sed (temporal) scheme AB (2nd)

Poisson–Solver BiCG–Stab

Figure 10: Parameters and experimental start configuration. A block (1.0m × 1.0m ×
1.25m) is placed in the middle of the domain. Flow velocity is set to 1m/s. The grid

resolution is 800× 100× 100. The distance yτ to the sediment surface where the local bed

velocities are evaluated is set to 0.1m. A critical angle of repose of α = 40◦ is chosen a as

generic value.

flume data numerical experiment

l 0.01m 1m characteristic length

u 0.135m/s 1m/s mean flow velocity

ν 1.3 · 10−6m2/s 10−3m2/s kinematic viscosity (11◦C)

Re 1038 1000 Reynolds number

Figure 11: Flow and geometry parameters for the numerical experiment in comparison with

the flume data set. The flume experiments were conducted in the laboratory flume at the

Department for Geography, University Bonn. Other results from similar experiments in

this flume were presented in Euler (2007) and Euler and Herget (2011).
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10 s 50 s

75 s 150 s

300 s 450 s

Figure 12: Shear stress τ and sediment height h over time. The flow direction in each

Figure is from right to left. Only the relevant part around the scour mark is visualized.

The inflow region which is needed to have fully developed uniform flow situation is not

shown. Starting with a plain sediment bed, the basic structure of the scour mark develops

in the first 75 s. The maximum shear stress is concentrated at the top of the evolving

sediment ridge. 23



(a) Transport rates qs at the sediment bed

(b) Simulated vortex system of the flow near the obstacle at 450 s.

Figure 13: The typical separation of the flow in front of the obstacle to the sides as

well as into downward and upward flow is well reproduced in comparison with laboratory

experiments with similar geometries from the literature, see Euler and Herget (2011). The

transport rates reflect the turbulent flow. Sediment is not in transport at locations in the

observation site where τc is not reach. Note that the transport in the scour hole is mainly

at the edges and at the sides.
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Contours of the sediment surface in the flume experiment

Isocontours of the sediment height visualized from the dimensionless numerical experiment

Figure 14: The comparison of flume measurements (top) with the numerical study (bot-

tom) show proper agreement of the computed sediment heights with the experimental

measurements. The numerical experiment reproduces the basic features of a deposition

as well as a erosion site. Furthermore small scale features are also well captured, e.g. the

crescent shaped end of the sediment ridge or the erosional parts beside the obstacle. The

scour length is slightly underestimated by the numerical experiment.
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Figure 15: Evolution of the scour depth (blue solid) and the height of the leewise sediment

ridge (red dashed). After a short intense period of redistribution of the sediment until

75 s, the depth of the scour as well as the ridge height increase slowly. A stagnation and

therefore a fully stable sediment form was not observed until the end of simulation. Similar

results were found in experimental studies conducted in a laboratory flume by Euler and

Herget (2011).

5. Conclusion

We presented a three dimensional model for current-driven sediment pro-

cesses and their resulting bedforms. Exner’s bed level equation and the

Navier–Stokes equations were discretized with a finite difference approach

on a staggered grid. To take turbulent effects into account a LES turbu-

lence model with Smagorinsky approach was implemented. A slope limiting

iterative process was introduced to secure the slope angles of the sediment.

We applied a fifth order scheme in space and a second order discretization

scheme in time. The equations were treated explicitly in each time step,

which resulted in a CFL condition and altogether gave a loosely coupled

overall algorithm. In a test case scenario we were able to show that the

sediment mass is conserved. The error analysis with successive finer grid

solutions showed that error converged with a rate of 0.818. With this algo-
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rithm, we computed a three-dimensional real life example of the scouring at

an obstacle. The numerical simulation reproduced the typical evolution of

a scour mark. The depth of the scour, the height of the ridge and the ba-

sic bed form were neatly recovered. We observed the typical vortex system

responsible for the sediment transport and its interaction with shear stress

and transport rates. These results were in good agreement with laboratory

work. Altogether, our new numerical approach promises to simulate other

real life bedforms and sedimentary processes with sufficient accuracy.
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