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lgorithmic strategies for full waveform inversion: 1D experiments
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ABSTRACT

Full-waveform seismic inversion, i.e., the iterative mini-
mization of the misfit between observed seismic data and
synthetic data obtained by a numerical solution of the wave
equation provides a systematic, flexible, general mechanism
for reconstructing earth models from observed ground mo-
tion. However, many difficulties arise for highly resolved
models and the associated large-dimensional parameter spac-
es and high-frequency sources. First, the least-squares data-
misfit functional suffers from spurious local minima, which
necessitates an accurate initial guess for the smooth back-
ground model. Second, total variation regularization meth-
ods that are used to resolve sharp interfaces create significant
numerical difficulties because of their nonlinearity and near-
degeneracy. Third, bound constraints on continuous model
parameters present considerable difficulty for commonly
used active-set or interior-point methods for inequality con-
straints because of the infinite-dimensional nature of the pa-
rameters. Finally, common gradient-based optimization
methods have difficulties scaling to the many model parame-
ters that result when the continuous parameter fields are dis-
cretized. We have developed an optimization strategy that in-
corporates several techniques address these four difficulties,
including grid, frequency, and time-window continuation;
primal-dual methods for treating bound inequality con-
straints and total variation regularization; and inexact matrix-
free Newton-Krylov optimization. Using this approach, sev-
eral computations were performed effectively for a 1D set-
ting with synthetic observations.

INTRODUCTION

We consider full-waveform seismic inversion as a strategy for the
terative minimization of the misfit between observed seismic data
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nd synthetic data, where the synthetic data are obtained by a numer-
cal solution of the wave equation. Arbitrary forward-modeling op-
rators can be used, so full-waveform inversion permits incorpora-
ion of the full physics of seismic wave propagation, including ef-
ects from anisotropy and attenuation. The resolution in frequency
nd space can be very high. The inversion algorithm is independent
f the dimensionality of the problem; so 1D, 2D, and 3D problems
an be accommodated within the same framework. The inversion
ethodology is also independent of the way the data are selected or

reprocessed. Thus, full-waveform seismic inversion provides a
ystematic, flexible, and general mechanism for reconstructing earth
odels from observed ground motion.
Full-waveform inversion can be formulated as a nonlinear optimi-

ation problem with an objective functional consisting of the differ-
nce between observed and synthetic seismic waveforms in a suit-
ble norm, usually L2. This choice is also called the output least-
quares formulation.Aregularization term acting on the earth-model
arameters is typically added to the objective functional to penalize
ariations in the model that are invisible to the data misfit. The opti-
ization is constrained by the governing forward problem �e.g.,

lastic wave propagation� and by lower and upper bounds on the
odel parameters.
In practice, however, solving full-waveform seismic inversion

roblems using nonlinear optimization methods remains a chal-
enge, particularly for high-frequency problems, precluding routine
se. This is mostly because of mathematical and numerical difficul-
ies, which include the following.

Multiple minima. — The least-squares data misfit objective
unctional is oscillatory in directions associated with wavenumber
omponents of the model that are longer than seismic wavelengths,
.e., the smooth components �Santosa and Symes, 1989�. The com-

on practice of grid-and-frequency continuation �Kolb et al., 1986;
unks et al., 1995� can be effective at avoiding local minima, but
nly when the observations contain sufficient low-frequency con-
ent to initialize the continuation process.
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WCC38 Burstedde and Ghattas
Ill-posedness. — The objective functional is relatively insensi-
ive to wavenumber components of the model that are shorter than
eismic wavelengths �i.e., the rough components�. The eigenvalues
f the linearized forward operator corresponding to these compo-
ents are nearly zero. Tikhonov regularization �Tikhonov and Ars-
nin, 1977�, which penalizes oscillatory components, addresses this
ll-posedness but blurs interfaces of layered media. Total variation
TV� regularization �Rudin et al., 1992� is very effective at resolving
harp interfaces but leads to substantially more ill-conditioned in-
erse operators.

Variational inequalities. — When infinite-dimensional inequali-
ies associated with bound constraints on continuous model parame-
ers are discretized on fine grids, very large sets of inequality con-
traints result. Active set methods �Nocedal and Wright, 1999� keep
rack of the subset of parameters that attains the bounds and solves
he inverse problem only on the parameters away from the bounds
i.e., the inactive set�. These methods can suffer from combinatorial
omplexity and can exhibit increased computing costs as the grid is
efined. Interior-point methods �Conn et al., 2000� often have better
caling properties, but good preconditioners for solving the resulting
ptimal systems remain elusive.

Scalable optimization algorithms. — Severe nonlinearities as-
ociated with waveform data-misfit objective functionals render the
east-squares optimization problem difficult to solve. The use of gra-
ient methods such as nonlinear conjugate gradients �Polak and
ibière, 1969�, in combination with adjoint computation of the gra-
ient, results in a method that is cheap to apply at each iteration
Chavent, 1974; Tarantola, 1986; Plessix, 2006� yet is only linearly
onvergent �Nocedal and Wright, 1999�. On the other hand, New-
on’s method is quadratically convergent �Deuflhard, 2004� but re-
uires solving a dense system of equations at each iteration �Pratt et
l., 1998�, which can be intractable for fine discretizations of contin-
ous model parameters.

We incorporate several techniques that address these difficulties.
o help mitigate multiple minima, we use continuation on the grid
esolution, on the frequency content, and on the length of the time
indow �Kolb et al., 1986; Bunks et al., 1995; Sirgue and Pratt,
004�. We appeal to work from image processing on primal-dual TV
egularization �Chan et al., 1999� and from optimal control theory on
rimal-dual active set strategies for bound inequalities �Hinter-
üller et al., 2003�, both of which demonstrate superior numerical

erformance relative to conventional methods. Finally, we use an in-
xact matrix-free Newton-Krylov method �Santosa and Symes,
988, 1989� that combines the curvature-exploiting properties of
ewton’s method with a computational structure resembling a gra-
ient-only method. These methods have demonstrated grid-inde-
endent convergence for 2D and 3D highly resolved inverse wave-
ropagation problems �Akcelik et al., 2002, 2003; Epanomeritakis et
l., 2008�.

The 1D seismic inverse problem has been studied extensively by
amberger et al. �1979�, Bube and Burridge �1983�, Santosa and
ymes �1985�, and Sacks and Santosa �1987�, among others. Unique
lobal solutions exist for noise-free data and Dirac-delta-shaped im-
ulses. In the band-limited case, multiple �at least weak� local mini-
a exist, although the difficulties can be addressed using specialized

echniques. On the other hand, multidimensional problems are noto-
iously difficult to solve numerically because of spurious local
Downloaded 11 Jan 2010 to 128.83.68.91. Redistribution subject to S
inima.
Although it is certainly possible and more efficient to take advan-

age of the special properties of the 1D inverse problem, such as
eparameterization in traveltime, our objective is to assess inversion
lgorithms with regularization that apply to a more general class of
nverse problems. We choose band-limited 1D experiments because
hey are simple enough to illustrate the general procedure yet exhibit

any of the difficulties prevalent in larger 2D and 3D inversions.
We present numerical experiments based on velocity models de-

ived from borehole measurements. All data are created synthetical-
y and noise free. Our results illustrate that the combination of the al-
orithms mentioned above yields a scalable, robust method. We con-
lude by solving a 1D inverse problem that spans a depth of about
00 wavelengths.

FULL-WAVEFORM INVERSION FRAMEWORK

onlinear least-squares optimization formulation

The wave equation is a second-order partial-differential equation
ith a solution in an infinite-dimensional space. Likewise, the densi-

y and elasticity parameters can be understood as members of infi-
ite-dimensional spaces. Thus, in this fully continuous setting, a
east-squares optimization problem can be posed and the first- and
econd-order necessary and sufficient conditions for its solution can
e derived. Discretizing these continuous optimality conditions and
olving them numerically is often referred to as the optimize-then-
iscretize �OTD� approach. Conversely, discretizing the forward
odeling operator and objective functional and afterward deriving

ll optimality conditions in the discrete setting is often called dis-
retize then optimize �DTO�. With appropriate discretization, both
pproaches converge to the same solution as the grid size approaches
ero, yet only DTO ensures consistency of all discrete derivatives
Gunzburger, 2003�. We therefore formulate the full-waveform in-
erse problem as a discrete constrained optimization problem of the
ollowing form:

min
u,�

J�u,�� where

J�u,��ªF�u���R���, such that A�u� f . �1�

Let u�x,t� be the wavefield in space x�� , where � �Rd is the
omputational domain. The time interval considered is t� �0,T�. Let

f�x,t� be the force corresponding to one or more seismic sources, re-
ated by the �partial differential� forward operator Au� f . The dis-
retizations of u and f are denoted by u�RKNw and f�RKNw, where

w is generally a multiple of the number of space grid points and K
he number of discrete time values. The particular �finite-difference
r finite-element� discretization used should of course be suited to
he forward modeling operator, whose discretized form reads Au �

. The nonsymmetric matrix A�A� is assumed to depend �nonlin-
arly� on a number Np of model parameters ��RNp. These can in-
lude density, seismic velocities, elastic moduli, attenuation param-
ters, and so on.

The observation term F�u� defines the measure of similarity be-
ween the synthetics u and the data u*. For output least squares, this
s a numerical quadrature formula approximating the integral
EG license or copyright; see Terms of Use at http://segdl.org/
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Fls�u��
1

2�
r
�
0

T

�u*�xr,t��u�xr,t��2dt, �2�

here xr are the receiver locations.
The second contribution �R��� is the regularization term with a

small� weight factor � � 0. In this article, we examine two possibil-
ties — Tikhonov and TV — which are derived from the following
quations in the case of a scalar elastic parameter �:

R2����
1

2
�

�

����2dx for Tikhonov, �3�

R1,������
�

�����2��dx for TV. �4�

xpression 3 generally smooths the model, whereas expression 4 al-
ows jumps yet is more difficult to handle numerically.

radient-based optimization

We derive the adjoint equation based on the Lagrangian formula-
ion of the objective functional from equation 1. The general proce-
ure is equivalent to the approach described in Plessix �2006�. As
entioned, we consider all variables to be finite-dimensional dis-

retizations of the original physical quantities.
To derive the optimality conditions for the constrained minimiza-

ion problem �equation 1�, we define a Lagrange multiplier p and
orm the Lagrangian functional:

L�p,u,��ªJ�u,���pT�A�u� f� . �5�

etting the derivatives of the Lagrangian �p,u,�L to zero with respect
o p, u, and � yields the state and adjoint equations

Au� f, ATp���uF �6�

nd the reduced gradient in �,

gü��L�pT	D�A� · �
u����R, �7�

here we introduce the differential of any function or operator g as

Dyg��y�ª lim
h→0

g�y�h�y��g�y�
h

. �8�

he differential Dyg��y� describes the change in g resulting from an
ncremental update at point y in the direction of ∆y and is a linear op-
rator acting on ∆y.

By inspecting the optimality conditions in equation 6, the quantity
can be identified as the adjoint wavefield. Note that the transpose
T naturally leads to a reverse-time propagation of the adjoint p. The

djoint source emerges as the negative gradient of the observation
erm and contains the data-misfit information.

Eliminating state and adjoint wavefields �u,p� via equation 6
ives an expression for the reduced gradient,

g���uFTA�1	D�A� · �
A�1f����R, �9�

hich is the Born approximation Fréchet kernel �Tromp et al., 2005�
n DTO formulation. Thus, the gradient can be computed by solving
or u and p in one forward and one adjoint computation, and assem-
Downloaded 11 Jan 2010 to 128.83.68.91. Redistribution subject to S
ling it through space-time inner products. Here, these relations are
erived exclusively in the discrete setting.

Gradient-based optimization methods such as nonlinear conju-
ate gradient �NCG� and limited-memory Broyden-Fletcher-Gold-
arb-Shanno �BFGS� can be implemented at this point �Nocedal and

right, 1999�. A DTO Newton method in the frequency domain is
escribed by Pratt �1999� and by Brenders and Pratt �2007�, and an
TD Newton method is described by Chen et al. �2007�. Both re-
uire explicit factorization of the Hessian matrix. A 2D application
f NCG in the OTD setting is demonstrated in Tape et al. �2007�.

NEW ALGORITHMIC STRATEGIES

Although it is impossible to eliminate all numerical difficulties in
eismic waveform inversion entirely, our goal is to identify and ad-
ress them one by one with suitable algorithms. In the following, we
iscuss Newton-Krylov optimization, i.e., the iterative solution of
he linear Newton system of equations via a Krylov subspace meth-
d �so-called inexact Newton methods; see Dembo et al. �1982� and
aad �2003��. Santosa and Symes �1988� propose this method for
eismic inversion. In this context, we also include primal-dual TV
nd active set strategies.

nexact Newton-Krylov method

Common gradient-based optimization methods have difficulties
caling to the many inversion variables that result when continuous
arameter fields are discretized. This results from two effects: the
ate of convergence of gradient-based methods is only linear, and the
onvergence constant usually deteriorates with increasing grid reso-
ution.

Newton’s method for systems of equations converges quadrati-
ally, and the convergence rate is grid independent �Allgower et al.,
986; Heinkenschloss et al., 1991; Heinkenschloss, 1993�. Howev-
r, it requires Hessian information, i.e., computing second deriva-
ives. A full derivation of first and second derivatives based on the
eak form of the underlying partial-differential equations is detailed

n Epanomeritakis et al. �2008�. In the discrete setting outlined here,
ewton’s method takes the form

���k����k�1����k������
2 L��1���L���k�, �10�

here ��k� are subsequent updates of the model parameters. The re-
uced Hessian matrix Hª��

2 L is the derivative of the reduced gra-
ient g �equation 9�. It is computed using the chain rule and substitut-
ng the state equation 6. The result is

Hª��
2 L�Eu

TA�T��u
2F�A�1Eu����

2 R

�E2�Eu
TA�TEp�Ep

TA�1Eu. �11�

he first line contains the positive definite Gauss-Newton approxi-
ation, and the second line contains the remaining second-order

erms, which can give rise to negative eigenvalues. For ease of nota-
ion, we recast the differentials �which are linear operators acting on
�� as matrices:

Eu��ª 	D�A����
u, �12�

Ep��ª 	D�AT����
p, �13�

��TE �� ªpT	D2 A���,�� �
u . �14�
2 � � �
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WCC40 Burstedde and Ghattas
his form makes it clear that the Hessian H is a dense matrix that is
ar too costly to store and factor for fine model discretizations. The
emedy is to resort to iterative �and thus inexact� Krylov solvers for
he Newton system

H����g, �15�

articularly �preconditioned� conjugate gradients �CGs� and the
teihaug variant �Dembo and Steihaug, 1983�.
In the inexact Newton-Krylov setting, CG is terminated early to

void directions of negative curvature, which guarantees a descent
irection and thus global convergence with a suitable line search; to
revent oversolving when far from the minimum; and to remain in-
ide the trust region �if this globalization variant is used�. �See Eisen-
tat and Walker �1994, 1996� and Nocedal and Wright �1999� for de-
ails.� Moreover, because CG requires only matrix-vector products,
he method can be implemented in a matrix-free manner and H is
ever stored. Instead, Hessian-vector products are formed on the fly
t each CG iteration, each of which requires three forward or adjoint
ave-propagation solutions and several projection and extension
perations �the matrices Eu and Ep and their transposes in equation
1�.

An advantage of this approach is its generality: tuning algorithmic
arameters and termination criteria alone can realize almost any
rade-off between cost per nonlinear iteration and convergence rate,
reating a continuum of methods from basic steepest descent �one
G iteration per Newton step� to full Newton �fully converged CG�.

ontinuation principles

Amajor drawback of least-squares full-waveform inversion is the
scillatory nature of the least-squares misfit functional in equation 1,
specially in 2D and 3D setups. It generally suffers from spurious lo-
al minima, which necessitates an accurate initial guess of the low-
avenumber background or significant low-frequency content of

he source. This is the most critical point in practice because accurate
nitial guesses and/or low-frequency information in the data often
re not available.

The 1D inverse problem is special in the sense that it admits a
omplete mathematical analysis. Because of the 1D geometry of the
roblem, the depth can be reparameterized in terms of traveltime.
ased on this transformation, the 1D inverse problem with a source

unction of f�z,t��� �z�� �t� has been proven to have a unique glo-
al solution �Bamberger et al., 1979; Bube and Burridge, 1983;
acks and Santosa, 1987�. However, this does not apply as soon as
oisy data or finite-frequency sources �as in this article� are intro-
uced.

Several reformulations of the inverse problem have been devel-
ped to mitigate the nonlinearity of the objective functional and to
ncrease the basin of attraction around the global minimum. Exam-
les are differential semblance optimization �DSO; Symes and Car-
zzone, 1991�, traveltime inversion �Luo and Schuster, 1991�, mi-
ration-based traveltime �MBTT; Chavent et al., 1995�, and migra-
ion velocity analysis �MVA; Symes, 2008�. In this article, we focus
n grid and frequency continuation approaches �see, e.g., Kolb et al.,
986; Bunks et al., 1995; Sirgue and Pratt, 2004�.

The convexity condition for the objective functional can be trans-
ated into the following relation involving the characteristic dimen-
ion of the inversion domain:
Downloaded 11 Jan 2010 to 128.83.68.91. Redistribution subject to S
L	
max�
cmax

fmin
, �16�

here the proportionality constant varies between 1/2 �for very pes-
imistic estimates� and small integers in our experiments. The value
is the extent �depth� of the domain, fmin is the low-frequency cutoff

f the source, and cmax is the maximum occurring wavespeed. The ef-
ective longest wavelength 
max ideally should span the whole do-
ain. This statement gives rise to the following continuation strate-

ies:

For a fixed-length domain, invert for low frequencies first and
increase the frequency in several steps.
For fixed frequency content, invert for the shallow parts first
�small L� and increase the depth in several steps.

rimal-dual TV regularization

The seismic inverse problem without regularization is ill posed,
hat is, its solution is not unique and/or the solution is unstable to per-
urbations in the data. A standard approach to make the problem
niquely solvable is to add the Tikhonov regularization term �equa-
ion 3� to the objective functional. Although this form of regulariza-
ion is easy to treat numerically, its smoothing of the parameter mod-
l by penalizing the high-wavenumber components precludes recov-
ry of steep jumps in the parameter fields.

TV regularization methods are widely used in image processing to
apture sharp interfaces �Rudin et al., 1992; Acar and Vogel, 1994�.
s defined in equation 4, the TV regularization operator and its gra-
ient read

R1,������
�

�����2��dx,

D�R1,��v���
�

�� · �v
�����2��

dx . �17�

he corresponding Hessian ��
2 R1,� is a nonlinear, heterogeneous,

ighly anisotropic operator, leading to severe numerical difficulties.
onvergence of TV in the Newton framework can be quite slow.
Following Chan et al. �1999�, we use a primal-dual variant of TV.

he main idea is to introduce a slack variable w that simplifies the
xpression for the gradient �and the Hessian�:

wª

��

�����2��
, D�R1,��v���

�

w · �vdx . �18�

he Newton iterations are modified to include the additional discrete
nknown w. Choosing the initial value w�0��0, the enhanced New-
on step corresponds to simultaneously solving the system

�L�p,u,�,w��0, �19�

w�����2�� � ���0. �20�

he condition �w�k���1 is enforced by pointwise projection �Hinter-
üller and Stadler, 2006�.
Another approach to speed up TV is the fixed-point or lagged-dif-

usivity TV iteration �Vogel and Oman, 1996; Dobson and Vogel,
EG license or copyright; see Terms of Use at http://segdl.org/



1
f

P

p
p

T
f
a
a
d

w
u
�
p
�
b
T
t
m

i
m

�

T
m
c

e

e
c
c
c

T
s
s
R
g
c

a
u
F

E

g
l
z
T
l
s
r
d
r
u

i
t
m
c

F
�
w

F
p
�
t
r

Strategies for full waveform inversion WCC41
997�. It can be emulated within the primal-dual algorithm by en-
orcing w�k��0 in each Newton iteration.

rimal-dual active set strategy

To satisfy physical constraints and to ensure stability of the wave-
ropagation solver, it is important to explicitly enforce lower and up-
er inequality bounds on the model parameters:

���z����z�����z�, z�� . �21�

he inclusion of bound constraints presents considerable difficulties
or commonly used active set or interior point methods. We resort to
primal-dual active set strategy following Hintermüller et al. �2003�
nd Hintermüller and Hinze �2006�. The essential idea is to define a
ual variable 
�z� pointwise by the relation


�max�0,
�c��������min�0,
�c��������0,

�22�

ith an arbitrary constant c � 0. Thus, a point z�� can be in the
pper active set ���z�����z��, in the lower active set ���z�

���z��, or in the inactive set �
�z��0�. From the implementor’s
oint of view, the �inner� Krylov solver for the Newton system
equation 15� is wrapped into a loop that determines the active sets
ased on 
 and solves the Newton system only over the inactive set.
his modification is invisible to the �outer� Newton update in equa-

ion 10. In conjunction with grid continuation, the convergence is
esh independent and requires only a few additional CG iterations.

1D EXPERIMENTS

In this section, we discuss the results of experiments on seismic
nverse problems governed by the 1D wave equation in the time do-

ain:

�z�
� 2

� t2u�z,t��
�

� z
��z�

�

� z
u�z,t�� f�z,t� in �  �0,T�,

u�t�0��0, u̇�t�0��0. �23�

he density ��z� is assumed known, and we invert for the elastic
odulus ��z�, which is related to the compressional wavespeed

�z�����z� /��z�. Space is discretized with piecewise linear finite
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igure 1. Density ��z� and elasticity modulus ��z�, filtered to �z
3.4-m intervals for clarity of display. The compressional

avespeeds range from 2160 to 5610 m/s.
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lements on the interval � � �0,L�. The spatial resolution for u and
p is chosen per experiment to ensure at least 10 points per shortest
xpected wavelength. The resolution for the elasticity modulus ��z�
an be chosen coarser as appropriate. We invoke the free-surface
ondition on the top end z�0 and a first-order absorbing boundary
ondition at z�L:

��z�
�

� z
u�z,t��0, z�0,

��z�
�

� z
u�z,t������z���z�

�

� t
u�z,t�, z�L . �24�

he source and receiver are located at the top �z�0�, and the
ource-time function is represented by a Ricker wavelet, taken as the
econd derivative of a Gaussian. The frequency spectrum of the
icker wavelet is characterized by its central frequency. It has negli-
ible frequency content above about three times the central frequen-
y.

We use a target earth model derived from borehole measurements
nd generate synthetic observations by solving the wave equation
sing this model. The properties of this target model are depicted in
igure 1.

xperiment A — Grid continuation and convergence

In experiment A, we demonstrate grid continuation. The initial
uess is an approximation of the true model at a coarse discretization
evel j�4, where N�2 j is the number of elements for the discreti-
ation of �. The level j is increased successively from four to seven.
he number of outer �Newton� iterations is set to five for all but the

ast stage, where it is 15. The data u*�z�0,t� are created with the
ame parameter discretization used in the inversion at the respective
efinement levels. This is an idealized setting because in reality we
o not have a choice on the roughness of the medium. It is, however,
elated to low-pass filtering of the observed and synthetic data. We
se more realistic data in experiment B.

The result from grid continuation is compared with the true model
n Figure 2. The relative root-mean-square �rms� error with respect
o the observed data is 0.49%. To give an example of the perfor-

ance of Newton’s method, we provide the iteration history for the
oarsest level in Table 1. In the beginning of the iteration, progress is
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igure 2. Target model �gray� and results obtained with NCGs �pur-
le� and Newton-Krylov �NK, blue� for level 7: model resolution �z

6.8 m, frequency � 25 Hz. Obtained with Tikhonov regulariza-
ion and grid continuation. Initial guess �yellow� is 10% too fast. The
elative data rms error is 0.88% for NCG and 0.49% for NK.
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WCC42 Burstedde and Ghattas
elatively linear. Once the iterates are sufficiently close to the opti-
um, we begin to observe quadratic convergence behavior, and the

radient g and step length are reduced almost to machine precision.
In Figure 3, we compare to inversion without continuation. We ex-

mine low- and high-wavenumber initial guesses that are 10% too
ast. Although the error in the medium is obviously large, we exam-
ne the fit of the data in Figure 4 to find that the rms errors are 6.31%
nd 18.1%, respectively. This is significantly larger than the rms er-
or obtained with grid continuation �0.49%� but still places the oscil-
ations of the signal at the correct locations.Apparently, a large mod-
l error can still provide a moderately good fit of the data, which we
ttribute to the 1D structure of this experiment.

Table 2 shows accuracy and convergence rates obtained for non-
inear conjugate gradients �NCGs� and the Newton-Krylov method
t medium — to high-resolution settings. The setup here is slightly
ifferent, using a central frequency of 50 Hz, starting with an initial
uess at level 8, and running at most 500 NCG or 20 Newton steps.
CG and Newton’s method converge reasonably well to rms errors

able 1. Convergence table for Newton-Krylov inversion in v
arameter space (level 4, 17 grid points).

ewton
teration

Gradient
g

Relative rms
error

Relative error
in �

nitial 2.01836e�02 2.13699e�01 1.00000e�01

2.82682e�02 1.97628e�01 9.68066e�02

1.44228e�02 1.26899e�01 8.27373e�02

1.30338e�02 9.35648e�02 7.36792e�02

4.73618e�03 7.09611e�02 6.92431e�02

4.20749e�03 4.82790e�02 5.54026e�02

9.07508e�04 4.78811e�02 5.54430e�02

1.66000e�03 1.47563e�02 2.67686e�02

5.33378e�04 2.92431e�03 4.06868e�03

1.83362e�05 1.62347e�04 3.12269e�04

0 1.00323e�07 5.88317e�05 1.47565e�04

1 4.53587e�11 5.89037e�05 1.47810e�04
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igure 3. Result obtained with Newton-Krylov and continuation
gray, cf. Figure 2� and two results without continuation for a low-
avenumber initial guess that is 10% too fast �purple� and for a high-
avenumber initial guess that is 10% too fast �blue�.
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round 1.5% and 2%. NCG makes more progress in the beginning
nd then slows somewhat, whereas Newton’s method starts slower
nd increases progress toward the end of the inversion. However, the
roblem appears sufficiently ill conditioned so that the quadratic
onvergence of Newton’s method does not show clearly.

We examine the eigenvalues of the Hessian matrix at all final iter-
tes and confirm that these are nonnegative. Considering the small
radient norm, this indicates the process converged to �at least a
eak local� minimum rather than a saddle point. Among the differ-

nt TV implementations, the primal-dual variant is most accurate but
lso slightly more expensive than standard and fixed-point TV. TV
eems to provide slightly lower rms errors than Tikhonov at roughly
omparable cost.

xperiment B — Time horizon continuation and TV
egularization

In reality, the low-frequency information is often limited, and the
continuation used in experiment A may be im-
practical. In experiment B, we use continuation
from short to longer observation times for a fixed
frequency that is well represented in the data set.
This corresponds to illuminating layers of in-
creasing depth.

First, we choose an initial guess that is coars-
ened to level 4 and 10% too fast on average, and a
Ricker wavelet with a fixed central frequency of
25 Hz. We use a discretization of the parameter
domain with 128 elements � j�7�. The results
are displayed in Figure 5. At the earlier stages
when depth information is limited, the Tikhonov
regularization leads to smooth models in the un-
resolved part of the domain. At the final stage
with T�1 s, the waves traverse the full model
and the structure is recovered at full depth, albeit
with less accuracy in the deeper regions. We com-
pare this result �rms 1.31%� with that obtained
from a 15% erroneous initial guess �rms 5.91%�,
which produces a significantly higher error in the
velocity model.

The results for primal-dual TV regularization
re given in Figure 6. Here, the initial guesses are 5% and 8% off, re-
pectively, resulting in rms errors �1.94% and 6.67%� comparable to
ikhonov regularization. This indicates that the basin of attraction is

arse
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igure 4. Zoom of the data resulting from inversion with continua-
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able 2. Convergence behavior of nonlinear conjugate gradients (NCGs) with Wolfe line search and Newton-Krylov method.
ikhonov regularization „� �5�10�6

…, several TV variants „� �2�10�4
…, model resolution �z�1.7 m, and frequency f

50 Hz. The three sets of rows correspond to progressive stages of the same inversion run.

NCG Newton-Krylov

Tikhonov TV Tikhonov TV Fixed-point TV Primal-dual TV

nitial rms error 35.4% 47.3% 35.4% 47.3% 47.3% 47.3%

umber Newton
terations — — 3 3 3 3

umber CG
terations 20 20 29 13 15 15

radient 9.9610�3 9.4010�3 3.3710�2 1.2910�1 1.0210�1 1.1510�1

elative rms error 9.25% 13.9% 9.40% 35.4% 32.4% 33.8%

elative error in � 13.4% 13.9% 13.3% 14.3% 14.3% 14.3%

umber Newton
terations — — 6 6 6 6

umber CG
terations 100 100 122 63 57 65

radient 5.0710�4 1.3710�3 1.4010�3 2.6410�2 2.7810�2 3.0610�2

elative rms error 3.25% 3.32% 2.25% 8.56% 11.0% 7.75%

elative error in � 12.8% 12.9% 12.5% 13.3% 13.4% 13.3%

umber Newton
terations — — 20 20 20 20

umber CG
terations 500 500 365 341 375 412

radient 8.6610�5 6.4110�4 1.7510�4 7.1210�4 1.3510�4 4.0910�4

elative rms error 2.16% 1.91% 2.24% 1.75% 1.65% 1.60%

elatine error in � 12.5% 12.3% 12.5% 12.4% 12.2% 12.3%

umber negative
urvature — — 3 5 7 5
F
r
guess that is 8% too fast �brown�, it is 6.67%.
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igure 5. Experiment B: stages of the inversion at 25 Hz, level 7 with
ikhonov regularization. Time horizon T is increased, but regular-

zation weight � is decreased �stage T�0.7 s, � �10�5 not shown�.
inal rms for the initial guess that is 10% too fast �blue� is 1.31%; for
he initial guess that is 15% too fast �brown�, it is 5.91%.

Downloaded 11 Jan 2010 to 128.83.68.91. Redistribution subject to S
6

4

2
0 100 200 300 400 500 600 700

))
z

P
a

(
µ 9

1
0

E
la

st
ic

ity
×

68.
(4

Depth z (m)

Target
0

µ (z)

Initial guesses off by 5% and 8%, resp.
−4T = 0.3 s, α = 10 , init. 5%
−4T = 0.5 s, α = 10 , init. 5%
−5T = 1 s, α = 10 , init. 5%
−5T = 1 s, α = 10 , init. 8%

igure 6. Experiment B with primal-dual TV regularization. Final
ms for initial guess that is 5% too fast �blue� is 1.94%; for the initial
EG license or copyright; see Terms of Use at http://segdl.org/



s
c
o
n
w

E
r

c
g
c
t

H
a
f
s

p
2
f
a

r
b
m
l
h
t
c
e
2
a

w
i
u
t
d
t
o

N
t
r
m
I
c
m
T
T
m
T

a
o
c
g
b
a

f
e
a
r
f

F
s
t
8

WCC44 Burstedde and Ghattas
maller for TV regularization. One can also observe that interface lo-
ations are somewhat shifted for depths greater than 500 m. On the
ther hand, in comparison to Tikhonov regularization, the model is
ot smoothed but rather is separated into steps of constant velocity,
hich can be advantageous if the true model is a layered medium.

xperiment C — Frequency continuation and high
esolution

In experiment C, we push the resolution limit in a two-stage pro-
ess. We begin with continuation on the time horizon and then use
rid and frequency continuation to reach a dominant signal frequen-
y of 100 Hz. Tikhonov regularization is used throughout this sec-
ion.

With receiver signals computed at level 7 as in experiment B, 10
z is the highest frequency that produces an inversion sufficiently

ccurate to initiate the second stage. In the second stage, we increase
requency and grid resolution in three steps. The finite-element grid
pacing and the source frequency are as follows:

Step 1 . �z�3.4 m, f �25 Hz;

0
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700

800

D
ep

th
z

(m
)

2 3 4 5 Elasticity µ(z) (4.68 × 109
Pa)

Inversion results for

Target µ0(z)

f = 25 Hz

f = 50 Hz

f = 100 Hz

igure 7. Inversion achieved through three frequency-continuation
teps, starting from a first stage result at 10 Hz. Central frequency of
he final Ricker wavelet is 100 Hz. Final grid spacing �level 10� is
6 cm.
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Step 2. �z�1.7 m, f �50 Hz;

Step 3 . �z�86 cm, f �100 Hz.

These settings apply to the generation of the data and the inversion
rocess. The final step at 100 Hz uses more than 1000 elements and
0,000 time steps. This amounts to 40 million total unknowns for the
orward and adjoint wavefields. Figure 7 indicates that the inversion
chieves subwavelength resolution ��10 m�.

DISCUSSION

The goal of our numerical experiments is to assess several algo-
ithmic strategies for full-waveform seismic inversion for a 1D test
ed problem that lends itself to carrying out the necessary experi-
ents. The experiments are conducted with a Newton-Krylov non-

inear optimization method that is versatile in the sense that it can
andle bound inequalities on the medium and use TV regularization
o allow for jumps in the medium, both without significant penalty to
onvergence or execution time. The inversion algorithm is formulat-
d in a dimensionally independent way, such that it can be applied to
D or 3D problems by changing out the forward and adjoint solvers
nd their derivatives.

Because of the band-limited source, we observe convergence to
hat is likely a local minimum when the initial guess of the medium

s outside of the basin of attraction of the global minimum �see Fig-
res 3 and 4�. This has been verified by computing all eigenvalues of
he Hessian matrix and finding them to be nonnegative, with the gra-
ient being on the order of 10�5. However, as a result of the ill-condi-
ioning of the Hessian matrix, the regime of quadratic convergence
f Newton’s method is not clearly identifiable.

We compare the Newton-Krylov inversion to the Polak-Ribière
CG algorithm. During the initial steps of the inversion, away from

he global optimum, NCG often creates steps that reduce the rms er-
or faster than Newton’s method. On the other hand, close to the opti-
al solution, Newton’s method has better convergence properties.

n particular, the number of Newton iterations is unaffected by in-
reasing the resolution, and we believe the method to be scalable to
uch larger problems. We use both Tikhonov and TV regularization.
he convergence speeds of the primal-dual TV algorithm and
ikhonov are comparable. TV yields layered instead of smooth
odels; the basin of attraction of TV seems smaller than that of
ikhonov.
Without continuation of grid, frequency, or the time horizon, we

re unable to achieve convergence. When continuation is used, we
btain agreement of the medium down to feature widths that are
omparable to the wavelength. We invert successfully using initial
uesses with up to 10% relative error. However, our results need to
e considered idealized because the data are created synthetically
nd noise free.

CONCLUSION

We have formulated a flexible, scalable strategy for full-wave-
orm seismic inversion and have assessed its performance on a 1D
xample problem. Our strategy is based on least-squares inversion
nd uses techniques to deal with spurious local minima to incorpo-
ate regularization that admits discontinuities in the model and to en-
orce inequality constraints on the model iterates.
EG license or copyright; see Terms of Use at http://segdl.org/
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To create a globally convergent method in the presence of strong
onconvexity of the objective functional, we confirm that continua-
ion from low to high source frequencies is effective. Iterative elon-
ation of the time horizon provides additional robustness.

In view of the different convergence properties of NCG and New-
on-Krylov methods, one attempt at a future algorithm could be to
egin with NCG and switch over to Newton’s method in the process.
owever, a similar behavior can be obtained within the inexact
ewton-Krylov framework because it supports variable termination

riteria that would allow working with low solver tolerances initial-
y, thus performing cheap gradient steps, and tightening the toleranc-
s toward the end for increased accuracy. A further extension could
e to consider limited-memory BFGS variants, which provide NCG
s a special case, as a preconditioner for the Newton-Krylov method.

A primal-dual implementation of TV regularization proves nu-
erically robust, is comparable in cost and accuracy to standard
ikhonov regularization, and promises a better fit when the expected
odel contains discontinuities. In response to the apparently smaller

asin of attraction of TV, using Tikhonov in the beginning of the in-
ersion process and TV for the final steps could be a valid compro-
ise. Another possiblity is to use continuation on the parameter � in

he TV operator.
Using the algorithmic strategies described in this article permits

olution of inverse problems with inaccurate initial models and a
harply varying background velocity. With central source frequen-
ies of up to 100 Hz, we can recover a 1D model derived from well
ogs to high detail. The algorithms are essentially dimension inde-
endent, so they offer the hope of making full-waveform inversion
ore practical in large-scale 2D and 3D scenarios.
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