
Extreme-Scale AMR
Carsten Burstedde∗, Omar Ghattas∗†‡, Michael Gurnis§, Tobin Isaac∗,

Georg Stadler∗, Tim Warburton‖, Lucas C. Wilcox∗
∗Institute for Computational Engineering & Sciences, The University of Texas at Austin

†Jackson School of Geosciences, The University of Texas at Austin
‡Department of Mechanical Engineering, The University of Texas at Austin

§Seismological Laboratory, California Institute of Technology
‖Department of Computational and Applied Mathematics, Rice University

Abstract—Many problems are characterized by dynam-
ics occurring on a wide range of length and time scales.
One approach to overcoming the tyranny of scales is
adaptive mesh refinement/coarsening (AMR), which dy-
namically adapts the mesh to resolve features of interest.
However, the benefits of AMR are difficult to achieve
in practice, particularly on the petascale computers that
are essential for difficult problems. Due to the complex
dynamic data structures and frequent load balancing,
scaling dynamic AMR to hundreds of thousands of cores
has long been considered a challenge. Another difficulty is
extending parallel AMR techniques to high-order-accurate,
complex-geometry-respecting methods that are favored for
many classes of problems. Here we present new paral-
lel algorithms for parallel dynamic AMR on forest-of-
octrees geometries with arbitrary-order continuous and
discontinuous finite/spectral element discretizations. The
implementations of these algorithms exhibit excellent weak
and strong scaling to over 224,000 Cray XT5 cores for
multiscale geophysics problems.

I. INTRODUCTION

Many grand challenge problems in computational sci-
ence and engineering are modeled by partial differential
equations (PDEs) that exhibit dynamics occurring on a
wide range of length and time scales. In many cases,
high resolution is required only in localized (possibly dy-
namically evolving) regions, such as near fronts, discon-
tinuities, material interfaces, reentrant corners, boundary
and interior layers, and so on. In such cases, the tyranny
of scales can in principle be overcome through adaptive
mesh refinement and coarsening (AMR) methods, which
locally and dynamically coarsen and refine the mesh
to resolve spatio-temporal features of interest, driven
by error estimates [1]–[4]. AMR methods are capable
of orders-of-magnitude reductions in the number of
unknowns arising from the discretized PDEs.

While AMR promises to help overcome the challenges
inherent in modeling multiscale problems, the benefits
are difficult to achieve in practice on petascale computers
that are essential for the most difficult of problems.
Due to complex dynamic data structures and frequent
load balancing, scaling dynamic AMR to hundreds of
thousands of processors has long been considered a

challenge, e.g. [5]. Another difficulty is extending par-
allel AMR techniques to high-order-accurate, complex-
geometry-conforming finite/spectral element methods
that are favored for many classes of elliptic and parabolic
problems (in continuous Galerkin form) and hyperbolic
problems (in discontinuous Galerkin form).

To overcome these challenges, the ALPS project was
initiated in 2007 to create a new framework for parallel,
high-order, complex-geometry dynamic AMR based on
forests of octrees. At SC08 [6], we presented our initial
implementation for single octrees on Cartesian geome-
tries, and gave some preliminary results for spherical
shells. Here, we present new algorithms for parallel
dynamic high-order-accurate AMR on forest-of-octrees
geometries. These algorithms are encapsulated in the
p4est forest-of-octrees AMR library, and the mangll
high-order discretization library that provides arbitrary-
order continuous and discontinuous finite/spectral ele-
ment discretizations on p4est meshes. Here we present
evidence that our AMR algorithms exhibit excellent
strong and weak scaling, to the full core counts of the
most powerful petascale supercomputers available today,
i.e. to over 224,000 cores on Jaguar, Oak Ridge National
Laboratory’s 2.33 petaflops Cray XT5 system. To the
best of our knowledge, our AMR algorithms and libraries
are the first to support high-order discretizations and
non-Cartesian geometries on full petascale systems.

In the following sections, we describe our parallel,
high-order, forest-of-octrees AMR algorithms (§II), as-
sess the parallel efficiency and scalability of our algo-
rithms on the full 224K-core Jaguar system (§III), and
present applications to solid earth geophysics problems
(§IV), global mantle convection with nonlinear rheology
and global seismic wave propagation. Here we give only
brief overviews of p4est and mangll and their appli-
cations to solid earth geophysics problems. A detailed
presentation of the algorithms underlying p4est is pro-
vided in [7], while more information on mangll and its
applications to seismic wave propagation can be found in
[8]. In [9] we report new geodynamic insights obtained
from the first global mantle convection simulations that

c©2010 IEEE Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this
work in other works must be obtained from the IEEE.
SC10 November 2010, New Orleans, Louisiana, USA 978-1- 4244-7558-2/10/$26.00

resolve kilometer-scale dynamics at plate boundaries;
through the use of p4est, these simulations require
three orders of magnitude fewer unknowns, reducing
what would be an exascale problem if it were solved
on a uniform mesh, to one that can be solved routinely
on a petascale system with AMR.

II. SCALABLE ALGORITHMS FOR PARALLEL AMR
ON FORESTS OF OCTREES

While AMR is critical for making tractable simula-
tions of strongly-localized multiscale problems, design-
ing effective AMR algorithms on highly parallel systems
presents formidable challenges. Parallel scalability, dy-
namic load balancing, complex domain geometries, and
high-order discretizations often lead to conflicting goals.
These goals have been approached in several different
ways in the past [5]. Here provide a brief review and then
present our new algorithms for forest-of-octrees AMR.

A. Approaches to Parallel AMR
Block-structured AMR, e.g. [10]–[17], utilizes unions

of regular grids, which permit reuse of regular grid
sequential codes. Load-balancing can be achieved by
distributing the regular grid patches to cores according
to their geometric location. However, block-structured
AMR increases numerical complexity due to possibly
overlapping patches of differing resolutions and can
be difficult to extend to high-order discretizations on
general geometries.

Unstructured AMR, on the other hand, provides
greater geometric flexibility and a straightforward path
to high-order accuracy at the cost of explicitly storing
all neighborhood relations between mesh elements; see
e.g. [18]–[20]. The challenge in these mainly tetrahedral-
based methods is to maintain element quality as the mesh
is coarsened and refined, which can generate significant
communication. Hierarchical hybrid grids [21] split the
domain into unstructured macro-elements which are then
uniformly refined; while being able to handle large
numbers of unknowns, adaptivity is confined to the
coarse scale.

Tree-based methods make use of recursive encoding
schemes while enabling hierarchical refinement (see
e.g. [22]–[27]). In this sense they strike a balance be-
tween structure and flexibility, enabling arbitrary-order
accuracy (through high-order hexahedral finite/spectral
elements along with enforcement of hanging node con-
straints) and implicitly providing good element quality
and a recursive space-filling curve ordering that enables
lightweight load balancing. Parallel octree-based algo-
rithms have recently demonstrated high scalability and
low computational overhead [6], [28]–[33]. However,
a single octree can encode only a topologically cube-
shaped domain, and thus is unsuitable for representing
general geometries.

The essential question with octree-based AMR is thus
how to represent geometries that cannot be mapped
to the unit cube. The approach we take to support
general geometries is to join multiple adaptive octrees
to create a “forest”. The forest-of-octrees approach has
been implemented previously using fully replicated mesh
storage, limiting scalability to several hundred processor
cores [34], [35]. We have developed new algorithms that
strictly adhere to fully distributed storage and thus extend
the scalability of single-octree algorithms to forests of
octrees [7]. These algorithms have been implemented
in the p4est software library; their functionality is
described below.

B. Scalable Forest-of-Octrees Parallel AMR

The term octree denotes a recursive tree structure in
which each node is either a leaf or has eight children.
Octrees can be associated with (logically) cubic domains
where nodes are called octants, and the root node
corresponds to the whole domain, which is recursively
subdivided according to the tree structure. We use the
term forest to describe a collection of such logical cubes
that are connected in a conforming manner through
faces, edges, or corners; see Figure 1 for 2D and 3D
examples.

A forest of octrees can be understood as a two-level
decomposition of a geometric domain. At the macro-
level, we decompose the domain into K conforming
subdomains, each mapped from a reference cube by a
smooth function. Specifically, we allow any manifold
that can be covered by smooth images of a finite col-
lection of K reference octrees subject to the restriction
that any macro-face or macro-edge shared between two
octrees is shared in full or not at all. This approach is
more general than domains mapped by a single octree,
since any macro-edge can be shared by any number of
octrees (not just four), and any macro-corner can be
shared by any number of octrees (not just eight). We
can thus represent such volumes as tori, spheres, and
spherical shells, and in general arbitrary volumes that can
be decomposed into hexahedral subdomains. The macro-
structure of the forest is static and shared among all cores
(which is not problematic, since the number of octrees
is generally small and independent of the problem size).

The micro-level of the forest is characterized by the
division of each octree into octants and the partition of
these octants among cores, strictly distributing octant
storage in parallel. The micro-structure contains non-
conforming (hanging) faces and edges and changes dy-
namically due to refinement, coarsening, and reparti-
tioning. We permit unconstrained size relations between
neighboring octants, and additionally provide the 2:1
balance algorithm to guarantee at most 2:1 size rela-
tions when required or preferred by the discretization

Fig. 1. Examples of forest-of-octrees domains, in which color
represents the core number. Top: 2D forest composed of five adaptive
quadtrees that represent the periodic Möbius strip. Bottom: 3D forest
composed of six adaptive octrees whose orientations are rotated with
respect to one another, with five octrees connecting through the
horizontal center axis.

scheme. Neighborhood size relations are respected both
for octants within the same octree and for octants that
belong to different octrees and connect through an octree
macro-face, -edge, or -corner.

A key concept enabling large-scale parallelism for
octree-based AMR is the space-filling curve, identified
by the traversal of an octree across its leaves. By
the equivalence of tree nodes and octants this natural
ordering of leaves corresponds to a z-shaped curve in
the geometric domain [36]. We extend this concept to
a forest of octrees by connecting the space-filling curve
between octrees, thus generating a total ordering of all
octants in the domain. This total ordering can then be
used for fast binary search, finding any of Np local
octants in O(logNp) steps. A parallel partition is created
by dividing the curve into P segments, where P is the
number of cores. To encode the parallel partition, we
share the number of octants on each core and the octree
number and coordinates of the first octant on each core;
this amounts to globally shared meta-data of just 32
bytes per core. A 2:1 balanced forest and its space-filling
curve and load-balanced partition are shown in Figure 2.

p0 p1 p1 p2

x0

y0

x1

y1

Fig. 2. One-to-one correspondence between a forest of octrees (top)
and a geometric domain partitioned into elements (bottom). The leaves
of the octrees correspond bijectively to elements that cover the domain
with neither holes nor overlaps. A left-to-right traversal of the leaves
through all octrees creates a space-filling z-curve that imposes a total
ordering of all octants in the domain. For each octree the space-filling
curve follows the orientation of its coordinate axes. In this example the
forest is partitioned among three cores, p0, p1, and p2. This partition
divides the space-filling curve and thus the geometric domain into three
segments of equal (±1) element count.

C. Core Forest-of-Octrees Algorithms

Beyond the 2:1 balance and space-filling curve-based
partitioning algorithms described above, we have de-
signed and implemented a suite of general purpose
algorithms required to enable AMR for PDEs on forest-
of-octrees meshes. These algorithms are made available
in p4est as the following functions:
New. Create an equi-partitioned, uniformly refined

forest. The initial refinement level can be as low as zero,
in this case creating only root octants with potentially
many empty cores.
Refine. Adaptively subdivide octants based on a

refinement marker or callback function, optionally once
or recursively.
Coarsen. Replace families of eight child octants by

their common parent octant where specified, once or
recursively.
Partition. Redistribute the octants in parallel, ac-

cording to a given target number of octants (optionally
weighted) for each core.
Balance. Ensure at most 2:1 size relations between

neighboring octants by local refinement where necessary.
Ghost. Collect one layer of non-local octants touch-

ing the parallel partition boundary from the outside.
Nodes. Create a globally unique numbering of all

unknowns used in high-order non-conforming nodal
polynomial discretizations.

The functions New, Refine, and Coarsen require
no communication. Partition uses the space-filling
curve to determine the prospective owners of all local
octants, which requires one call to MPI_Allgather
with one long integer per core. The octants are then
transferred point-to-point. Balance and Ghost require
communication between cores whose octants are ge-
ometrically close to each other; their communication
volumes scale roughly with the number of octants on
the partition boundaries. Ghost requires a Balance’d
mesh, and Nodes requires the Ghost layer.

D. Forest-of-Octrees Approach to General Geometries

Mapping general geometries with a collection of
transformed cubes makes it impossible to identify a
consistent orientation that encompasses all cubes. To
achieve maximum flexibility we endow each cube with
a right-handed coordinate system that can be positioned
arbitrarily in space. This approach permits rotations of
any two cubes with respect to one another. Any two
faces can meet in four different ways, and any two
edges in two. Any corner of a cube can connect to any
other corner. The number of simultaneously connecting
corners and edges is arbitrary. Periodicity is naturally
included in this scheme, either between different cubes
or connecting different faces of the same cube.

To pass information between neighboring octrees we
introduce (a) exterior octants that exist in the coordinate
system of an octree but outside of its root domain, and
(b) transformations of interior and exterior octants be-
tween octrees that connect through a macro-face, -edge,
or -corner. These transformations account for all possible
relative rotations between two neighboring octrees. An
example situation is displayed in Figure 3.

An important feature of p4est is that connectiv-
ity and neighborhood relations are computed discretely
(i.e. integer-based). No floating-point arithmetic is used,
avoiding topological errors due to roundoff. While
smooth geometries are represented by subjecting the
octrees to diffeomorphic transformations, p4est uses
these transformations only for visualization, and to pass
the geometry to an external application (such as the PDE
solver).

Combining the concepts introduced above, namely the
space-filling curve inspired by the multi-octree struc-
ture and the specification of inter-octree geometric rela-
tions and transformations, we obtain a scalable general-
geometry AMR framework that requires only minimal
globally shared meta-data, ensures good data locality and
cache efficiency, provides lightweight search facilities for
octants and owner processes, and allows for fast dynamic
adaptation and load-balancing [7]. These features lead
to excellent scalability and parallel efficiency, as will be
demonstrated in §III.

e1

e3

e4

e6

e10
f0

f3

f4

c2

c6

x

y

z

e0

e2

e5

e7

e8 e9

e11
f1f2

f5

c0
c1

c3

c4
c5

c7

x
z′

y′

x′

k k′

f

y

z

f ′

Fig. 3. Top: z-order numbering convention for an octree. The symbols
indicate corners ci, edges ei, and faces fi. Octrees have right-handed
coordinate systems that can be arbitrarily rotated in space. Octants
inherit the coordinate system from the octree they belong to. Bottom:
face connection between two octrees with non-aligned coordinate
systems. The face numbers seen from the left and right octrees k and
k′ are 2 and 4, respectively. The red octant of size 1/4 is exterior to
k and interior to k′. Its coordinates are (2,−1, 1) with respect to k
and (1, 1, 0) with respect to k′.

E. High-order PDE Discretization on Adaptive Forest-
of-Octree Meshes

At each adaptivity step, p4est creates a forest-of-
octrees-based mesh of hexahedral elements. The soft-
ware library mangll provides the functions needed
to discretize PDEs using this mesh structure created
by p4est. Many of the core functions of mangll
(e.g., creation of high-order element shape functions and
quadrature rules) do not require communication and are
straightforward to implement. However, the association
of local unknowns is more complicated, especially for
high-order elements and at 2:1 refinement boundaries.
In this section, we discuss parallel algorithms to achieve
this association of corresponding degrees of freedom.

For most applications, one layer of non-local elements,
sorted in the total order defined by the space-filling
curve, provides sufficient neighborhood information to
associate and number the unknowns. We produce such a
“ghost layer” in Ghost. (Multiple layers, for example as
needed by a semi-Lagrangian method, can be enabled by
a minor extension of Ghost.) In discontinuous Galerkin
(dG) methods, such as the one used for seismic wave
propagation in §IV-B, all unknowns are associated with
an element, resulting in discontinuous approximations.
Computing fluxes across faces requires access to un-
knowns on neighboring elements. We accomplish this by

fast binary searches in the local octant storage, or in the
ghost layer when a parallel boundary is encountered. The
rotation of coordinate systems between octrees needs to
be taken into account when aligning unknowns across
inter-octree faces. For 2:1 non-conforming faces, the
unknowns on the larger face are interpolated to align
with the unknowns on the four connecting smaller faces.

High-order continuous Galerkin (cG) discretizations
employ global basis functions that are continuous across
element boundaries. The unknowns in this formulation
can be associated with element volumes, faces, edges or
corners. A 2:1 balanced mesh contains non-conforming,
or hanging, faces and edges. A face is hanging if it is one
of four half-size faces that neighbor a full-size face; an
edge is hanging if it is one half of a full-size neighboring
edge. For a cG discretization, nodal values on half-
size faces or edges are generally not associated with
independent unknowns; instead we constrain them to
interpolate neighboring unknowns associated with full-
size faces or edges. In our algorithm Nodes we identify
independent unknowns by binary searching for neighbor
elements in local octants and the ghost layer where
necessary, and then construct a globally unique number-
ing. The independent nodes on octree boundaries need
to be canonicalized first, i.e., they are assigned to the
lowest numbered participating octree and transformed
into its coordinate system (cf. Figure 3). We use this
node numbering for our trilinear finite element mantle
convection described in §IV-A.

We have encapsulated all algorithms for cG and dG
discretizations in the mangll software library, which
interfaces to p4est through Ghost and Nodes. This
includes routines for construction of polynomial spaces,
numerical integration, and high-order interpolation on
hanging faces and edges, and parallel scatter-gather algo-
rithms for unknowns that are shared between cores. The
strict separation between adaptation and partitioning of
the forest of octrees itself, and the numerical operations
for PDE discretization, has proven to be one of the keys
to the versatility and scalability of our parallel AMR
framework.

III. ASSESSMENT OF SCALABILITY AND PARALLEL
EFFICIENCY OF AMR FRAMEWORK

First, we report two sets of results illustrating the
performance and scalability of the parallel AMR al-
gorithms presented in §II on Jaguar, the ORNL Cray
XT5 system. The first set stresses the forest-of-octrees
operations themselves using an idealized mesh. The
second set examines the performance of the algorithms
for high-order dG solution of the advection equation
on a dynamically refined and coarsened forest-of-octrees
mesh. Because the PDE is linear, scalar, and explicitly-
integrated, this provides an extreme test of parallel AMR

performance, since there are few PDE solver flops over
which to amortize the AMR operations.

The timings and performance evaluations for AMR
solution of PDEs presented in this section and the next
reflect complete end-to-end simulations, including mesh
initialization, coarsening, refinement, 2:1 balancing, par-
titioning, solution transfer between meshes, and PDE
time integration.

A. Weak Scalability of Forest-of-Octrees AMR

First, we study the weak scalability of the p4est
algorithms on a six-octree forest configuration, as seen in
Figure 1, designed to activate many types of inter-octree
connectivity pairings. Using a fractal-type refinement
derived from a uniform initial configuration (as described
in the caption of Figure 4), an increase in the refinement
level by one yields eight times as many octants. Thus,
we multiply the core count by eight for each increment
in refinement level. This results in a problem size of
approximately 2.3 million octants per core; the largest
problem contains over 500 billion octants on 220,320
cores. We display the measured runtimes of the core
p4est algorithms in Figure 4. As can be seen in
the top bar chart, the runtimes of New, Refine, and
Partition are negligible (Coarsen is not used here
but is as fast as Refine), and Balance and Nodes
consume over 90% of the total runtime. The bottom
bar chart of Figure 4 displays the absolute runtimes
of the two most expensive algorithms, Balance and
Nodes, normalized by one million octants per core.
The runtimes rise mildly from 6 seconds for 12 cores to
between 8 and 9 seconds for 220,320 cores. This yields
a parallel efficiency of 65% for Balance and 72% for
Nodes for an 18,360-fold increase in core count and
mesh size. These are excellent parallel efficiencies for
dynamic mesh adaptivity, particularly considering that
there are no PDE solver operations to offset the AMR
costs.

B. Scalability of High-Order AMR for Advection Equa-
tion

Next, we study the performance of p4est and
mangll applied to parallel dynamic mesh adaptation
for the time-dependent advection equation,

∂C

∂t
+ u · ∇C = 0, x ∈ Ω, t ∈ (0, T), (1)

with given initial condition C(x, 0) = C0(x) and
appropriate boundary conditions. The PDE (1) models
a time-dependent unknown C(x, t) (e.g., a temperature
field or chemical concentration) that is transported by a
given flow velocity field u.

We discretize (1) using an upwind nodal dG method
[37] in space and an explicit five-stage fourth-order
Runge-Kutta method [38] in time. The unknowns are

0

10

20

30

40

50

60

70

80

90

100

12 60 432 3444 27540 220320

P
er

ce
n
ta

g
e

o
f
ru

n
ti
m

e

Number of CPU cores

Partition Balance Ghost Nodes

0

2

4

6

8

10

12 60 432 3444 27540 220320

S
ec

o
n
d
s

p
er

(m
ill

io
n

el
em

en
ts

/
co

re
)

Number of CPU cores

Balance Nodes

Fig. 4. Weak scaling results for a six-octree forest on up to 220,320
cores. We define a fractal-type mesh by recursively subdividing octants
with child identifiers 0, 3, 5 and 6 while not exceeding four levels of
size difference in the forest. To scale from 12 to 220,320 cores the
maximum refinement level is incremented by one while the number
of cores is multiplied by eight. Top: Percentages of runtime for each
of the core p4est algorithms. Runtime is dominated by Balance
and Nodes while Partition and Ghost together take up less
than 10% (New and Refine are negligible and not shown). Bottom:
Performance assessed by normalizing the time spent in the Balance
and Nodes algorithms by the number of octants per core, which is
held constant at approximately 2.3 million (ideal scaling would result
in bars of constant height.) The largest mesh created contains over
5.13× 1011 octants.

associated with tensor product Legendre-Gauss-Lobatto
(LGL) points, as in the spectral element method [39]. All
integrations are performed using LGL quadrature, which
reduces the dG mass matrix to diagonal form.

To examine the scalability of p4est and mangll,
we solve (1) on a spherical shell domain using mesh
adaptivity to dynamically resolve four advecting spheri-
cal fronts. The spherical shell domain is split into six
caps as used in a cubed-sphere decomposition. Each
cap is further divided into four octrees, resulting in
24 adaptive octrees overall. The element order in this
example is 3, and the mesh is coarsened/refined and
repartitioned every 32 times steps. The weak scaling
results presented in Figure 5 reveal 70% end-to-end

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

12 30 60 120 252 504 1020 2040 4080 8160 16K 32K 65K 130K 220K

P
er

ce
nt

ag
e

of
 to

ta
l r

un
 ti

m
e

Number of CPU cores

AMR and projection Time integration

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

12 30 60 120 252 504 1020 2040 4080 8160 16K 32K 65K 130K 220K

P
ar

al
le

l e
ffi

ci
en

cy

Number of CPU cores

Normalized work per core per total run time

Fig. 5. Weak scaling for a dynamically adapted dG solution of the
advection equation (1) from 12 up to 220,320 cores. The mesh is
adapted and repartitioned, maintaining 3200 tricubic elements per core.
The maximum number of elements is 7.0 × 108 on 220,320 cores,
yielding a problem with 4.5 × 1010 unknowns. The top bar chart
shows the overhead imposed by all AMR operations, which begins at
7% for 12 cores and grows to 27% for 220,320 cores. The bottom
bar chart demonstrates an end-to-end parallel efficiency of 70% for an
increase in problem size and number of cores by a factor of 18,360.

parallel efficiency for weak scaling from 12 cores (with
2.5 million unknowns) to 220,320 cores (with 45 billion
unknowns). This problem is a severe test of the AMR
framework; not only are there few flops to hide the
parallel AMR operations behind (as mentioned above),
but the aggressive adaptivity (about 40% of the elements
are coarsened and about 5% are refined in each adaption
step of the largest run, keeping the overall number of
elements constant) results in exchange of over 99% of
the elements among cores during repartitioning at each
adaptivity step.

IV. AMR SIMULATIONS IN SOLID EARTH
GEOPHYSICS

In this section we present applications of p4est and
mangll to two problems in solid earth geophysics, one
in global mantle convection and global seismic wave

propagation.

A. Global Mantle Convection
Our first target problem, for which the AMR capa-

bilities of p4est have proven to be essential, is the
simulation of convective flow in earth’s mantle. Mantle
convection is a fundamental physical process within
earth’s interior and is the principal control on the thermal
and geological evolution of the planet. As the most
efficient heat transfer mechanism, it controls the removal
of heat from earth’s mantle and core, and hence its
cooling history. Plate tectonics, volcanism, and mountain
building are surface manifestations of this process.

Our parallel AMR algorithms are enabling the first
global mantle flow simulations that are able to resolve
the nonlinear rheology at plate boundaries, which re-
quires local mesh resolution of about 1 km. Using a
mesh with 1 km uniform resolution to discretize the
mantle would lead to O(1012) unknowns, well beyond
the reach of contemporary petascale supercomputers.
Using p4est, we have been able to reduce the number
of unknowns by over three orders of magnitude. This
has allowed us to perform ultra-high resolution global
mantle convection simulations with realistic rheological
parameters onO(104) cores. These have been instrumen-
tal for providing us with new insights into the dynamics
of plate boundaries [9] (see Figure 6).

The dynamics of mantle convection are governed by
the conservation of mass, momentum, and energy,

∇ · v = 0, (2a)

−∇ ·
[
η
(
∇v +∇v>

)
− Ip

]
= ρg, (2b)

ρcp

(
∂T

∂t
+ v · ∇T

)
−∇ · (k∇T) = ρH, (2c)

where v, p, and T are the unknown velocity, pressure,
and temperature; η = η(T,v), ρ, g, cp, k, and H
are the temperature- and strain-rate-dependent viscosity,
density, gravitational acceleration, specific heat, thermal
conductivity, and internal heat generation rate. Under
the Boussinesq approximation for a mantle with uniform
composition and the assumption that the mantle deforms
as a viscous medium, we can replace the density ρ on the
right side of (2b) by ρ0 [1− α(T − T0)], with reference
density and temperature ρ0 and T0. Various constitutive
laws are used for the mantle, but in general the viscosity
depends nonlinearly on both temperature and the second
invariant of the deviatoric strain rate tensor, i.e.,

η(v, T) = c1 exp
(c2
T

)[(
∇v +∇v>

)
:
(
∇v +∇v>

)]c3

,

with parameters ci. Additionally, the rheology often
incorporates yielding under high strain rates.

Our parallel AMR mantle convection code Rhea,
which interfaces to p4est, solves (2a)–(2c) with ap-
propriate boundary conditions [6]. Rhea discretizes the

velocity, pressure, and temperature fields with trilinear
hexahedral finite elements on a forest of 24 octrees,
which are mapped to earth’s mantle using a modified
cubed sphere transformation (see Figure 6 and the de-
scription of the shell domain in §III-B). Mantle ther-
mal transport is strongly advection-dominated; we thus
employ the streamline-upwind Petrov-Galerkin (SUPG)
scheme to stabilize the discretization of the energy equa-
tion (2c). The equal-order discretization of the Stokes
equations (2a)–(2b) is stabilized with pressure projection
[40]. Explicit integration of the energy equation decou-
ples the temperature update from the nonlinear Stokes
solve; the latter is carried out at each time step using
the updated temperature via a lagged-viscosity (Picard)
iteration. Each Picard iteration requires an (implicit)
variable-viscosity Stokes solve, which is carried out with
a MINRES Krylov solver, preconditioned in the (1,1)
block by one V-cycle of the algebraic multigrid solver
ML [41], and in the (2,2) block by a mass matrix
(with inverse viscosity) approximation of the pressure
Schur complement. Details are given in [42], where
optimal algorithmic scalability of the preconditioner is
demonstrated.

As mentioned above, we are using Rhea to carry out
the first global mantle flow simulations that resolve plate
boundaries [9]. These global models are driven entirely
by temperature variations, which are based on the ther-
mal age of the surface, seismicity-defined slabs, and
seismic tomography in the lower mantle. The use of this
present-day temperature model replaces solution of (2c).
Thus, we solve (2a)–(2b) with realistic Rayleigh number
and a nonlinear rheology that incorporates diffusion and
dislocation creep, as well as yielding at high strain rates
[9], [43]. Plate boundaries are modeled by narrow (about
10km wide) zones, for which the viscosity is lowered
by 5 orders of magnitude (see the red lines on earth’s
surface in Figure 6).

Adaptivity is carried out as follows. The initial tem-
perature field is interpolated on a finite element mesh
with about 22 million elements. First, this initial mesh
is coarsened and refined based on temperature variations.
Then, the mesh is refined down to 1–2 km element size
in the narrow low viscosity zones that model the plate
boundaries, which results in a mesh with about 90 mil-
lion elements. Iterative solution of the nonlinear Stokes
equation begins after these static AMR steps. To resolve
localized flow features as they evolve from the nonlinear
yielding rheology, we interleave the nonlinear iterations
with dynamic local mesh refinement steps. In particular,
we further refine the mesh every 2–8 nonlinear iterations
based on error indicators that involve strain rates and
(dynamically evolving) viscosity gradients. Typically, 5–
7 of these dynamic solution-adaptive (a posteriori) re-
finements are performed, resulting in meshes with about

Fig. 6. Adaptive, ultra-high resolution mantle flow simulation. Top, left: Decomposition of earth’s mantle into 24 octrees using the p4est
library. The viscosity field is shown; very narrow low-viscosity zones (red lines on the surface) indicate plate boundaries. Box 1 between the
Pacific (PAC) and the Australian (AU) plates indicates the region of the cross-section shown below. Bottom: Enlarged cross-section showing
the refinement that occurs both around plate boundaries and dynamically in response to the nonlinear viscosity and plastic failure in the region
around Fiji and Tonga (TO) in the SW Pacific. AMR, which is essential to resolve the plate boundaries, dynamically creates a mesh that
contains elements at 8 refinement levels, with finest resolution of about 1 km. A zoom into Box 2, where the Pacific plate subducts underneath
the Australian plate, is shown in the top right figure. Top, right: Viscosity and flow vectors for a zoom into the hinge zone of the Pacific
slab (indicated by Box 2). The narrow low viscosity zone (red) allows shearing of the flow and, thus, plate subduction to occur. The opposite
directions of the plates (the blue regions separated by the weak zone; arrows point in opposite directions) shows that our simulation predicts
trench rollback, as is known to occur in this region. Resolving these local phenomena is critical for global mantle flow models to fit observations;
this is the first time that a dynamic mantle flow model predicts these phenomena [9].

150–300 million finite elements. These meshes typically
contain 8 different refinement levels and about a billion
(velocity and pressure) unknowns. As the mesh adapts
and is repartitioned, all solution fields are interpolated
between meshes and redistributed according to the mesh
partition.

Figure 7 presents runtime percentages for the solution
of a typical global mantle convection problem using
Rhea as outlined above. The percentages are broken
down into AMR operations, solver time (which includes

nonlinear residual formation, Picard operator construc-
tion, and Krylov iteration matrix-vector products and
inner products), and AMG V-cycle time. As can be seen
from the table, the time spent in AMR components is
completely overwhelmed by the solver (solve + V-cycle)
time; in this case, the AMR components together require
no more than 0.12% of runtime. Thus, parallel AMR
has transformed a problem that would have required an
exascale computer to obtain 1 km uniform resolution,
to one that can fit on a petascale cluster by employing

core count 13.8K 27.6K 55.1K
solve 33.6% 21.7% 16.3%

V-cycle 66.2% 78.0% 83.4%
AMR 0.07% 0.10% 0.12%

Fig. 7. Runtime percentages for adaptive solution of global mantle
flow problem described in §IV-A on Jaguar. The first row is the
percentage of time for all solver operations (including residual forma-
tion, Picard operator construction, and Krylov iterations), excluding
the AMG V-cycle time, which is given in the second row. (The
AMG setup cost is negligible since it is performed just once per
several hundred MINRES iterations.) The third row gives the percent-
age of time for 5 data-adaptive and 5 solution-adaptive refinements
(including the p4est operations Nodes, Partition, Balance,
and Refine/Coarsen) error indicator computation and marking of
elements, and interpolation of solution fields between meshes. The
overall time spent in AMR averages a tenth of a percent while scaling
over a range of 13.8K to 55.1K cores and reaching a final adapted
mesh size of 150 million elements.

a highly-heterogeneous, dynamically-adapted mesh. Yet,
the overhead imposed by parallel AMR is completely
negligible.

B. Global Seismic Wave Propagation

Our second target problem is the simulation of seis-
mic waves propagating through coupled acoustic-elastic
heterogeneous media, both in seismically-active regions
such as Southern California, as well as at global scales.
Adaptivity is important in two ways. First, parallel
adaptive meshing is used to tailor the mesh size to the
minimum local seismic wavelength, given a description
of the elastic properties (and hence seismic wave speeds)
within the region of interest. This avoids over-refinement
and over-restrictive time step sizes, and can result in
orders of magnitude reduction in number of unknowns
for highly-heterogeneous regions, such as sedimentary
basins [28]. This adaptivity must be done online to avoid
the transfer of massive meshes. Second, we can option-
ally coarsen and refine the mesh during the simulation
to track propagating waves (Figure 8) when the sparsity
of wavefronts can be profitably exploited or to resolve
the dynamics of earthquake fault rupture.

In mixed velocity–strain form, the governing equa-
tions for elastic wave propagation through isotropic
media are

ρ
∂v

∂t
= ∇ · (2µE + λ tr(E)I) + f , (3a)

∂E

∂t
=

1
2
(
∇v +∇v>

)
, (3b)

where v and E are the unknown velocity vector and
strain tensor of the medium, and ρ, f , and I are the
mass density, body force per unit volume, and identity
tensor, respectively.

We have designed an adaptive elastic wave propa-
gation code, dGea, based on the mangll and p4est
libraries. Velocity and strain fields are discretized using

proc meshing wave prop par eff Tflops
cores time (s) per step (s) wave
32,640 6.32 12.76 1.00 25.6
65,280 6.78 6.30 1.01 52.2

130,560 17.76 3.12 1.02 105.5
223,752 47.64 1.89 0.99 175.6

Fig. 9. Strong scaling of global seismic wave propagation for a
problem with a source frequency of 0.28 Hz) on up to 224K cores of
Jaguar. Degree N = 6 elements with at least 10 points per wavelength.
Mesh consists of 170 million elements, corresponding to 53 billion
unknowns. Meshing time refers to time taken for parallel generation
of the mesh (adapted to local wave speed) prior to wave propagation
solution. Wave prop per step is the runtime per time step of the wave
propagation solver. Par eff wave denotes parallel efficiency of the wave
propagation solver (time for mesh generation is in the noise), defined
by ratio of measured to ideal speedup on an increasing number of cores
for fixed problem size. Tflops is double precision teraflops/s based on
performance counters from the PAPI library [45].

the discontinuous Galerkin method with a Godunov
flux in space [8], [37] and a five-stage fourth-order
explicit Runge-Kutta method in time [38]. The first-order
velocity-strain formulation allows us to simulate waves
propagating in acoustic, elastic and coupled acoustic-
elastic media within the same framework. We use the
same high-order nodal dG discretization as for the ad-
vection equation in §III-B.

We now study the scalability and the performance of
dGea on adaptively refined meshes for seismic wave
propagation in an earth model. Figure 9 presents strong
scaling results of dGea on up to 224K cores of Jaguar for
a problem with 53 billion unknowns. Timings are broken
down into the runtime needed to statically generate
and adapt a mesh to the earth structure and seismic
velocity (defined by the PREM model), and the average
runtime needed for a single time step for solving the
wave propagation equations. Resolving high frequencies
characteristic of broadband observations results in a need
for O(104–105) time steps. Thus, the 20–40 seconds
of runtime required to generate an adaptive mesh is
completely overwhelmed by the many hours of run-
time required to solve the wave propagation equations.
As shown in Figure 9, strong scaling from 32K to
224K cores exhibits 99% parallel efficiency. Due to
the efficiency of the algorithms underlying p4est, the
overall parallel efficiency is unchanged from 99% when
considering end-to-end simulations (i.e., adaptive mesh
generation plus wave propagation solution).

Finally, we have implemented a hybrid CPU-GPU
version of dGea, in which the wave propagation solver
runs on the GPU and p4est AMR operations execute
on the CPU. The single precision GPU version of dGea
exhibits a ∼50× speedup on an NVIDIA FX 5800 GPU
relative to a single Intel Xeon 5150 core running at
2.666 GHz. These speedups are consistent with previ-

Fig. 8. Left: Section through mesh that has been adapted lcoally according to the size of spatially-variable wavelengths; low frequency used
for illustrative purposes. The color scale corresponds to the primary wave speed in km/s. The mesh aligns with discontinuities in wave speed
present in the PREM (Preliminary Reference Earth Model) model used [44]. Middle and right: Two snapshots of waves propagating from an
earthquake source; the mesh is adapted dynamically to track propagating wavefronts.

ous experience with an efficient GPU implementation
of a dG electromagnetics wave propagation code [46].
Figure 10 assesses weak scaling on the TACC Longhorn
GPU cluster, composed of FX 5800 GPUs and Intel
Nehalem quadcore processors. For these scaling results,
a static mesh is adapted to local seismic wavelengths
of the PREM model in parallel on the CPUs, the mesh
is transferred to the GPUs, and the seismic wave prop-
agation equations are solved in parallel on the GPUs.
The wave propagation solver requires communication
among GPUs at each time step, which involves transfer
of shared data to CPUs and communication via MPI.
The table indicates 99.7% parallel efficiency in scaling
over a 32-fold increase in number of GPUs and problem
size, to 256 GPUs and 3.2 billion unknowns. While
the GPU implementation delivers a substantial ∼50×
speedup for the wave propagation solver, the CPU-
only implementation of AMR does not present any
obstacles to excellent scalability, thanks to the efficiency
and negligible overhead imposed by our parallel AMR
algorithms.

V. CONCLUSIONS

The goal of this paper has been to present and assess
the performance of new parallel AMR algorithms for
solution of PDEs that (1) respect complex geometries,
(2) support high-order accuracy, and (3) scale to the
largest parallel systems available. Results on up to 224K
cores of the Jaguar Cray XT5 demonstrate excellent
strong and weak scalability of AMR for challenging
test problems involving fractal mesh adaptation and
scalar advection. Moreover, applications of our parallel
AMR framework to multiscale problems in solid earth
geophysics exhibit at least three orders of magnitude re-
duction in problem size, making tractable global mantle
convection simulations that would otherwise require ex-

GPUs elem mesh transf wave par eff Tflops
(s) (s) prop wave

8 224048 9.40 13.0 29.95 1.000 0.63
64 1778776 9.37 21.3 29.88 1.000 5.07

256 6302960 10.6 19.1 30.03 0.997 20.3

Fig. 10. Weak scaling of GPU version of global seismic wave
propagation code on up to 256 GPUs of the TACC Longhorn cluster
for up to 6.3 million elements (3.2 billion unknowns). Degree N = 7
elements. Mesh refers to time to generate adaptive mesh in parallel on
CPUs; transf indicates the time to transfer the mesh and other initial
data from CPU to GPU memory; wave prop is the runtime in µsec
per time step per average number of elements per GPU (we normalize
by number of elements per GPU since AMR results in about 12%
variability in granularity with increasing GPU count); par eff represents
parallel efficiency measured by the degradation in normalized runtime
per GPU; and Tflops is single precision teraflops/s based on hand-
counted operations. Wallclock time averages under a second per time
step, which means that meshing time on the CPU and mesh transfer
time to the GPU are completely negligible for realistic simulations.
Longhorn is composed of 512 NVIDIA FX 5800 GPUs each with
4GB graphics memory and 512 Intel Nehalem quad core processors
connected by QDR InfiniBand interconnect.

ascale computing in the absence of AMR. In these cases,
the overhead imposed by AMR is completely negligible,
underscoring the scalability and parallel efficiency of our
AMR algorithms and libraries.

ACKNOWLEDGMENTS

This work was partially supported by NSF (OCI-
0749334, OCI-0748898, CCF-0427985, DMS-0724746,
OPP-0941678), AFOSR (FA9550-09-1-0608), and DOE
(06ER25782, 08ER25860, 08NA28615, SC0002710).
We thank Laura Alisic, George Biros, Martin Burtscher,
Rahul Sampath, and Tiankai Tu for extended discussions.
We also thank TACC for providing access to Ranger un-
der TeraGrid award MCA04N026, and the NCCS/ORNL
for early-user access to Jaguar.

REFERENCES

[1] M. Ainsworth and J. T. Oden, A posteriori error estimation in
finite element analysis, ser. Pure and Applied Mathematics (New
York). New York: John Wiley & Sons, 2000.

[2] I. Babuška and T. Strouboulis, The finite element method and its
reliability, ser. Numerical Mathematics and Scientific Computa-
tion. The Clarendon Press, Oxford University Press, New York,
2001.

[3] R. Becker and R. Rannacher, “An optimal control approach to
a posteriori error estimation in finite element methods,” Acta
Numerica, vol. 10, pp. 1–102, 2001.

[4] L. Demkowicz, J. Kurtz, D. Pardo, M. Paszyński, W. Rachowicz,
and A. Zdunek, Computing with hp Finite Elements II. Frontiers:
Three-Dimensional Elliptic and Maxwell Problems with Applica-
tions. CRC Press, Taylor and Francis, 2007.

[5] L. F. Diachin, R. Hornung, P. Plassmann, and A. Wissink,
“Parallel adaptive mesh refinement,” in Parallel Processing for
Scientific Computing, ser. Software, Environments, and Tools,
M. A. Heroux, P. Raghavan, and H. D. Simon, Eds. SIAM,
2006, no. 20, ch. 8.

[6] C. Burstedde, O. Ghattas, M. Gurnis, E. Tan, T. Tu, G. Stadler,
L. C. Wilcox, and S. Zhong, “Scalable adaptive mantle convec-
tion simulation on petascale supercomputers,” in SC ’08: Pro-
ceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis. ACM/IEEE,
2008.

[7] C. Burstedde, L. C. Wilcox, and O. Ghattas, “p4est:
Scalable algorithms for parallel adaptive mesh refinement
on forests of octrees,” 2010, submitted to SIAM Journal
on Scientific Computing. http://ccgo.ices.utexas.edu/publications/
BursteddeWilcoxGhattas10.pdf.

[8] L. C. Wilcox, G. Stadler, C. Burstedde, and O. Ghattas, “A
high-order discontinuous Galerkin method for wave propaga-
tion through coupled elastic-acoustic media,” Journal of Com-
putational Physics, 2010, submitted, http://ccgo.ices.utexas.edu/
publications/WilcoxStadlerBursteddeEtAl10.pdf.

[9] G. Stadler, M. Gurnis, C. Burstedde, L. C. Wilcox, L. Alisic, and
O. Ghattas, “The dynamics of plate tectonics and mantle flow:
From local to global scales,” 2010, Science, In press.

[10] M. J. Berger and J. Oliger, “Adaptive mesh refinement for hy-
perbolic partial differential equations,” Journal of Computational
Physics, vol. 53, no. 3, pp. 484–512, 1984.

[11] A. Calder, B. Curtis, L. Dursi, B. Fryxell, G. Henry, P. MacNeice,
K. Olson, P. Ricker, R. Rosner, F. Timmes, H. Tufo, J. Truran, and
M. Zingale, “High-performance reactive fluid flow simulations
using adaptive mesh refinement on thousands of processors,” in
SC ’00: Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis.
ACM/IEEE, 2000, pp. 56–56.

[12] G. L. Bryan, T. Abel, and M. L. Norman, “Achieving extreme res-
olution in numerical cosmology using adaptive mesh refinement:
Resolving primordial star formation,” in SC ’01: Proceedings of
the International Conference for High Performance Computing,
Networking, Storage, and Analysis. ACM/IEEE, 2001.

[13] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke,
E. Seidel, and J. Shalf, “The Cactus framework and toolkit:
Design and applications,” in Vector and Parallel Processing –
VECPAR ’2002, 5th International Conference. Springer, 2003.

[14] J. Luitjens, B. Worthen, M. Berzins, and T. Henderson, “Scalable
parallel AMR for the Uintah multiphysics code,” in Petascale
Computing Algorithms and Applications, D. Bader, Ed. Chap-
man and Hall/CRC, 2007.

[15] P. Colella, D. Graves, N. Keen, T. Ligocki, D. F. Martin,
P. McCorquodale, D. Modiano, P. O. Schwartz, T. D. Stern-
berg, and B. Van Straalen, Chombo Software Package for AMR
Applications. Design Document., Applied Numerical Algoirthms
Group, NERSC Division, Lawrence Berkeley National Labora-
tory, Berkeley, CA, May 2007.

[16] P. Colella, J. Bell, N. Keen, T. Ligocki, M. Lijewski, and B. van
Straalen, “Performance and scaling of locally-structured grid

methods for partial differential equations,” Journal of Physics:
Conference Series, vol. 78, pp. 1–13, 2007.

[17] J. Luitjens and M. Berzins, “Improving the performance of Uin-
tah: A large-scale adaptive meshing computational framework,”
in Proceedings of the 24th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2010.

[18] J. E. Flaherty, R. M. Loy, M. S. Shephard, B. K. Szymanski, J. D.
Teresco, and L. H. Ziantz, “Adaptive local refinement with octree
load balancing for the parallel solution of three-dimensional con-
servation laws,” Journal of Parallel and Distributed Computing,
vol. 47, no. 2, pp. 139–152, 1997.

[19] C. D. Norton, J. Z. Lou, and T. A. Cwik, “Status and directions
for the pyramid parallel unstructured amr library,” in Proceedings
of the 15th IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS), 2001, p. 120.

[20] O. S. Lawlor, S. Chakravorty, T. L. Wilmarth, N. Choudhury,
I. Dooley, G. Zheng, and L. V. Kalé, “ParFUM: a parallel
framework for unstructured meshes for scalable dynamic physics
applications,” Engineering with Computers, vol. 22, no. 3, pp.
215–235, 2006.

[21] B. Bergen, F. Hülsemann, and U. Rüde, “Is 1.7×1010 unknowns
the largest finite element system that can be solved today?” in
SC ’05: Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis.
ACM/IEEE, 2005.

[22] M. Griebel and G. W. Zumbusch, “Parallel multigrid in an
adaptive PDE solver based on hashing and space-filling curves,”
Parallel Computing, vol. 25, pp. 827–843, 1999.

[23] S. Popinet, “Gerris: a tree-based adaptive solver for the incom-
pressible Euler equations in complex geometries,” Journal of
Computational Physics, vol. 190, no. 2, pp. 572–600, 2003.

[24] J. R. Stewart and H. C. Edwards, “A framework approach for
developing parallel adaptive multiphysics applications,” Finite
Elements in Analysis and Design, vol. 40, no. 12, pp. 1599–1617,
2004.

[25] D. Rosenberg, A. Fournier, P. Fischer, and A. Pouquet,
“Geophysical-astrophysical spectral-element adaptive refinement
(GASpAR): Object-oriented h-adaptive fluid dynamics simula-
tion,” Journal of Computational Physics, vol. 215, no. 1, pp.
59–80, 2006.

[26] A. Laszloffy, J. Long, and A. K. Patra, “Simple data management,
scheduling and solution strategies for managing the irregularities
in parallel adaptive hp finite element simulations,” Parallel Com-
puting, vol. 26, pp. 1765–1788, 2000.

[27] M. Paszynski, D. Pardo, C. Torres-Verdı́n, L. Demkowicz, and
V. Calo, “A parallel direct solver for self-adaptive hp-finite
element method,” Journal of Parallel and Distributed Computing,
vol. 70, pp. 270–281, 2010.

[28] V. Akçelik, J. Bielak, G. Biros, I. Epanomeritakis, A. Fernandez,
O. Ghattas, E. J. Kim, J. Lopez, D. R. O’Hallaron, T. Tu, and
J. Urbanic, “High resolution forward and inverse earthquake
modeling on terascale computers,” in SC ’03: Proceedings of
the International Conference for High Performance Computing,
Networking, Storage, and Analysis. ACM/IEEE, 2003, Gordon
Bell Prize for Special Achievement.

[29] T. Tu, D. R. O’Hallaron, and O. Ghattas, “Scalable parallel octree
meshing for terascale applications,” in SC ’05: Proceedings of
the International Conference for High Performance Computing,
Networking, Storage, and Analysis. ACM/IEEE, 2005.

[30] H. Sundar, R. S. Sampath, S. S. Adavani, C. Davatzikos, and
G. Biros, “Low-constant parallel algorithms for finite element
simulations using linear octrees,” in SC ’07: Proceedings of
the International Conference for High Performance Computing,
Networking, Storage, and Analysis. ACM/IEEE, 2007.

[31] C. Burstedde, O. Ghattas, G. Stadler, T. Tu, and L. C. Wilcox,
“Towards adaptive mesh PDE simulations on petascale comput-
ers,” in Proceedings of Teragrid ’08, 2008.

[32] R. S. Sampath, S. S. Adavani, H. Sundar, I. Lashuk, and
G. Biros, “Dendro: Parallel algorithms for multigrid and AMR
methods on 2:1 balanced octrees,” in SC ’08: Proceedings of

the International Conference for High Performance Computing,
Networking, Storage, and Analysis. ACM/IEEE, 2008.

[33] R. S. Sampath and G. Biros, “A parallel geometric multigrid
method for finite elements on octree meshes,” SIAM Journal on
Scientific Computing, vol. 32, no. 3, pp. 1361–1392, 2010.

[34] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey,
“libMesh: A C++ library for parallel adaptive mesh re-
finement/coarsening simulations,” Engineering with Computers,
vol. 22, no. 3–4, pp. 237–254, 2006.

[35] W. Bangerth, R. Hartmann, and G. Kanschat, “deal.II – a general-
purpose object-oriented finite element library,” ACM Transactions
on Mathematical Software, vol. 33, no. 4, p. 24, 2007.

[36] G. M. Morton, “A computer oriented geodetic data base; and a
new technique in file sequencing,” IBM Ltd., Tech. Rep., 1966.

[37] J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin
Methods: Algorithms, Analysis, and Applications, ser. Texts in
Applied Mathematics. Springer, 2008, vol. 54.

[38] M. H. Carpenter and C. A. Kennedy, “Fourth-order 2N-
storage Runge-Kutta schemes,” NASA Langley Research Center,
Hampton, Virginia 23681-0001, NASA Technical Memorandum
109112, June 1994.

[39] M. Deville, P. Fischer, and E. Mund, High-Order Methods
for Incompressible Fluid Flow, ser. Cambridge Monographs on
Applied and Computational Mathematics. Cambridge University
Press, 2002, vol. 9.

[40] C. Dohrmann and P. Bochev, “A stabilized finite element method
for the Stokes problem based on polynomial pressure projec-
tions,” International Journal for Numerical Methods in Fluids,
vol. 46, pp. 183–201, 2004.

[41] M. Gee, C. Siefert, J. Hu, R. Tuminaro, and M. Sala, “ML 5.0
smoothed aggregation user’s guide,” Sandia National Laborato-
ries, Tech. Rep. SAND2006-2649, 2006.

[42] C. Burstedde, O. Ghattas, G. Stadler, T. Tu, and L. C. Wilcox,
“Parallel scalable adjoint-based adaptive solution for variable-
viscosity Stokes flows,” Computer Methods in Applied Mechanics
and Engineering, vol. 198, pp. 1691–1700, 2009.

[43] M. Billen and G. Hirth, “Rheologic controls on slab dynamics,”
Geochemistry, Geophysics, Geosystems, vol. 8, p. Q08012, 2007.

[44] A. M. Dziewonski and D. L. Anderson, “Preliminary reference
earth model,” Physics of the Earth and Planetary Interiors,
vol. 25, no. 4, pp. 297–356, 1981.

[45] “Performance applications programming interface (PAPI).”
[Online]. Available: http://icl.cs.utk.edu/papi/

[46] A. Klöckner, T. Warburton, J. Bridge, and J. S. Hesthaven, “Nodal
discontinuous Galerkin methods on graphics processors,” Journal
of Computational Physics, vol. 228, no. 21, pp. 7863–7882, 2009.

