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1 INTRODUCTION

The advent of the age of petascale computing brings un-
precedented opportunities for breakthroughs in scien-
tific understanding and engineering innovation. How-
ever, the raw performance made available by petas-
cale systems is by itself not sufficient to solve many
challenging modeling and simulation problems. For
example, the complexity of solving evolutionary par-
tial differential equations scales as n4 at best, where
n is the number of mesh points in each spatial direc-
tion.1 Thus, the three-orders-of-magnitude improvement
in peak speed of supercomputers over the past dozen
years has meant just a factor of 5.6 improvement in
spatio-temporal resolution—not even three successive re-
finements of mesh size. For many problems of scien-
tific and engineering interest, there is a desire to in-
crease resolution of current simulations by several or-
ders of magnitude. As just one example, current long-
range climate models operate at O(300) km resolution;
yet, O(10) km grid spacing is desirable to obtain predic-
tions of surface temperature and precipitation in suffi-
cient detail to analyze the regional and local implications
of climate change, and to resolve oceanic mesoscale ed-
dies [9]. Thus, although supercomputing performance
has outpaced Moore’s Law over the past several decades
due to increased concurrency [9], the curse of dimen-
sionality imposes much slower scientific returns; e.g. im-
provement in mesh resolution grows at best with the one-
fourth power of peak performance in the case of evolu-
tionary PDEs.

The work requirements of scientific simulations typ-
ically scale as nα. The power α can be reduced through
the use of optimal solvers such as multigrid for PDEs and
fast multipole for integral equations and N-body prob-
lems. Once α has been reduced as much as possible, fur-
ther reductions in work can be achieved only by reduc-
ing n itself. This can be achieved in two ways: through
the use of adaptive mesh refinement/coarsening (AMR)
strategies, and by invoking higher order approximations
(in space and time). The former place mesh points only
where needed to resolve solution features, while the latter

1Optimal solvers require O(n3) work per time step, and time accu-
rate integration often implies O(n) time steps.

reduce the number of necessary mesh points to achieve a
given accuracy.

Fortunately, many problems have local multiscale
character, i.e. resolution is needed only in localized (pos-
sibly dynamically evolving) regions, such as near fronts,
discontinuities, material interfaces, reentrant corners,
boundary and interior layers, and so on. In this case,
AMR methods can deliver orders-of-magnitude reduc-
tions in number of mesh points, e.g., [1, 2, 5, 10]. Unfor-
tunately, AMR methods can also impose significant over-
head, in particular on highly parallel computing systems,
due to their need for frequent re-adaptation and load-
balancing of the mesh over the course of the simulation.
Because of the complex data structures and communica-
tion patterns and frequent communication and data re-
distribution, scaling dynamic AMR to tens of thousands
of processors has long been considered a challenge.2

AMR methods generally fall into two categories,
structured (SAMR) and unstructured (UAMR) (see the re-
view in [11] and the references therein). SAMR methods
represent the PDE solution on a composite of hierarchi-
cal, adaptively-generated, (logically-) rectangular, struc-
tured grids. This affords reuse of structured grid sequen-
tial codes by nesting the regular grids during refinement.
Moreover, higher performance can be achieved due to
the regular grid structure. SAMR methods maintain con-
sistency and accuracy of the numerical approximation
by carefully managing interactions and interpolations be-
tween the nested grids, which makes high-order-accurate
methods significantly more difficult to implement than
in the single-grid case. The resulting communications,
load balancing, and grid interactions present challenges
in scaling to O(104) processors. Exemplary SAMR im-
plementations that have scaled to several thousand pro-
cessors include Chombo [8], PARAMESH [7], and SAM-
RAI [21].

2For example, the 1997 Petaflops Algorithms Workshop [3] assessed
the prospects of a number of high performance computing algorithms
scaling to petaflops computers. Algorithms were classified according
to Class 1 (scalable with appropriate effort), Class 2 (scalable provided
significant research challenges are overcome), and Class 3 (possess-
ing major impediments to scalability). The development of dynamic
grid methods—including mesh generation, mesh adaptation and load
balancing–were designated Class 2, and thus pose a significant research
challenge. In contrast, static-grid PDE solvers were classified as Class 1.



In contrast to SAMR, UAMR methods typically em-
ploy a single (often conforming) mesh that is locally
adapted by splitting and/or aggregating (often tetrahe-
dral) elements. As such, high-order accuracy is achieved
naturally with, e.g., high order finite elements, and the
unstructured nature of the tetrahedra permits bound-
ary conformance. Furthermore, the conforming property
of the mesh eliminates the need for interpolations be-
tween grid levels of SAMR methods. The challenge with
UAMR methods is to maintain element quality while
adapting the mesh, which is particularly difficult to do
in parallel due to the need to coordinate the coarsen-
ing/refinement between processors. As in SAMR, dy-
namic load-balancing, significant communication, and
complex data structures must be overcome. Exemplary
UAMR implementations include Pyramid [16] and the
work of the RPI group [12].

In this paper, we present ALPS (Adaptive Large-scale
Parallel Simulations), a library for parallel octree-based
dynamic mesh adaptivity and redistribution that is de-
signed to scale to hundreds of thousands of compute
cores. ALPS uses parallel octree-based non-overlapping
hexahedral finite element meshes and dynamic load bal-
ancing based on space-filling curves. Flexibility of the
mesh is attained by associating a hexahedral finite ele-
ment to each octree leaf. This approach combines the ad-
vantages of UAMR and SAMR methods. Like UAMR,
a conforming approximation is achieved, though here
the mesh itself is not conforming; instead, algebraic con-
straints on hanging nodes impose continuity of the solu-
tion field across coarse-to-fine element transitions. Thus,
high-order approximations (with fixed polynomial de-
gree) are naturally accommodated. Communication is
significantly reduced compared to SAMR, since inter-
polations from coarse to fine elements are limited to
face/edge information and occur just once each mesh adap-
tation step, since a single mesh is used to represent the so-
lution at each time step. On the other hand, like SAMR,
mesh quality is not an issue, since refinement and coars-
ening result from straightforward splitting or merging of
hexahedral elements.

We assess the performance of ALPS for adaptive so-
lution of dynamic advection-dominated transport prob-
lems with sharp fronts. Using TACC’s Ranger system, we
demonstrate excellent weak and strong scalability on up
to 32K cores and 4.3 billion elements. All of the timings
and performance evaluations presented in this paper cor-
respond to entire end-to-end simulations, including mesh
initialization, coarsening, refinement, octree 2:1 balanc-
ing, octree partitioning, field transfer, hanging node con-
straint enforcement, and explicit PDE solution. The re-
sults show that, with careful algorithm design and imple-
mentation, the cost of dynamic adaptation can be made
small relative to that of PDE solution, even for meshes
(and partitions) that change drastically over time. Scala-
bility to O(104) cores follows.

In the remainder of this paper, we provide an
overview of our approach and present performance stud-

ies. Section 2 describes the essential AMR components of
ALPS, while Section 3 provides a discussion of the strat-
egy employed for dynamic adaptivity. Assessments of
load balance and weak and strong scalability are pro-
vided in Section 4.

2 PARALLEL OCTREE-BASED ADAPTIVE MESHING

In this section we describe the essential components of
ALPS. The design of our library supports many mesh-
based PDE discretization schemes, such as low- and high-
order variants of finite element, finite volume, spectral
element, and discontinuous Galerkin methods, though
only finite element methods on trilinear hexahedral ele-
ments are currently implemented. We build on prior ap-
proaches to parallel octree mesh generation [19, 20], and
extend them to accommodate dynamic solution-adaptive
refinement and coarsening. This requires separating the
octree from the mesh data structures. Specifically, adap-
tation and partitioning of the mesh are handled through
the octree structure, and a distinct mesh is generated from
the octree every time the mesh changes.

Nonconforming hexahedral meshes of a given rect-
angular domain are generated for use with a trilinear fi-
nite element discretization, and solution fields are made
conforming via algebraic continuity constraints on hang-
ing nodes as mentioned in the Introduction. These con-
straints are eliminated at the element level, so variables at
the hanging nodes are no longer degrees of freedom for
the solver. We maintain a global 2-to-1 balance condition,
i.e., the edge lengths of face- and edge-neighboring ele-
ments may differ by at most a factor of 2. This ensures
smooth gradations in mesh size, and simplifies the in-
corporation of algebraic constraints. Octree-based refine-
ment/coarsening of hexahedral finite element meshes
with hanging node constraints has been employed in
such parallel finite element libraries as deal.II [4], libMesh
[14], hp3d [10], and AFEAPI [15], and have been demon-
strated to scale to well to hundreds of processors. Here,
our focus is on new distributed data structures, paral-
lel algorithms, and implementations that scale to O(104)
cores. These are discussed in the remainder of this sec-
tion.

2.1 OCTREES AND SPACE-FILLING CURVES

All coarsening and refinement information is maintained
within an octree data structure, in which there is a one-to-
one correspondence between the leaves of the octree and
the hexahedral elements of the mesh (see Figure 1). The
root of the octree represents an octant of the size of the
computational domain. The leaves of the octree represent
the elements which are present in the current mesh. The
parents of these leaves are used to determine the relation-
ships between the leaves. When an element is refined, it
is split into eight equal-sized child elements. This is rep-
resented in the octree by adding eight children to the leaf



Figure 1: Illustration of the distinct octree and mesh data struc-
tures used in ALPS. The data structures are linked logically
by a 1-to-1 correspondence between leaves and elements. (A
quadtree is show for display purposes.)

Proc 0 Proc 1 Proc 2

Figure 2: A pre-order traversal of the leaves of the octree in
the sequence of triples (z, y, x) creates a space-filling curve in
z-order. This imposes a total ordering of the mesh elements,
also known as Morton ordering. A load-balanced partition of
the octree is determined by partitioning the space-filling curve
into segments of equal length. The globally shared information
required for this operation amounts to one long integer per core.

octant representing the element being divided. A coars-
ening operation amounts to removing all children with
a common parent. The operations defined on the octree
and the mesh are detailed below.

Most of the AMR functions in ALPS operate on the
octree from which the mesh is generated. Since we target
large parallel systems, we cannot store the full octree on
each core. Thus, the tree is partitioned across cores. As
we will see below, cores must be able to determine which
core owns a given leaf octant. To this end we rely on a
space-filling curve, which provides a globally unique lin-
ear ordering of all leaves. As a direct consequence, each
core stores only the range of leaves each other core owns.
This can be determined by an MPI Allgather call on
an array of long integers with a length equal to the num-
ber of cores. This is the only global information that is
required to be stored. We use the Morton ordering as
the specific choice of space-filling curve. It has the prop-
erty that nearby leaves tend to correspond to nearby el-
ements given by the pre-order traversal of the octree, as
illustrated in Figure 2.

The basic operations needed for mesh generation and
adaptation require each core to find the leaf in the octree
corresponding to a given element. If the given element
does not exist on the local core, the remote core that owns
the element must be determined. This can be done ef-
ficiently given the linear order of the octree; see [20] for
details. The inverse of this operation, determining the

element corresponding to a given leaf, can be made effi-
cient as well.

2.2 MESH GENERATION AND ADAPTATION

The generation of the mesh comprises several distinct
steps. There are two scenarios in which a mesh is gen-
erated: the first is the initial generation of the mesh, and
the second is the generation of a mesh from an adapted
octree. As we will see, the adaptation of the mesh in
conjunction with the transfer of data fields requires an
intermediate mesh to be generated. Figure 3 shows the
five functions required to generate a new mesh in ALPS.
These functions are described in more detail in Section
2.3. Note that the first four operate on the parallel octree,
and only the last generates the mesh data structure.

When generating a mesh from an adapted octree,
the interpolation of element fields between old and new
meshes necessitates additional functions. The procedure
for adapting the mesh works as follows. First, a given
octree is coarsened and refined based on an application-
dependent criterion, such as an error indicator. Next, the
octree is “balanced” to enforce the 2-to-1 adjacency con-
straint. After these operations, a mesh is extracted so
that the relevant finite element fields can be transferred
between meshes. Following this, the adapted mesh is
partitioned and the finite element fields are transferred
to neighboring cores following their associated leaf parti-
tion. Figure 4 illustrates this process.

2.3 AMR FUNCTIONS

Below we highlight the key features of the functions used
to build and adapt the octree and mesh in an applica-
tion code. Here, “application code” refers to a code for
the numerical discretization and solution of PDEs built
on meshes generated from the octree.

NEWTREE. This algorithm is used to construct a new
octree in parallel. This is done by having each core grow
an octree to an initial coarse level. (This level is several
units smaller than the level used later in the simulation.)
At this point, each core has a copy of the coarse octree,
which is then divided evenly between cores. The cores
finish by pruning the parts of the tree they do not own, as
determined by the Morton order. This is an inexpensive
operation which requires no communication.

COARSENTREE/REFINETREE. Both COARSENTREE
and REFINETREE work directly on the octree and are
completely local operations requiring no communication.
On each core, REFINETREE traverses the leaves of the
local partition of the octree, querying the application
code whether or not a given leaf should be refined.
If so, eight new leaves are added to the level beneath
the queried octant. COARSENTREE follows a similar
approach examining the local partition of the octree for
eight leaves from the same parent that the application
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Figure 3: Functions for initial mesh generation. Blue boxes correspond to functions that operate on the octree only; cyan boxes
denote functions that act between the octree and the mesh; and mesh and data field operations are enclosed in orange boxes.
Solid arrows represent the flow of function calls; dashed arrows signify the input and output of mesh and/or data fields.
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Figure 4: Functions for mesh adaptation. Colors and arrows as in Figure 3, augmented by green boxes for functions that act on the
mesh and the application data fields only.

code has marked for coarsening. Note that we do
not permit coarsening of a set of leaf octants that are
distributed across cores. This is a minor restriction, since
the number of such leaf sets is at most one less than the
number of cores. Both COARSENTREE and REFINETREE
work recursively; that is, multiple levels of leaves can be
removed or added in one invocation of the function.

BALANCETREE. Enforcing the 2-to-1 size difference
constraint between adjacent elements, also known as bal-
ancing the tree, is done with the parallel prioritized rip-
ple propagation algorithm described in [20]. The algo-
rithm uses a buffer to collect the communication requests
as it balances the octree one refinement level at a time.
This buffering aggregates all of the communication so
that the number of communication rounds scales linearly
with the number of refinement levels.

PARTITIONTREE. Dynamic partitioning of the octree
for load-balance is a key operation that has to be per-
formed frequently throughout a simulation as the mesh
is adapted. The goal of this function is to assign an equal
number of elements to each core while keeping the num-
ber of shared mesh nodes between cores as small as pos-
sible. The space-filling curve offers a natural way of par-
titioning the octree, and hence mesh, among cores. The
curve is divided into one segment per core according to
the total ordering. The result is a partition with good lo-
cality properties, i.e., neighboring elements in the mesh
tend to be found on the same core.

EXTRACTMESH. This function builds the mesh from a
given octree and sets up the communication pattern for

the application code. Unique global ordering of the el-
ements and degrees of freedom of the mesh are deter-
mined and the relationship between the elements and
nodes is established. Hanging nodes do not have un-
knowns associated with them, and therefore are not part
of the global degrees of freedom. Their dependence on
the global degrees of freedom, which is required to en-
force the continuity of the finite element data fields, is
also determined in this function. Ghost layer information
(one layer of elements adjacent to local elements) from
remote cores is also gathered.

INTERPOLATEFIELDS. This function is used to interpo-
late finite element data fields from one mesh to a new
mesh that has been created by at most one level of coars-
ening and refinement. For simple interpolation between
two trilinear finite element meshes, there is no global
communication required to execute this step, given the
value of ghost degrees of freedom. Once finished the
cores gather the information for their ghost degrees of
freedom by communicating with their neighboring cores.

TRANSFERFIELDS. This function is the operation on
the data fields analogous to PARTITIONTREE. Follow-
ing the Morton ordering among the degrees of freedom,
the data associated with element nodes is transferred be-
tween cores to complete the load-balancing stage. At the
end of this process every core has obtained the data for
all elements it owns and discarded what is no longer rel-
evant due to the changed partition.



3 DYNAMIC MESH ADAPTATION

We target PDE applications in which the locations of so-
lution features evolve over time, necessitating dynamic
mesh adaptivity. In this section we describe how we treat
adaptivity for time-dependent problems and how we de-
cide on which elements to mark for coarsening and re-
finement.

3.1 MARKING ELEMENTS FOR COARSENING AND
REFINEMENT

Most of the algorithms required for dynamic mesh coars-
ening and refinement have been discussed in Section 2.3.
However, given an error indicator ηe for each element e,
we still need a method to mark elements for coarsening
and refinement. Since we wish to avoid a global sort of
all elements according to their error indicators, we pro-
pose a strategy that adjusts global coarsening and refine-
ment thresholds through collective communication. This
process iterates until the overall number of elements ex-
pected after adaptation lies within a prescribed tolerance
around a target. The main objective of the algorithm
MARKELEMENTS is to find thresholds ηcoarsen < ηrefine

such that:
• Every element e with ηe < ηcoarsen is coarsened.
• Every element e with ηe > ηrefine is refined.
• Obtain ≈ N total elements after adaptation.

MARKELEMENTS. Assume a given error indicator ηe

for each element e and a target number N of elements.

1. Select a coarsening threshold ηcoarsen based on the
mean value η̄ and standard deviation σ of ηe.

2. Choose γ < 1 and prepare a binary search for the
refinement threshold by setting
k := 0, ηlow := ηmin, η(0) := ηhigh := ηmax.

3. Count the overall expected number of elements
N (k) determined by ηcoarsen and ηrefine := η(k). This
requires one collective communication call.

4. If N (k) < γ N then set ηhigh := η(k),
k := k + 1, η(k) := 1

2 (ηlow + ηhigh) and go to Step 3.

5. If N (k) > N then set ηlow := η(k),
k := k + 1, η(k) := 1

2 (ηlow + ηhigh) and go to Step 3.

In principle the coarsening threshold could be deter-
mined by a binary search as well. We found the simpli-
fied approach based on statistical properties of the error
indicator to be sufficient.

To determine the number of expected elements in Step
3, we compute the global sum of the local element counts.
We limit the number of iterations for the search loop to 20,
which is seldom attained in practice.

The factor γ in Step 4 should be chosen smaller than
1.0 (we use 0.97 in our implementation) for two reasons:

. . .

0 T1 T2 Tn−1 T

Estimation

Actual Solution

Adaptation

Interpolation

Figure 5: Outline of window-based mesh adaption scheme.
The total time T of the simulation is covered by n time win-
dows, which overlap by a prescribed amount (10% of the win-
dow length in this paper). The PDEs are integrated in time over
a window m times for error estimation purposes, and finally once
for archival purposes on the final adapted mesh. At the end of
each error estimation integration, the mesh is adapted accord-
ing to error indicators accumulated over the integration through
the time window. The mesh is repartitioned, and the initial con-
ditions for the window are regenerated by interpolation from the
old to the new mesh. Then, integration over the window is re-
peated, with a possibly different time step size. The figure illus-
trates the case m = 2; in the examples in this paper, we use
m = 1. In practice the windows have different lengths due to
the fixed number of time steps used for the first integration.

The number of expected elements changes with ηrefine in
discrete steps only, and we take into account that the sub-
sequent enforcement of the 2-to-1 balance condition may
increase slightly the number of elements.

We choose the target N based on the memory avail-
able to every core; this way, the number of elements is
kept approximately constant during the simulation (in
practice the variations are within just 2%).

3.2 WINDOW-BASED DYNAMIC MESH ADAPTATION

This section briefly describes how we obtain error in-
dicators for time-dependent computations in which the
mesh changes dynamically. Other approaches for dy-
namic mesh adaptation than the one given here are cer-
tainly possible. Our approach is based on ideas discussed
in [18]. The mesh is adapted at the transition between
successive intervals called time windows. The minimum
length of a time window is one time step. However,
adapting every time step is usually wasteful. Therefore,
we allocate a fixed number of time steps to each win-
dow (in this paper, 32). The size of the time step varies,
and thus the lengths of the windows vary. We repeat
the numerical integration of the PDEs over a time win-
dow one or more times to accumulate error estimates,
and we adapt the mesh based on this information. Only
the last integration over the window is retained to repre-
sent the actual numerical solution of the PDEs, as illus-
trated in Figure 5. The benefit of this approach is that
the “archival” integration over each time window is con-
ducted on a mesh tailored to the evolving solution.



4 EXAMPLE: ADVECTION DIFFUSION EQUATION

In this section we study the performance of ALPS on
parallel dynamic mesh adaptation for a time-dependent
advection-diffusion equation. Advection-diffusion equa-
tions are used to model a wide range of transport phe-
nomena in natural and engineered systems. After a brief
description of the initial-boundary value problem and its
discretization, we study the volume of adaptivity, weak
and strong scalability, and the overall performance of the
method. All runs (besides the profiling run shown in Fig-
ure 12) are conducted on Ranger, the 0.5 Petaflop/s, 123
Terabyte, 62,976-core Sun/AMD system at the Texas Ad-
vanced Computing Center (TACC).

4.1 PROBLEM SETUP

To study the performance of ALPS, we consider the tran-
sient advection-diffusion equation

∂C

∂t
+ u · ∇C −∇ · κ∇C = 0, x ∈ Ω, t ∈ (0, T ) (1)

with given initial condition C(x, 0) = C0(x) and appro-
priate boundary conditions. The PDE (1) models a time-
dependent unknown C(x, t) (e.g., temperature or concen-
tration) in a 3D-domain Ω. The unknown is transported
by a given flow field u and at the same time diffuses with
rate κ ≥ 0.

For all of the numerical results in this section,
we solve (1) in Ω = [0, 30] × [0, 30] × [0, 30] with
κ = 0.001, T = 2, u = [1 1 0]T and
C0(x) = 1/2

(
1− tanh

(
α

(
‖x− x0‖2 − 5

)))
where x0 =

[10 10 10]T and α = 0.1. Homogeneous Dirichlet condi-
tions are taken on all boundaries.

The advection-diffusion equation (1) represents a
challenging test problem for parallel mesh adaptivity
when convection dominates, since the equation acquires
hyperbolic character (which transports sharp fronts). In
this case, the unknown field C can be highly localized in
space, and thus very high local mesh resolution may be
required to avoid numerical (and thus unphysical) dissi-
pation. On the other hand, a very coarse mesh may be
sufficient in other regions. As time evolves, the mesh will
have to adapt to the changing distribution of C. Namely,
the mesh can be coarsened away from high gradient re-
gions, and it must be refined near those regions. After
each adaptation step, the computational load and mem-
ory requirements on each core can change drastically. To
balance the load and avoid exceeding local memory, the
mesh must be redistributed uniformly among all cores. A
sequence of meshes that are adapted to the unknown C is
shown in Figure 6, illustrating the substantial change in
the mesh over time.

4.2 DISCRETIZATION AND STABILIZATION

We discretize (1) in space with trilinear finite elements on
octree-based hexahedral meshes. As mention previously,
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Figure 7: The number of elements that are refined (blue), coars-
ened (red), created to respect the 2:1 balance condition (brown,
barely visible), and unchanged (green), after adaptation of each
time window. Simulation ran on 4096 cores with approximately
131,000 elements per core.

these meshes are non-conforming, i.e., they contain hang-
ing nodes on element faces and edges. To ensure conti-
nuity of C, these nodes do not correspond to degrees of
freedom. Rather, the value of hanging node variables is
uniquely determined by the values at the neighboring in-
dependent nodes. This leads to algebraic constraints that
are used to eliminate the hanging nodes at the element
level. It is well known that Galerkin finite element dis-
cretizations of (1) require stabilization to suppress spuri-
ous oscillations in advection-dominated flows (i.e., when
κ is very small compared to u). Therefore we use the
streamline upwind/Petrov-Galerkin (SUPG) method [6].
Since we are mainly interested in the advection-driven
regime of (1), we use an explicit predictor-corrector time
integration [13].

4.3 EXTENT OF MESH ADAPTIVITY

Figure 7 shows the number of elements that are coars-
ened, refined, and stay the same in each mesh adapta-
tion step (i.e., per time window), for a simulation on 4096
cores. The number of adapted elements amount to about
half of the total number in the mesh at every adaptation
step. Figure 8 depicts the distribution of elements among
the refinement levels for selected time windows. The fi-
nal meshes contain elements on 10 levels of the octree,
leading to a factor of 512 variation in element edge length.
These figures illustrate the significant extent of adaptiv-
ity over the course of a simulation. This is worth keeping
in mind when examining the scalability results in subse-
quent sections.

4.4 SCALABILITY

In our analysis below, we study both isogranular (often
called weak) scalability and fixed-size (or strong) scalabil-
ity. As the name suggests, for fixed-size scalability a fixed



Figure 6: Illustration of mesh adaptivity for advection-diffusion equation (1) on 8 cores with a vertical flow field. The figure shows
snapshots of isosurfaces of the transported quantity C at five time instants (upper row) and corresponding adapted meshes (lower
row). The blue elements in the lower row belong to Core #3, indicating the dynamic evolution of the mesh partition.
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Figure 8: The number of elements within each level of the oc-
tree for selected time windows, for a simulation on 4096 cores
with approximately 131,000 elements per core. The octree is 10
levels deep for late-time meshes, which corresponds to a varia-
tion of element edge length by a factor of 512 across the same
mesh.

problem is solved on an increasing number of cores and
the speedup in runtime is reported. Isogranular scalabil-
ity increases the problem size and the number of cores
simultaneously so that problem size per core remains the
same. Both notions are valuable performance indicators
for parallel algorithms. For fixed-size scaling studies, as
the load per core becomes too small, the overall runtime
is dominated by the communication cost. Thus, we give
speedup curves for only a certain range of core numbers,
and then provide several curves corresponding to several
different problem sizes. The total end-to-end run time is
always used to calculate speedup, including the initial oc-
tree setup, mesh generation, and all phases of adaptivity.

Scaling up the problem size N for isogranular scal-
ability studies is straightforward for problems involving
discretized PDEs, since one needs only to refine the mesh.
However, it exposes a lack of algorithmic scalability in nu-
merical and graph algorithms whose work or communi-
cation increase superlinearly in N . This applies to algo-
rithms for dynamic meshing and load balancing that re-
quire the processing of global information by individual
cores, as well as to numerical algorithms such as Krylov
or fixed-point equation solvers for which the number of
iterations grows with problem size.

For dynamic mesh adaptivity, it is usually difficult
to keep the number of elements per core constant as the
problem size increases. Our algorithm MARKELEMENTS
performs well in this respect. Still, to provide a strict test
of isogranular scalability, we report the total work per-
formed for any given problem size, where total work is de-
fined as the total number of elements integrated over all
cores and all time steps. This measure normalizes for any
adaptivity-driven imbalances in the number of time steps
or elements per core as we scale up weakly. Thus “total
work” becomes synonymous with problem size, and we
can assess the isogranular scalability of our implementa-
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Figure 9: Fixed-size scalability: Speedup based on total runtime
plotted against the number of cores for three different problem
sizes.

tion by judging whether the total work divided by the
total run time and the number of cores remains constant
as the number of cores is increased.

4.4.1 FIXED-SIZE SCALING

Figure 9 shows the speedups for small, medium-size, and
large test problems as the number of cores increases. The
initial meshes on 1, 16, and 256 cores contain approxi-
mately 2.1 million elements per core. This number is kept
approximately constant throughout the whole run using
the threshold adjustment algorithm MARKELEMENTS de-
scribed in Section 3.1.

We selected these problem sizes based on the multi-
core architecture of Ranger. Every compute node has 32
GB of main memory and 16 cores. The size of each prob-
lem is chosen such that it uses 1 core per node for the
initial number of cores (1, 16, 256). This provides opti-
mal conditions for these initial runs since every core has
exclusive access to processor memory and the node’s net-
work interface. The first four scaling steps keep the num-
ber of blades constant and increase the number of cores
used per node to 16, at the same time increasing the shar-
ing of resources. Once all 16 cores are used on a node, we
increase the number of nodes in powers of 2.

The speedup is nearly optimal over a wide range of
core counts. For instance, solving the small test prob-
lem (green line) on 512 cores is still 366 times faster than
the solution on a single core. Similarly, the overall time
for solving the medium-size problem (blue line) on 1024
cores results in a speedup of more than 52 over the run-
time for 16 cores (optimal speedup is 64).

4.4.2 ISOGRANULAR SCALING

Figures 10 and 11 provide insight into the isogranular
scalability of the advection-diffusion test problem. Fig-
ure 10 depicts the breakdown of the overall runtime
into the time consumed by mesh initialization, the time
needed by the various functions to adapt the mesh,
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Figure 10: Isogranular scalability: Breakdown of total run time
into different components related to numerical PDE integration
(blue) and AMR functions (all other colors), with increasing num-
ber of cores from 1 to 32,768. Problem size increases isogran-
ularly at roughly 131,000 elements per core (largest problem
has approximately 4.29 billion elements). The overall runtime
is dominated by the numerical integration. The most expensive
operation related to AMR is EXTRACTMESH, which uses up to
6% of the runtime. Overall, AMR consumes about 10% or less
of the overall time.

and the time spent in numerical time integration, for
weak scaling from 1 to 32,768 cores. The results indi-
cate that all mesh adaptivity functions—including refine-
ment, coarsening, interpolation, field transfer, rebalanc-
ing, repartitioning, and mesh extraction—impose little
overhead on the PDE solver. Only for 16K and 32K
cores does the total cost of AMR exceed 10% of end-
to-end run time, and even then just barely. In fact,
our scalar, linear, low-order-discretized, explicitly-time-
advanced advection-diffusion test problem (1) imposes
the most strenuous test of AMR, since it offers little nu-
merical work to amortize mesh adaptivity. Moving to a
vector-valued or nonlinear PDE, a high-order discretiza-
tion, or an implicit solver will significantly increase the
numerical work, suggesting that the AMR overhead will
be negligible.

As illustrated in the lower row of Figure 6, PARTI-
TIONTREE completely redistributes the octree (and thus
the mesh) among all cores (we do not impose an explicit
penalty on data movement in the underlying partition-
ing algorithm). In general, the entire octree is reshuffled
among the cores after adaptation, which amounts to large
amounts of sent and received data using a one-to-one
communication pattern. Interestingly, Figure 10 demon-
strates that the time for PARTITIONTREE remains essen-
tially constant for all core counts beyond 1 (for which
partitioning is unnecessary). This is also reflected in the
timings for TRANSFERFIELDS, which do not show up in
Figure 10 even though complete finite element data fields
are redistributed through the network.

Figure 11 displays the parallel efficiency for isogranu-
lar scaling from 1 to 32,768 cores. Here, parallel efficiency
is defined as the total work per number of cores per total
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Figure 11: Isogranular scalability: Parallel efficiency measured
in total work (i.e. total processed elements) per core per total run
time, with increasing number of cores from 1 to 32,768 (problem
size approximately 131,000 elements per core). Despite a 32-
thousand-fold increase in problem size and number of cores,
parallel efficiency remains above 65%.

run time for a given core count, normalized by the to-
tal work per total run time for a single core. A parallel
efficiency of 1.0 indicates perfect isogranular scalability.
For example, if the adaptivity process resulted in exactly
twice as many elements created and the same number
of time steps when doubling the core count and reduc-
ing the acceptable error (to increase problem size), then
we would simply use the run time as a measure of par-
allel efficiency. Otherwise, normalizing by the number
of elements per core and the number of time steps ac-
commodates any possible vagaries of the adaptivity pro-
cess. As can be seen in the figure, despite a 32-thousand-
fold increase in problem size and number of cores, par-
allel efficiency remains above 65%. Again, we must keep
in mind the strenuous nature of this (scalar, linear, low-
order-discretized, explicitly-integrated) test problem.

4.5 LOAD BALANCE

We use the TAU utility [17] to assess load balance. Figure
12 shows the decomposition of the runtime on each of
64 cores into major functions of the code. The dominant
function—element matrix-vector products—has nearly
optimal load balance across the 64 cores, as shown by the
close alignment of the blue bars. Time spent in other, less
dominant, functions shows good load balance as well.
The excellent scalings presented in Section 4.4 reflect this
good load balance.

5 CONCLUSIONS

Because of the complex data structures and large vol-
umes of communication required, the scalability of dy-
namic AMR to tens of thousands of processors has long
been considered a challenge. We have presented ALPS,
a library for dynamic mesh adaptation and redistribu-

Figure 12: Performance profile of a complete run of ALPS on 64
cores of TACC’s Lonestar (Intel Woodcrest) system. Each row
shows time spent in different functions; for example, blue bars
correspond to element-level matrix multiplication within the time
integration; red bars correspond to the error estimation; green
bars correspond to MPI Waitall calls.

tion that uses parallel octree-based hexahedral finite el-
ement meshes and dynamic load balancing based on
space-filling curves. We have presented results from the
solution of advection-dominated transport problems on
TACC’s Ranger system that demonstrate excellent load
balance and scalability on up to 32K cores and 4 billion
elements. The results indicate that all overheads due to
mesh adaptivity—including refinement, coarsening, re-
balancing, redistribution, and repartitioning—consume
10% or less of the overall runtime. We anticipate that
more complex and/or nonlinear PDEs that will require
higher order and implicit discretizations will render the
AMR overhead invisible, and permit ALPS to scale to
hundreds of thousands of cores.
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