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Abstract

We propose a two-dimensional cellular automaton model to simulate pedestrian tra.c. It is a
vmax = 1 model with exclusion statistics and parallel dynamics. Long-range interactions between
the pedestrians are mediated by a so-called "oor #eld which modi4es the transition rates to
neighbouring cells. This 4eld, which can be discrete or continuous, is subject to di7usion and
decay. Furthermore it can be modi4ed by the motion of the pedestrians. Therefore, the model
uses an idea similar to chemotaxis, but with pedestrians following a virtual rather than a chemical
trace. Our main goal is to show that the introduction of such a :oor 4eld is su.cient to model
collective e7ects and self-organization encountered in pedestrian dynamics, e.g. lane formation
in counter:ow through a large corridor. As an application we also present simulations of the
evacuation of a large room with reduced visibility, e.g. due to failure of lights or smoke. c© 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

Considerable research has been done on the topic of tra.c :ow using methods from
physics during the last decade [1–8]. Cellular automata inspired by the pioneering works
[9–11] compose by now an important class of models. Most studies have been devoted
to one-dimensional systems, where several analytic approaches exist to calculate or
approximate the stationary state.

The majority of these models deals with particles which can move by more than
one cell per time step (maximal velocity vmax ¿ 1). Furthermore, it seems to be widely
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accepted that the most suitable update procedure is the parallel (synchronous) up-
date. Both open and periodic boundary conditions have been considered, where prob-
lems with open boundaries are generally harder to treat analytically (for a review, see
Ref. [12]).

On the other hand, pedestrian dynamics has not been studied as extensively as
vehicular tra.c, especially using a cellular automata approach. One reason is prob-
ably its generically two-dimensional nature. In recent years, continuum models have
been most successful in modelling pedestrian dynamics. An important example are the
social force models (see e.g. Refs. [4,8,13] and references therein). Here pedestrians
are treated as particles subject to long-ranged 1 forces induced by the social behaviour
of the individuals. This leads to (coupled) equations of motion similar to Newtonian
mechanics. There are, however, important di7erences since e.g. in general the third law
(“actio = reactio”) is not ful4lled.

In contrast to the social force models our approach is closer in spirit to the general
strategy of modelling (elementary) forces on a microscopic level by the exchange of
mediating particles which are bosons. It is therefore similar to active walker models
[14,15] used so far mainly to describe trail formation, chemotaxis (see Ref. [16] for a
review) etc. Here the walker leaves a trace by modifying the underground on his path.
This modi4cation is real in the sense that it could be measured in principle. For trail
formation vegetation is destroyed by the walker and in chemotaxis he leaves a chemical
trace. In contrast in our model the trace is virtual. Its main purpose is to transform
e7ects of long-ranged interactions (e.g. following people walking some distance ahead)
into a local interaction (with the “trace”). This allows e.g. for a much more e.cient
simulation on a computer.

Cellular automata for pedestrian dynamics have been proposed in Refs. [17–22].
These models can be considered as generalizations of the Biham–Middleton–Levine
model for city tra.c [10]. Most works have focussed on the occurrence of a jamming
transition as the density of pedestrians is increased. All models have vmax = 1, except
for the generalization proposed in Ref. [22] which is used for analyzing evacuation pro-
cesses on-board passenger ships. The other models use a kind of “sublattice-dynamics”
which distinguishes between di7erent types of pedestrians according to their preferred
walking direction. Such an update is not easy to generalize to more complex situations
where the walking direction can change. To our knowledge so far most other collective
e7ects encountered empirically [4,23–26] have not been reproduced using these models.
Another discrete model has been proposed earlier by Gipps and MarksjNos [27]. This
model is somewhat closer in spirit to our model than the cellular automata approaches
of Refs. [17–22] since the transitions are determined by the occupancies of the neigh-
bouring cells. However, also this model cannot reproduce all the collective e7ects. In
Ref. [28] a discretized version of the social force model has been introduced. The
repulsive potentials by the pedestrians are stored in a global potential, with pedestri-
ans reacting to the gradients of this global potential. Although this model is able to

1 Typically decaying exponentially.
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reproduce collective e7ects it su7ers from some drawbacks [29]. It is not :exible
enough to treat individual reactions to other pedestrians, and collision-avoidance is not
always guaranteed for velocities greater than 1.

First we discuss some general principles we took into account in the development of
our model. In contrast to vehicular tra.c the time needed for acceleration and braking
is negligible. The velocity distribution of pedestrians is sharply peaked [23]. These
facts naturally lead to a model with vmax =1 (if space is discrete), i.e., only transitions
to nearest neighbours 2 are allowed. A greater vmax would be harder to implement
in 2 dimensions, especially when combined with parallel dynamics, and reduce the
computational e.ciency. The number of possible target cells increases quadratically
with the interaction range. Furthermore one has to check whether the path is blocked
by other pedestrians. This might even be ambiguous for diagonal motion and crossing
trajectories.

To keep the model simple, we strongly emphasize the principle to provide the par-
ticles with as little intelligence as possible and to achieve the formation of complex
structures and collective e7ects by means of self-organization. E7ectively, there is ab-
solutely no intelligence (i.e., look-ahead distances or multiple moves per update step
depending on the distribution of occupied neighbour sites) in our model. In contrast
to older approaches we do not make detailed assumptions about the human behaviour.
Nevertheless, the model is able to reproduce many of the basic phenomena.

The key feature to substitute individual intelligence is the :oor 4eld. Apart from the
occupation number each cell carries an additional quantity (4eld) which can be either
discrete or continuous. This 4eld can have its own dynamics given by di7usion and
decay coe.cients.

Interactions between pedestrians are repulsive for short distances. One likes to keep
a minimal distance to others in order to avoid bumping into them. In the simplest
version of our model this is taken into account through hard-core repulsion which
prevents multiple occupation of the cells. For longer distances the interaction is often
attractive. For example, when walking in a crowded area it is usually advantageous
to follow directly behind the predecessor. Large crowds may also be attractive due to
curiosity.

In order to produce a :ow around obstacles in a simple way we also present a variant
of our model where the pedestrians can be in one of two modes (or moods), “happy”
or “unhappy”. These two modes are distinguished by their :uctuations. “Happy” pedes-
trians try to move in a preferred direction whereas “unhappy” pedestrians move in a
more random fashion. This is su.cient to avoid a jamming transition due to obstacles
at unrealistically low densities.

With two particle species moving in opposite directions, each with its own :oor
4eld, e7ects can be observed which are so far only achieved by continuous models:
lane formation and oscillation of the direction of :ow at doors. We consider this model

2 Here the four diagonal neighbours are included.
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to be another proof of the ability of cellular automata to create complex behaviour out
of simple rules and the great applicability to all kinds of tra.c :ow problems.

The model can be used together with models for route selection which assign certain
routes to each pedestrian. It only assumes that at every timestep for each pedestrian a
transition matrix (matrix of preferences) is given.

2. Model

The underlying structure is a two-dimensional grid which can be closed periodically
in one or both directions. Each cell can either be empty or occupied by exactly one
particle (pedestrian). The size of a cell corresponds to approximately 40 × 40 cm2.
This is the typical space occupied by a pedestrian in a dense crowd [26]. For special
situations it might be desirable to use a 4ner discretization, e.g. such that each pedes-
trian occupies four cells instead of one. In this paper, however, we concentrate on
the simplest case which seems to be su.cient for most purposes. The update is done
in parallel for all particles. This introduces a timescale into the dynamics which can
roughly be identi4ed with the reaction time treac. In the deterministic limit, correspond-
ing to the maximal possible walking velocity in our model, a single pedestrian (not
interacting with others) moves with a velocity of one cell per timestep, i.e., 40 cm per
timestep. Empirically the average velocity of a pedestrian is about 1:3 m=s [26]. This
gives an estimate for the real time corresponding to one timestep in our model. Being
approximately 0:3 s, it is of the order of the reaction time treac, and thus is consistent
with our microscopic rules.

2.1. Basic rules

Each particle is given a direction of preference. From this direction, a 3×3 matrix of
preferences is constructed which contains the probabilities for a move of the particle.
The central element describes the probability for the particle not to move at all, the
remaining 8 correspond to a move to the neighbouring cells. The probabilities can
be related to the velocity and the longitudinal and transversal standard deviations (see
Appendix A for details). In practice, all particles of the same species share the values
of these parameters and in consequence the same matrix. In the simplest case the
pedestrian is allowed to move in one direction only without :uctuations and in the
corresponding matrix of preference only one element is one and all others are zero
(see Fig. 1).

This ansatz can easily be extended by 4xing the direction of preference for each cell
separately, e.g. to handle structures inside buildings. Then the particles would use the
matrix belonging to the cell they occupy at a given step.

In each update step, for each particle a desired move is chosen according to these
probabilities. This is done in parallel for all particles. If the target cell is occupied,
the particle does not move. If it is not occupied and no other particle targets the same
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Fig. 1. A particle, its possible transitions and the associated matrix of preference M = (Mij).

Fig. 2. Solving con:icts according to the relative probabilities for the case of two particles with matrices of
preference M (1) and M (2).

cell, the move is executed. If more than one particle share the same target cell, one
is chosen according to the relative probabilities with which each particle chose their
target. This particle moves while its rivals for the same target keep their position (see
Fig. 2).

The matrix used to achieve maximum :ow is clearly given by the simplest case of
unidirectional :uctuation-free motion described above. Transversal :uctuations
reduce the :ow by introducing interference between lanes. However, this setting is
not su.cient to avoid e.g. jams behind obstacles. To escape a jammed situation, the
particles need a mode where they can select between di7erent cells to move backwards
or sideways in order to eventually make their way around the obstacle.

The rules presented up to here are a straightforward generalization of the CA rules
used so far for the description of tra.c :ow [17–21]. The main di7erence is that in
principle transitions in all directions are possible and each pedestrian j might have her
own preferred direction of motion characterized by a matrix of preferences M (j). The
only interaction between particles taken into account so far is hard-core exclusion.



512 C. Burstedde et al. / Physica A 295 (2001) 507–525

2.2. Floor #eld

In order to reproduce certain collective phenomena it is necessary to introduce
longer-ranged interactions. In some continuous models this is done using the idea of a
social force [4,8,13]. Here we introduce a di7erent approach. Since we want to keep the
model as simple as possible we try to avoid using a long-range interaction explicitly.
Instead we introduce the concept of a "oor #eld which is modi4ed by the pedestrians
and which in turn modi4es the transition probabilities. This allows to take into account
interactions between pedestrians and the geometry of the system (building) in a uni4ed
and simple way without loosing the advantages of local transition rules. The :oor 4eld
modi4es the transition probabilities in such a way that a motion into the direction of
larger 4elds is preferred.

The :oor 4eld can be thought of as a second grid of cells underlying the grid of
cells occupied by the pedestrians. It can be discrete or continuous. In this paper we will
give examples for both variants. In general we distinguish between static and dynamic
:oor 4elds. The static "oor #eld S does not evolve with time and is not changed by
the presence of pedestrians. Such a 4eld can be used to specify regions of space which
are more attractive, e.g. an emergency exit (see the example in Section 3.1) or shop
windows. This has an e7ect similar to a position-dependent matrix of preference but
is much easier to realize.

In contrast the dynamic "oor #eld D is modi4ed by the presence of pedestrians
and has its own dynamics, i.e., di7usion and decay. Usually the dynamic :oor 4eld is
used to model a (“long-ranged”) attractive interaction between the pedestrians. Each
pedestrian leaves a “trace”, i.e., the :oor 4eld of occupied cells is increased. Since the
total transition probability is proportional to the dynamic :oor 4eld it becomes more
attractive to follow in the footsteps of other pedestrians. Explicit examples where such
an interaction is relevant will be given in Section 3. The dynamic :oor 4eld is also
subject to di7usion and decay which leads to a dilution and 4nally the vanishing of
the trace after some time.

In general the transition probability pij in direction (i; j) (see Fig. 1) is given by 3

pij = NMijDijSij(1 − nij) : (1)

Here nij is the occupation number of the target cell in direction (i; j), i.e., nij = 0 for
an empty cell and nij = 1 for an occupied cell. Therefore transitions to occupied cells
are forbidden. N is a normalization factor to ensure

∑
(i; j) pij = 1 where the sum is

over the nine possible target cells. In Section 2.4.2, we will also use a slightly di7erent
form for the transition probabilities which is more general than (1).

The update rules of the full model including the interaction with the :oor 4elds then
have the following structure:

3 Note that this is not a product of matrices but just the product of the corresponding matrix elements.
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(1) The dynamic :oor 4eld D is modi4ed according to its di7usion and decay rules
(see Sections 2.3 and 2.4).

(2) For each pedestrian, the transition probabilities for a move to an unoccupied neigh-
bour cell (i; j) is determined by the matrix of preferences and the local dynamic
and static :oor 4elds, e.g. pij˙MijDijSij.

(3) Each pedestrian chooses a target cell based on the probabilities of the transition
matrix P = (pij).

(4) The con:icts arising by any two or more pedestrians attempting to move to the
same target cell are resolved, e.g. using the procedure described in Section 2.1.

(5) The pedestrians which are allowed to move execute their step.
(6) The pedestrians alter the dynamic :oor 4eld of the cell they occupied before the

move.

The explicit form of the interaction between the pedestrians and the :oor 4eld and
the dynamics of the :oor 4eld will be speci4ed in Sections 2.3 and 2.4.

If more than one pedestrian species exists (i.e., two groups moving in opposite
directions), each species interacts with its own :oor 4eld. In the simplest case these
4elds are independent from each other.

2.3. Discrete "oor #elds

In the discrete case the 4elds are realized through noninteracting particles which
do not obey a hard-core exclusion principle. Therefore they will be called bosons in
the following. Since the particles corresponding to the pedestrians are not allowed to
share a cell these will be called fermions. The fermions couple to the bosons locally
which drives the fermions in a preferred direction and induces a long-range interaction
between the fermions.

The essence of our approach is that for each fermion the probability to jump into
a direction with a larger number of bosons is increased. Thus, the motion is simply
driven by gradients in the :oor 4eld, i.e., in the density of the bosons.

The 4rst type of bosons (s-bosons) is completely static. At the beginning of a sim-
ulation for each cell (x; y) the occupation number of s-bosons �s(x; y) is 4xed to a
speci4c value. Furthermore, at the beginning every cell is void of bosons of the second
type, the dynamic bosons (d-bosons). Whenever a fermion jumps from site (x; y) to
one of the neighbouring cells, the d-boson occupation number of cell (x; y) is increased
by one (fermions leave a trace):

�d(x; y) → �d(x; y) + 1 : (2)

After all motions of the fermions during one timestep have been performed, the oldest
d-boson of each cell is destroyed with probability �, if the lifetime of this boson is
larger than one (i.e., it has been created during the previous update step or earlier).

Now that the two bosonic :oor 4elds have been introduced, the update procedure for
the fermions can be given. At every discrete time step t → t + 1 each fermion veri4es
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which of its neighbouring cells (i; j) are empty (nij = 0). The transition probability to
occupied neighbouring cells is set to zero. Thus, the probability for a jump from the
centre cell (0; 0) to an unoccupied neighbour site (i; j) is given by

pij = N exp(�Js �s (i; j)) exp(�Jd �d (i; j))(1 − nij)dij ; (3)

where

�s(i; j) = �s(i; j) − �s(0; 0) and �d (i; j) = �d(i; j) − �d(0; 0) : (4)

N is again a normalization factor to ensure
∑

(i; j) pij=1. di is a correction factor taking
into account the direction the particle in cell 0 has been coming from. The variables
Js and Jd control the coupling strength between the fermions and the s-bosons and
the d-bosons, respectively. � plays the role of an inverse temperature. Note that the
d-bosons lead to a long-range interaction between fermions in space and time.

The correction factor is introduced in order to prevent that the fermions are not
confused by their own trace. One has to distinguish between three cases: If the fermion
at 0 has been sitting at i at time t − 1, the d-boson sitting on top of i has been left
by the fermion under consideration. Setting

dij = exp(−�Jd) ; (5)

this fermion is not taken into account in the calculation of the transition probabilities.
If during the time step from t− 1 → t the fermion has moved into the direction of the
vector pointing from (0; 0) → (i; j), this motion shall be enhanced

dij = exp(�J0) : (6)

Therefore, J0 is a parameter which can be used to tune the inertia of the fermions. In
all other case dij equals one.

This prescription is not free of collisions. Therefore, if m fermions try to perform
a move onto the same site, only one of these fermions is allowed to perform this
move. This fermion is picked at random with probability 1=m. Of course one can also
use the method described in Section 2.1 for the resolution of the con:icts. For the
problem studied in Section 3.1 the details of the con:ict resolution turned out to play
no important role and we therefore used the simpler rule.

2.4. Continuous "oor #eld

In the continuous variant each cell j of the :oor 4eld carries a continuous 4eld
value fj between 0 and 1. The basic purpose of the :oor 4eld is again to determine
the transition probabilities of the pedestrians.

In the example studied in Section 3.2 we will only use a dynamic :oor 4eld, but
a generalization which includes also a static 4eld is straightforward. Since we are in-
terested in applications related to the :ow around obstacles we introduce two kinds of
states in which pedestrian can be: “happy” or “unhappy”. A pedestrian becomes “un-
happy” if several consecutive desired moves could not be carried out due to con:icts.
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She then changes her strategy, i.e., her matrix of preferences (see Section 2.4.2). The
interaction of the pedestrians with the :oor 4eld is then as follows: “Happy” pedestri-
ans locally increase the 4eld, and a large 4eld aids “unhappy” pedestrians to become
“happy” again, in a sense to be speci4ed below. This is su.cient to produce a :ow
around obstacles, e.g. lane formation (see Section 3.2) or oscillations of the direction
of :ow at doors.

Without the distinction between the two states pedestrians would have the tendency
to pile up in front of obstacles. If a constant :ow from behind exists it will become
increasingly di.cult for these pedestrians to turn around and avoid the obstacle and
therefore the pile will grow. For static obstacles this e7ect is related to the fact that
our pedestrians have minimal intelligence. This assumption should be well justi4ed in
situations where they move in unknown territory and at a reduced visibility, e.g. due
to smoke or failing lights. In normal situations the pedestrians can see a static obstacle
(e.g. a wall) from some distance and will try to avoid them early. This can easily
be incorporated in our model using a static :oor 4eld which becomes smaller just in
front of the obstacle and thus reduces the corresponding transition probabilities. For
dynamical obstacles, e.g. other pedestrians moving in the opposite direction, one way
of avoiding unrealistic jamming properties is the introduction of di7erent modes.

2.4.1. Di7usion and decay
The dynamic :oor 4eld F is subject to di7usion and decay. It evolves according to

@F
@t

= DQF −  F ; (7)

which is discretized in the standard manner. Here D is the di7usion constant and  
the decay constant. The ranges are restricted to D ∈ [0; 1

8 ] and  ∈ [0; 1
2 ] to suppress

oscillations in the :oor 4elds and insure that the values do not leave the interval [0; 1].

2.4.2. Floor #eld a7ects the pedestrian’s desire and state
As mentioned above there are di7erent ways to model the interaction of the :oor

4elds with the pedestrians. Here we present a preliminary solution for the situation
of pedestrians with minimal intelligence which can probably be simpli4ed further. The
form of the transition rates is slightly more general than (1). Furthermore we allow the
pedestrians to be in two di7erent modes (or moods) described by di7erent matrices of
preference. The transitions between these two modes are controlled by the :oor 4eld.
The rates are, however, subject to two restrictions

• A uniform :oor 4eld should not alter the matrix of preferences.
• A non-uniform :oor 4eld should be able to change a matrix element from zero to

a non-zero value.

A per-element addition of the matrix of preferences and the :oor 4eld violates
the 4rst principle, while a multiplication by e.g. Boltzmann factors violates the second.
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Therefore, we are working with a compromise between the two by slightly generalizing
Eq. (1)

pij = N (Mij + b2) exp((Fij − Favg)b1) ; (8)

where F denotes the :oor 4eld matrix, Favg the :oor 4eld averaged over all nine
relevant cells and P = (pij) the transition matrix which has to be normalized by a
normalization factor N . The parameters of this rule are b1 and b2.

We introduce a second mode by switching to a di7erent matrix of preferences. The
mode described so far will be called happy, while the unhappy mode is realized by
a di7erent matrix of preferences which is simply characterized by greater standard de-
viations and a reduced velocity. This typically happens in high-density situations. The
motion then becomes less directed and the larger :uctuations help to avoid clogging.
Happy pedestrians which could not move to their desired target 4eld in several consec-
utive timesteps (the exact number is a parameter of the model, in our simulations set
to 3) enter the unhappy mode, while unhappy pedestrians become happy again after
a certain number of consecutive allowed desires (4 in our simulations). The optimal
values for these two parameters depend on the preferences of the given simulation (i.e.,
maximum :ow versus :exible obstacle avoidance). Of course, this requires a minimal
per-pedestrian memory consisting of two counters.

One could easily alter this de4nition by allowing a continuous choice of matrix by
interpolating between the two states. This would correspond to introducing a continuous
spectrum of moods instead of the discrete states “happy” and “unhappy”.

In addition to the mechanism for transitions between the modes described above,
a unhappy pedestrian changes to a happy one immediately if the value of the :oor
4eld at its cell of origin is greater than a certain threshold. This leads to a smooth
integration of unhappy pedestrians into a calm region of high :ow.

2.4.3. Pedestrians a7ect the "oor #eld
After a pedestrian has completed a certain number of total allowed moves (the value

of which is usually 3) in the happy mode, the value of the :oor 4eld of its originating
cell is increased. This introduces a third counter residing in the per-pedestrian memory.
The counter is set to zero at mode changes. The prescription to alter the :oor 4eld
reads

F → F + min((1 − F)g1; g2) : (9)

The parameters of this rule are g1 ∈ [0; 1] and g2 ∈ [0; 1]. The way how pedestrians
a7ect the :oor 4eld can certainly be altered slightly without changing the overall
behaviour.

It is important to ignore this change in the 4eld while modifying the matrix in the
next update step to avoid artifacts (pedestrians moving backwards without reason).

With this extension, the jam behind a single obstacle composed by a line of several
forbidden cells can be reduced signi4cantly. The trade-o7 lies in an overall reduced
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:ow, as the unhappy pedestrians gravely disturb the previously unhindered movement
of the pedestrians which pass to the sides of the obstacle. This evokes the need to
4nd out for each pedestrian individually whether it might be necessary to switch to
the happy state instantaneously, depending on the local situation. This can be achieved
without the introduction of per-pedestrian intelligence (see section 2.4.2).

3. Simulations

In the following we describe the results of simulations of two typical situations, i.e.,
the evacuation of a large room [25] (e.g. in the case of a 4re) and the formation of
lanes in a large corridor [13]. We use di7erent variants of the basic model in order to
elucidate the potential of the di7erent approaches.

3.1. Evacuation of a large room

For simplicity, in the case of discrete :oor 4elds pedestrians are only allowed to
move in north (N ), west (W ), south (S), and east (E) direction, which leads to the
following form of the matrix of preferences:

M =




0 MN 0
MW M0 ME

0 MS 0


 (10)

This choice means no severe restriction since transitions into the diagonal directions
can be implemented quite easily.

In our simulations we have investigated the behaviour of people leaving a quadratic
room with one door only. The s-bosonic 4eld has been chosen such that the occupation
number of s-bosons decreases radially from a maximum value at the door to zero at
the corners opposite to the door. Typical stages of the dynamics are shown in Fig. 3.

As an example we have studied the in:uence of the lifetime of d-bosons (i.e., their
decay probability �) on the evacuation time, i.e., the time it takes for all people to

Fig. 3. People leaving a room with one door only. Displayed are three typical stages of the dynamics.
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Fig. 4. Mean evacuation times Tev as function of the decay probability � of the d-bosons. The parameters
are: Js = 2; Jd = J0 = 1; � = 10. The errorbars display the mean standard deviation.

Fig. 5. Same as Fig. 4, but with Js = 1
2 . All other parameters are the same.

leave the room. We have seen that if the coupling strength Js to the static bosons is
rather large, the evacuation time increases with an increase of the lifetime of d-bosons
(see Fig. 4). Most interestingly, if Js becomes smaller, the best evacuation times
are found when the lifetime of d-bosons is 4xed at some intermediate values (see
Fig. 5).

This 4nding is very interesting, because it has the consequence that the attractive
interaction of particles can lead to crucial di7erences in the particles’ behaviour. These
changes become more severe if the particles have no clear idea what the best way to the
next exit is. In addition, one can see that :uctuations become much more dominant if Js
goes to zero. Therefore, in case of evacuation simulations, studying average evacuation
times or—even worse—looking at one sample only might lead to wrong conclusions.
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3.2. Lane formation in a long corridor

We present simulations of a rectangular corridor which is populated by two species
of pedestrians moving in opposite directions. Parallel to the direction of motion we
assume the existence of walls. Orthogonal to the direction of motion we investigated
both periodic and open boundary conditions. The length of the corridor is set to 200
cells. Widths of 15 and 25 cells have been used.

With periodic boundary conditions, the density of pedestrians is 4xed for each run.
The program ensures that the overall number of pedestrians is evenly divided by the
numbers for the di7erent species. For open boundaries, we 4x the rate at which pedes-
trians enter the system at the boundaries (ASEP style insertion rates). The pedestrians
leave the system as soon as they reach the opposite end of the corridor.

This model clearly provides the option for a complete jam. The jamming probability
with periodic boundaries at constant density increases with the length of the system.
An open system can be thought of as the limit of an in4nitely long periodic system,
although density and entry rates do not correspond absolutely (the density in the open
system is always higher than twice the insertion rate).

The update rules have the same structure as described in Section 2.2. Only step (6)
is modi4ed to
(6′) The pedestrians change their mode if necessary based on their history and the

:oor 4eld. They alter the (dynamic) :oor 4eld of the cell they occupied before
the move.

We performed several runs for di7erent densities and insertion rates, respectively.
The focus of our attention is the parameter range where the transition from a stable
:ow to a complete jam takes place. The complete set of parameters for the simulations
can be found in Appendix B.

Fig. 6 shows the graphical frontend running a simulation of a small periodic system.
The lanes can be spotted easily, both in the main window showing the cell contents and
the small windows on the right showing the :oor 4eld intensity for the two species.

To obtain information about the lanes we accumulated the pedestrian velocities at
a cross section perpendicular to the direction of :ow. This is done according to the
formula jn+1 = jnr + v, where j is the accumulated value and v = 0; 1 is the velocity
of the pedestrian crossing the line. r ¡ 1 is set to such a value that the characteristic
number of contributing pedestrians is 100. Selected pro4les are shown in Figs. 7–9.
The values of the other parameters are given in the table in Appendix B. Qualitatively
our results are in good agreement with those of Ref. [30] where the lane formation
has been interpreted as an optimal self-organization process.

It is obvious that the lane formation in the periodic system works far better than in
the open system. The :oor 4eld leads to an e7ective attraction of identical pedestrians
while di7erent pedestrian species separate. This results in the formation of a stable
pattern in the periodic case.

In a certain density regime, these lanes are metastable. Spontaneous :uctuations can
disrupt the :ow in one lane causing the pedestrians to spread and interfere with other
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Fig. 6. Snapshot of a simulation with ' = 0:17; w = h = 50. The left part shows the parameter control.
The central window is the corridor and the light and dark squares are right- and left-moving pedestrians,
respectively. The right part shows the :oor 4elds for the two species.

Fig. 7. Velocity pro4le of a periodic system with ' = 0:10.

lanes. Eventually the system can run into a jam by this mechanism. The average time
after which the system is blocked by a jam is an interesting observable which depends
on the density of pedestrians. We observe large :uctuations of this observable which
require many samples to 4nd statistically signi4cant information.

We have also found the formation of an odd number of lanes under certain con-
ditions. This corresponds to a spontaneous breaking of the left-right symmetry of the
system.

Due to the complexity of our model, the computational speed is signi4cantly lower
compared to the original models of tra.c :ow. A typical value measured on a SUN
Sparc-10 workstation is 0:24 mega updates per second. It should still be way faster
than continuous models.
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Fig. 8. Velocity pro4le of an open system taken at x = L=2 with � = 0:04.

Fig. 9. Velocity pro4le of an open system taken at x = L=4 with � = 0:04.

4. Conclusions

We have introduced a stochastic cellular automaton to simulate pedestrian behaviour.
We focused on the general concept and the e7ects which can be observed with the
basic approach, i.e., particle attraction and repulsion between identical and di7erent
particles respectively and lane formation.

The key mechanism is the introduction of the :oor 4eld which acts as a substitute
for pedestrian intelligence and leads to collective phenomena. This :oor 4eld makes
it possible to translate spatial long-ranged interactions into non-local interactions in
time. The latter can be implemented much more e.ciently on a computer. Another
advantage is an easier treatment of complex geometries. In models with long-range
interactions, e.g. the social-force models, one always has to check explicitly whether
pedestrians are separated by walls in which case there should be no interaction between
them. Furthermore, in these models the computational e7ort increases proportional to
the square of the number of individuals. In contrast, in our approach it increases only
linearly with the system size which is usually 4xed.

The general idea in our model is similar to chemotaxis. However, the pedestrians
leave a virtual trace rather than a chemical one. This virtual trace has its own dynamics
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(di7usion and decay) which e.g. restricts the interaction range (in time). It is realized
through a dynamical :oor 4eld which allows to give the pedestrians only minimal
intelligence and to use local interactions. Together with the static :oor 4eld it o7ers
the possibility to take di7erent e7ects into account in a uni4ed way, e.g. the social
forces between the pedestrians or the geometry of the building.

We presented a rather general form of the model. Not all the features are needed
in all the cases. For example for lane formation we do not need a static 4eld. A
static 4eld might lead to a “pinning” of lanes. We have shown that our model is a
good starting point for realistic applications since it is able to reproduce the basic
phenomena encountered empirically. In contrast the other CA models so far have not
been shown to exhibit some of the collective phenomena, e.g. lane formation etc. Other
features, e.g. oscillations at doors [13], have also been observed in our simulations [32].
Quantitative results will presented elsewhere. The model can also be applied to more
complex geometries and various characteristics of a crowd can be simulated without
major changes. So it should be possible to study the e7ects of panic (see Ref. [25]
and references therein).

The description of pedestrians using a cellular automaton approach allows for very
high simulation speeds. Therefore, we have the possibility to extract the complete
statistical properties of our model using Monte Carlo simulations. This knowldege is
of major importance if one wants to establish risk management techniques that are
nowadays used for the hedging of 4nancial assets all over the world [31].
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Appendix A. Construction of the matrix of preferences

The aim of this appendix is to show that the matrix of preferences can be directly
related to observable quantities, namely the average velocities and their :uctuations.
The procedure explained here to construct the matrix of preferences is not essential for
the model. One could freely choose the nine matrix elements to achieve the desired
behaviour of the pedestrians. However, it is not straightforward to choose 4ve inde-
pendent probabilities (one is determined by normalization and three by symmetry) in a
consistent way. It is therefore convenient to look for a simpler principle, which might
even simplify some calculations.

We consider 4rst a one-dimensional setup of three adjacent 4elds which repre-
sents the velocities in I := {−1; 0; 1} from left to right. To these cells the probabilities
p−1; p0 and p1 are assigned. The values of the average velocity v and of the standard
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Fig. 10. ,l and ,h depending on v.

deviation , are the parameters of this construction. This leads to three conditions which
uniquely determine the probabilities

∑
i∈I

pi = 1 ; (A.1)

∑
i∈I

ipi = v ; (A.2)

∑
i∈I

(i − v)2pi = ,2 : (A.3)

Not all combinations of v ∈ [ − 1; 1] and , ∈ [0; 1] are allowed. One 4nds

p−1 = 1
2 (,

2 + v2 − v) ; (A.4)

p0 = 1 − (,2 + v2) ; (A.5)

p1 = 1
2 (,

2 + v2 + v) ; (A.6)

where , is con4ned to the interval [,l; ,h] with

,2
l = 1

4 − (|v| − 1
2 )

2 (A.7)

,2
h = 1 − v2 : (A.8)

These restrictions are shown in Fig. 10.
To create a 3×3 matrix M , one creates two such sets: {p−1; p0; p1} with the parame-

ters {v; ,v} which correspond to the forward and backward movement and {q−1; q0; q1}
with the parameters {0; ,t} for the (symmetric) transversal movement. These are simply
multiplied

Mij = qipj ; (A.9)
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Table 1

Description Symbol Value

Steps to happy transition 4
Steps to unhappy transition 3
Floor 4eld di7usion D 0.01875
Floor 4eld decay  0.005
First active :oor parameter b1 0.15
Second active :oor parameter b2 0.15
First passive :oor parameter g1 0.23
Second passive :oor parameter g2 0.10

which produces a movement to the right for positive v. This matrix is normalized by
construction. We have now achieved a reduction of free parameters from 5 to 3 and
as a side e7ect formulated a starting point for analytical calculations.

Appendix B. Typical parameter values

Table 1 contains the typical parameter values used in the simulations of lane forma-
tion in Section 3.2.

The 4rst two lines show the number of consecutive allowed moves which a particle in
unhappy mode needs to become happy again and the number of consecutive forbidden
moves for the inverse transition, respectively.

The following two lines give the parameters for the modi4cation of the :oor 4eld
as shown in (7).

The active :oor parameters determine the in:uence of the :oor 4eld on the particles
(8), whereas the passive :oor parameters describe the action of the particles on the
:oor 4eld (9).

The 4rst six of these values can be found in the lower half of the con4guration
panel in Fig. 6 (the di7usion constant is scaled by 1

8 ).
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